首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 173 毫秒
1.
《Journal of Geodynamics》2010,49(3-5):157-165
Since 2002 the Earth’s gravity field is globally observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The GRACE monthly gravity field solutions, available from several analysis centres, reflect mass variations in the atmosphere, hydrosphere and geosphere. Due to correlated noise contained in these solutions, it is, however, first necessary to apply an appropriate filtering technique. The resulting, smoothed time series are applied not only to determine variations with different periodic signatures (e.g., seasonal, short and medium-term), but to derive long-periodic mass variations and secular trends as well. As the GRACE monthly solutions always show the integral effect of all mass variations, for separation of single processes, like the GIA (Glacial isostatic adjustment)-related mass increase in Fennoscandia, appropriate reduction models (e.g. from hydrology) are necessary.In this study we show for the example of the Fennoscandian uplift area that GRACE solutions from different analysis centres yield considerably different secular trends. Furthermore, it turns out that the inevitable filtering of the monthly gravity field models affects not only the amplitudes of the signals, but also their spatial resolution and distribution such as the spatial form of the detected signals. It also becomes evident that the determination of trends has to be performed together with the determination of periodic components. All periodic terms which are really contained in the data, and only such, have to be included. The restricted time span of the available GRACE measurements, however, limits the separation of long-periodic and secular signals. It is shown that varying the analysis time span affects the results considerably. Finally, a reduction of hydrological signals from the detected integral secular trends using global hydrological models (WGHM, LaDWorld, GLDAS) is attempted. The differences among the trends resulting from different models illustrate that the state-of-the-art hydrology models are not suitable for this purpose as yet. Consequently, taking the GRACE monthly gravity field solutions from one centre, choosing a single filter and applying an insufficiently reliable reduction model leads sometimes to a misinterpretation of considered geophysical processes. Therefore, one has to be cautious with the final interpretation of the results.  相似文献   

2.
Seasonal and interannual changes in the Earth's gravity field are mainly due to mass exchange among the atmosphere,ocean,and continental water sources.The terrestrial water storage changes,detected as gravity changes by the Gravity Recovery and Climate Experiment(GRACE) satellites,are mainly caused by precipitation,evapotranspiration,river transportation and downward infiltration processes.In this study,a land data assimilation system LDAS-G was developed to assimilate the GRACE terrestrial water storage(TWS) data into the Community Land Model(CLM3.5) using the POD-based ensemble four-dimensional variational assimilation method PODEn4 DVar,disaggregating the GRACE large-scale terrestrial water storage changes vertically and in time,and placing constraints on the simulation of vertical hydrological variables to improve land surface hydrological simulations.The ideal experiments conducted at a single point and assimilation experiments carried out over China by the LDAS-G data assimilation system showed that the system developed in this study improved the simulation of land surface hydrological variables,indicating the potential of GRACE data assimilation in large-scale land surface hydrological research and applications.  相似文献   

3.
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth’s surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra–Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.  相似文献   

4.
Reducing aliasing effects of insufficiently modelled high-frequent, non-tidal mass variations of the atmosphere, the oceans and the hydrosphere in gravity field models derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is the topic of this study. The signal content of the daily GRACE gravity field model series (ITG-Kalman) is compared to high-frequency bottom pressure variability and terrestrially stored water variations obtained from recent numerical simulations from an ocean circulation model (OMCT) and two hydrological models (WaterGAP Global Hydrology Model, Land Surface Discharge Model). Our results show that daily estimates of ocean bottom pressure from the most recent OMCT simulations and the daily ITG-Kalman solutions are able to explain up to 40 % of extra-tropical sea-level variability in the Southern Ocean. In contrast to this, the daily ITG-Kalman series and simulated continental total water storage variability largely disagree at periods below 30 days. Therefore, as long as no adequate hydrological model will become available, the daily ITG-Kalman series can be regarded as a good initial proxy for high-frequency mass variations at a global scale. As a second result of this study, based on monthly solutions as well as daily observation residuals, it is shown that applying this GRACE-derived de-aliasing model supports the determination of the time-variable gravity field from GRACE data and the subsequent geophysical interpretation. This leads us to the recommendation that future satellite concepts for determining mass variations in the Earth system should be capable of observing higher frequeny signals with sufficient spatial resolution.  相似文献   

