首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   17篇
测绘学   12篇
大气科学   28篇
地球物理   74篇
地质学   118篇
海洋学   34篇
天文学   76篇
自然地理   13篇
  2022年   2篇
  2019年   4篇
  2018年   5篇
  2017年   10篇
  2016年   11篇
  2015年   7篇
  2014年   5篇
  2013年   15篇
  2012年   13篇
  2011年   13篇
  2010年   12篇
  2009年   16篇
  2008年   27篇
  2007年   17篇
  2006年   12篇
  2005年   12篇
  2004年   12篇
  2003年   15篇
  2002年   6篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   13篇
  1995年   7篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1988年   2篇
  1987年   3篇
  1986年   8篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   6篇
  1979年   5篇
  1978年   2篇
  1977年   5篇
  1975年   4篇
  1974年   4篇
  1972年   2篇
  1969年   1篇
  1968年   2篇
  1964年   1篇
  1956年   1篇
  1952年   1篇
  1940年   1篇
排序方式: 共有355条查询结果,搜索用时 15 毫秒
1.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
2.
3.
Carl Keller 《Ground water》2017,55(2):244-254
This study describes a new technique for measuring the head profile in a geologic formation. The technique provides rapid, low cost information on the depth of water‐producing zones and aquitards in heterogeneous aquifers, yielding estimates of hydraulic heads in each zone while identifying any potential for cross contamination between zones. The measurements can be performed in a typical borehole in just a few hours. The procedure uses both the continuous transmissivity profile obtained by the installation (eversion) of a flexible borehole liner into an open borehole and the subsequent removal (inversion) of the same liner from the borehole. The method is possible because of the continuous transmissivity profile (T profile described by Keller et al. 2014) obtained by measuring the rate of liner eversion under a constant driving head. The hydraulic heads of producing zones are measured using the reverse head profile (RHP) method (patent no. 9,008,971) based on a stepwise inversion of the borehole liner. As each interval of the borehole is uncovered by inversion of the liner, the head beneath the liner is allowed to equilibrate to a steady‐state value. The individual hydraulic heads contributing to each measurement are calculated using the measured transmissivity for each zone. Application of the RHP method to a sedimentary bedrock borehole in New Jersey verified that it reproduced the head distribution obtained the same day in the same borehole instrumented with a multilevel sampling system.  相似文献   
4.
A scientific challenge is to assess the role of Deccan volcanism in the Cretaceous-Tertiary boundary (KTB) mass extinction. Here we report on the stratigraphy and biologic effects of Deccan volcanism in eleven deep wells from the Krishna-Godavari (K-G) Basin, Andhra Pradesh, India. In these wells, two phases of Deccan volcanism record the world’s largest and longest lava mega-flows interbedded in marine sediments in the K-G Basin about 1500 km from the main Deccan volcanic province. The main phase-2 eruptions (∼80% of total Deccan Traps) began in C29r and ended at or near the KTB, an interval that spans planktic foraminiferal zones CF1–CF2 and most of the nannofossil Micula prinsii zone, and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began in phase-2 preceding the first of four mega-flows. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 mega-flow at the KTB. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbon crisis in the marine environment.  相似文献   
5.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   
6.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
The Kansas Geological Survey (KGS) developed a semianalytical solution for slug tests that incorporates the effects of partial penetration, anisotropy, and the presence of variable conductivity well skins. The solution can simulate either confined or unconfined conditions. The original model, written in FORTRAN, has a text-based interface with rigid input requirements and limited output options. We re-created the main routine for the KGS model as a Visual Basic macro that runs in most versions of Microsoft Excel and built a simple-to-use Excel spreadsheet interface that automatically displays the graphical results of the test. A comparison of the output from the original FORTRAN code to that of the new Excel spreadsheet version for three cases produced identical results.  相似文献   
8.
Effectively communicating the complexity of climate change to the public is an important goal for the climate change research community, particularly for those of us who receive public funds. The challenge of communicating the science of climate change will be reduced if climate change researchers consider the links between personality types, communication tendencies and learning preferences. Jungian personality type is one of many factors related to an individual’s preferred style of taking in and processing information, i.e., preferred communication style. In this paper, we demonstrate that the Jungian personality type profile of interdisciplinary, early career climate researchers is significantly different from that of the general population in the United States. In particular, Ph.D. climate researchers tend towards Intuition and focus on theories and the “big picture”, while the U.S. general population tends towards Sensing and focuses on concrete examples and experience. There are other differences as well in the way the general public as a group prefers to take in information, make decisions, and deal with the outer world, compared with the average interdisciplinary climate scientist. These differences have important implications for communication between these two groups. We suggest that climate researchers will be more effective in conveying their messages if they are aware of their own personality type and potential differences in preferred learning and communication styles between themselves and the general public (and other specific audiences), and use this knowledge to more effectively target their audience.  相似文献   
9.
The descent imager/spectral radiometer aboard the Huygens probe successfully acquired images and spectra of the surface of Titan. To counter the effects of haze and atmospheric methane absorption it carried a surface science lamp to illuminate the surface just before landing. We reconstruct the reflectance spectrum of the landing site in the 500-1500 nm range from downward looking visual and infrared spectrometers data that show evidence of lamp light. Our reconstruction is a followup to the analysis by Tomasko et al. [2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765-778], who scaled their result to the ratio of the up- and down flux measured just before landing. Instead, we use the lamp flux from the calibration experiment, and find a significantly higher overall reflectance. We attribute this to a phase angle dependance, possibly representing the opposition surge commonly encountered on solar system bodies. The reconstruction in the visible wavelength range is greatly improved. Here, the reflectance spectrum features a red slope, consistent with the presence of organic material. We confirm the blue slope in the near-IR, featureless apart from a single shallow absorption feature at 1500 nm. We agree with Tomasko et al. that the evidence for water ice is inconclusive. By modeling of absorption bands we find a methane mixing ratio of 4.5±0.5% just above the surface. There is no evidence for the presence of liquid methane, but the data do not rule out a wet soil at a depth of several centimeters.  相似文献   
10.
The investigation data on Scleractinia of the abyssal zone have been generalized. Based on an analysis of maps of the distribution pattern of these corals, it can be concluded that there is a close correlation between the spread of their species and the position of the ocean currents that form the global oceanic conveyor belt. The maps were compiled from published and our own data collected on expeditions of the Shirshov Institute of Oceanology of the Russian Academy of Sciences. We analyzed data on 106 stations. The location of the global oceanic conveyor belt was shown in the maps. The distribution pattern of abyssal coral species confirms our assumption that there are two possible ways of origin of abyssal fauna. We suppose that the genera Fungiacyathus and Leptopenus are ancient and have evolved in deep oceanic layers, while the species D. parvulus obviously originated from shallow-water ancestors and then migrated deep into the abyssal zone as a result of the transition to neotenic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号