5.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

6.
The Earth’s surface fluid mass redistribution, e.g., groundwater depletion and severe drought, causes the elastic surface deformation, which can be measured by global positioning system (GPS). In this paper, the continuous GPS observations are used to estimate the terrestrial water storage (TWS) changes in southwestern USA, which have a good agreement with TWS changes derived from Gravity Recovery And Climate Experiment (GRACE) and hydrological models. The seasonal variation is mostly located in the Rocky mountain range and Mississippi river watershed. The largest amplitude of the seasonal variation is between 12 and 15 cm in equivalent water thickness. The timing and duration of TWS anomalies caused by the severe drought in 2012 are observed by the GPS-derived TWS, which are confirmed by the GRACE results. Different hydrological models are further used for comparison with GPS and GRACE results. The magnitude of TWS depletion from GRACE and GPS observations during the drought is larger than that from hydrological models, which indicates that the drought was caused by comparable groundwater and surface water depletion. The interannual TWS changes from GPS are also consistent with the precipitation pattern over the past 6 years, which further confirms the severe drought in 2012. This study demonstrates that continuous GPS observations have the potential as real-time drought indicator.  相似文献   

7.
Since its launch in April 2002, the Gravity Recovery and Climate Experiment (GRACE) mission is recording the Earth’s time-variable gravity field with temporal and spatial resolutions of typically 7–30?days and a few hundreds of kilometers, allowing the monitoring of continental water storage variations from both continental and river-basin scales. We investigate here large scale hydrological variations in Africa using different GRACE spherical harmonic solutions, using different processing strategies (constrained and unconstrained solutions). We compare our GRACE estimates to different global hydrology models, with different land-surface schemes and also precipitation forcing. We validate GRACE observations through two different techniques: first by studying desert areas, providing an estimate of the precision. Then we compare GRACE recovered mass variations of main lakes to volume changes derived from radar altimetry measurements. We also study the differences between different publicly available precipitation datasets from both space measurements and ground rain gauges, and their impact on soil-moisture estimates.  相似文献   

8.
Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided a global mapping of the time-variations of the Earth’s gravity field. Tiny variations of gravity from monthly to decadal time scales are mainly due to redistributions of water mass inside the surface fluid envelops of our planet (i.e., atmosphere, ocean and water storage on continents). In this article, we present a review of the major contributions of GRACE satellite gravimetry in global and regional hydrology. To date, many studies have focused on the ability of GRACE to detect, for the very first time, the time-variations of continental water storage (including surface waters, soil moisture, groundwater, as well as snow pack at high latitudes) at the unprecedented resolution of ~400–500 km. As no global complete network of surface hydrological observations exists, the advances of satellite gravimetry to monitor terrestrial water storage are significant and unique for determining changes in total water storage and water balance closure at regional and continental scales.  相似文献   

9.
Previous studies indicate that water storage over a large part of the Middle East has been decreased over the last decade. Variability in the total (hydrological) water flux (TWF, i.e., precipitation minus evapotranspiration minus runoff) and water storage changes of the Tigris–Euphrates river basin and Iran’s six major basins (Khazar, Persian, Urmia, Markazi, Hamun, and Sarakhs) over 2003–2013 is assessed in this study. Our investigation is performed based on the TWF that are estimated as temporal derivatives of terrestrial water storage (TWS) changes from the Gravity Recovery and Climate Experiment (GRACE) products and those from the reanalysis products of ERA-Interim and MERRA-Land. An inversion approach is applied to consistently estimate the spatio-temporal changes of soil moisture and groundwater storage compartments of the seven basins during the study period from GRACE TWS, altimetry, and land surface model products. The influence of TWF trends on separated water storage compartments is then explored. Our results, estimated as basin averages, indicate negative trends in the maximums of TWF peaks that reach up to ?5.2 and ?2.6 (mm/month/year) over 2003–2013, respectively, for the Urmia and Tigris–Euphrates basins, which are most likely due to the reported meteorological drought. Maximum amplitudes of the soil moisture compartment exhibit negative trends of ?11.1, ?6.6, ?6.1, ?4.8, ?4.7, ?3.8, and ?1.2 (mm/year) for Urmia, Tigris–Euphrates, Khazar, Persian, Markazi, Sarakhs, and Hamun basins, respectively. Strong groundwater storage decrease is found, respectively, within the Khazar ?8.6 (mm/year) and Sarakhs ?7.0 (mm/year) basins. The magnitude of water storage decline in the Urmia and Tigris–Euphrates basins is found to be bigger than the decrease in the monthly accumulated TWF indicating a contribution of human water use, as well as surface and groundwater flow to the storage decline over the study area.  相似文献   

10.
Given the continuous decline in global runoff data availability over the past decades, alternative approaches for runoff determination are gaining importance. When aiming for global scale runoff at a sufficient temporal resolution and with homogeneous accuracy, the choice to use spaceborne sensors is only a logical step. In this respect, we take water storage changes from Gravity Recovery And Climate Explorer (grace) results and water level measurements from satellite altimetry, and present a comprehensive assessment of five different approaches for river runoff estimation: hydrological balance equation, hydro-meteorological balance equation, satellite altimetry with quantile function-based stage–discharge relationships, a rudimentary instantaneous runoff–precipitation relationship, and a runoff–storage relationship that takes time lag into account. As a common property, these approaches do not rely on hydrological modeling; they are either purely data driven or make additional use of atmospheric reanalyses. Further, these methods, except runoff–precipitation ratio, use geodetic observables as one of their inputs and, therefore, they are termed hydro-geodetic approaches. The runoff prediction skill of these approaches is validated against in situ runoff and compared to hydrological model predictions. Our results show that catchment-specific methods (altimetry and runoff–storage relationship) clearly outperform the global methods (hydrological and hydro-meteorological approaches) in the six study regions we considered. The global methods have the potential to provide runoff over all landmasses, which implies gauged and ungauged basins alike, but are still limited due to inconsistencies in the global hydrological and hydro-meteorological datasets that they use.  相似文献   

11.
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.  相似文献   

12.
In this study, a scheme to estimate oceanic and hydrological effects in the GRACE (Gravity Recovery and Climate Experiment) data is presented. The aim is to reveal tectonic signals for the case of the Sumatra earthquake on 26 December 2004. The variations of hydrological and oceanic effects are estimated with the aid of data set of GRACE, altimetry, World Ocean Atlas, and the GLDAS model for a period of January 2003 to December 2006. The time series of computed gravity changes over Sumatra region show some correlations to the deformation resulting from the earthquake occurred in December 2004. The maximum and minimum impacts of hydrological and oceanic effects on gravity changes are about 3 μGal in radial direction and–5 μGal in northward direction. The maximum and minimum amounts of gravitational gradient changes after the correction are 0.2 and–0.25 mE, which indicates the significant influences of hydrological and oceanic sources on the desired signal.  相似文献   

13.
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.  相似文献   

14.
This study focuses on the potential improvement of environmental variables modelling by using linear state-space models, as an improvement of the linear regression model, and by incorporating a constructed hydro-meteorological covariate. The Kalman filter predictors allow to obtain accurate predictions of calibration factors for both seasonal and hydro-meteorological components. This methodology can be used to analyze the water quality behaviour by minimizing the effect of the hydrological conditions. This idea is illustrated based on a rather extended data set relative to the River Ave basin (Portugal) that consists mainly of monthly measurements of dissolved oxygen concentration in a network of water quality monitoring sites. The hydro-meteorological factor is constructed for each monitoring site based on monthly precipitation estimates obtained by means of a rain gauge network associated with stochastic interpolation (kriging). A linear state-space model is fitted for each homogeneous group (obtained by clustering techniques) of water monitoring sites. The adjustment of linear state-space models is performed by using distribution-free estimators developed in a separate section.  相似文献   

15.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

16.
The Earth’s gravity field observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. Several institutions, such as the GeoForschungsZentrum (GFZ) Potsdam, the University of Texas at Austin, Center for Space Research (CSR) and the Jet Propulsion Laboratory (JPL), Pasadena, provide GRACE monthly solutions, which differ slightly due to the application of different reduction models and centre-specific processing schemes. The GRACE data are used to investigate the mass variations in Fennoscandia, an area which is strongly influenced by glacial isostatic adjustment (GIA). Hence the focus is set on the computation of secular trends. Different filters (e.g. isotropic and non-isotropic filters) are discussed for the removal of high frequency noise to permit the extraction of the GIA signal. The resulting GRACE based mass variations are compared to global hydrology models (WGHM, LaDWorld) in order to (a) separate possible hydrological signals and (b) validate the hydrology models with regard to long period and secular components. In addition, a pattern matching algorithm is applied to localise the uplift centre, and finally the GRACE signal is compared with the results from a geodynamical modelling. The GRACE data clearly show temporal gravity variations in Fennoscandia. The secular variations are in good agreement with former studies and other independent data. The uplift centre is located over the Bothnian Bay, and the whole uplift area comprises the Scandinavian Peninsula and Finland. The secular variations derived from the GFZ, CSR and JPL monthly solutions differ up to 20%, which is not statistically significant, and the largest signal of about 1.2 Gal/year is obtained from the GFZ solution. Besides the GIA signal, two peaks with positive trend values of about 0.8 Gal/year exist in central eastern Europe, which are not GIA-induced, and also not explainable by the hydrology models. This may indicate that the recent global hydrology models have to be revised with respect to long period and secular components. Finally, the GRACE uplift signal is also in quite good agreement with the results from a simple geodynamical modelling.  相似文献   

17.
18.
In this study, we propose to estimate the steric sea-level variations over a < 2-year period (April 2002 through December 2003) by combining global mean sea level (GMSL) based on Topex/Poseidon (T/P) altimetry with time-variable geoid averaged over the oceans, as observed by the GRACE (Gravity Recovery and Climate Experiment) satellite. In effect, altimetry-derived GMSL changes results from two contributions: Steric (thermal plus salinity) effects due to sea water density change and ocean mass change due to water exchange with atmosphere and continents. On the other hand, GRACE data over the oceans provide the ocean mass change component only. The paper first discusses the corrections to apply to the GRACE data. Then the steric contribution to the GMSL is estimated using GRACE and T/P data. Comparison with available thermal expansion based on in situ hydrographic data is performed. G. García: On leave from Space Geodesy Laboratory, Applied Mathematics Department, EPS, University of Alicante, Alicante, Spain.  相似文献   

19.
Water storage depletion is an increasing hydrological threat to agricultural production and social stability across the globe. It is fast approaching threshold levels especially in arid/semiarid regions with low precipitation and excessive evapotranspiration (ET). This study analyses water storage dynamics in the North China Region (NCR) – an important grain‐production base in China. It uses monthly Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS) and field‐measured precipitation data products for 2002–2009. The datasets are analysed in a basin‐scale water balance equation to determine the state of storage in the NCR study area. Based on the validated satellite‐based data products with field‐measured values, average error/bias in the datasets is <10%. The analysis also shows favourable agreements among the GRACE‐derived and flux‐based storage changes at various temporal scales. Whereas the amplitudes and phases of the precipitation and ET fluxes are largely stable for 2002–2009, those of GLDAS runoff and GRACE total water storage anomaly apparently narrow out. The linear trends in the monthly, seasonal and annual storage changes are negative for the study period, suggesting storage loss. There is an apparent seasonality of storage change in the study area; with summer storage gain, winter storage loss and an overall storage loss that is on the average of 16.8 mm/yr. Storage loss is most severe in the central floodplain region (the main irrigated production zone) of the study area. Storage depletion in this important agro‐based semi‐arid region could have negative implications for the millions of people in the region and beyond in terms of water supply, crop production, food security and social stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
GRACE卫星的成功发射为海底沉积物的监测提供了新的方法.利用2003-2014年间的GRACERL05数据,采用同期的测高数据对海面高变化进行改正,使用水文模式数据和基于均一假设的尺度因子估计方法处理泄漏误差,反演了东海地区的沉积物变化情况,并对GIA效应进行了改正.结果表明:东海入海口处沉积物的平均变化速率为5.44±0.88mm·a^-1,最大值出现在浙江沿海地区,变化速率为6~7mm·a^-1;在空间分布上,呈现河口处沉积速率大,远离河口的大洋地区沉积速率小的特征.在时空分布上均与实测数据很好的吻合.沉积物变化时间序列的周年项振为6.8cm,周年变化主要与东海泥沙扩散路径相关的海洋环流模式有关;半周年项和两周年项振幅分别为0.6cm和0.7cm,这两项变化主要与长江流域降水引起的土壤侵蚀变化有关.最后,分析讨论了本文沉积物监测方法推广到其他地区的适用性和局限性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号