首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stable isotopic analyses (δ18O and δ13C) of a coralFavia speciosa spanning forty two years (1948–89 A.D.), collected from the Pirotan island (22.6°N, 70°E) in the Gulf of Kutch have been carried out to assess its potential for retrieving past environmental changes in this region. It is seen that the summer (minima) δ18O variations in the coral CaCO3 are negatively correlated with seasonal (summer) monsoon rainfall in the adjoining region of Kutch and Saurashtra and a qualitative reconstruction of historical rainfall variations in this region can be obtained by analyzing the δ18O in this species of coral. The observed mean seasonal range of δ18O variations is 0.34 ±0.17‰ (n = 42), whereas the expected range calculated (from available SST and measured δ18O of sea water) is ∼ 1.1 ±0.15‰ The difference is due to the coarse resolution of sampling, which can be corrected. The seasonal range in δ13C is ∼ l‰ and is explained by changes in: a) the light intensity related to the cloudiness during monsoons and b) phytoplankton productivity.  相似文献   

2.
Analysis of δ18O in igneous zircons of known age traces the evolution of intracrustal recycling and crust-mantle interaction through time. This record is especially sensitive because oxygen isotope ratios of igneous rocks are strongly affected by incorporation of supracrustal materials into melts, which commonly have δ18O values higher than in primitive mantle magmas. This study summarizes data for δ18O in zircons that have been analyzed from 1,200 dated rocks ranging over 96% of the age of Earth. Uniformly primitive to mildly evolved magmatic δ18O values are found from the first half of Earth history, but much more varied values are seen for younger magmas. The similarity of values throughout the Archean, and comparison to the composition of the “modern” mantle indicate that δ18O of primitive mantle melts have remained constant (±0.2‰) for the past 4.4 billion years. The range and variability of δ18O in all Archean zircon samples is subdued (δ18O(Zrc)=5–7.5‰) ranging from values in high temperature equilibrium with the mantle (5.3± 0.3‰) to slightly higher, more evolved compositions (6.5–7.5‰) including samples from: the Jack Hills (4.4–3.3 Ga), the Beartooth Mountains (4.0–2.9 Ga), Barberton (3.5–2.7 Ga), the Superior and Slave Provinces (3.0 to 2.7 Ga), and the Lewisian (2.7 Ga). No zircons from the Archean have been analyzed with magmatic δ18O above 7.5‰. The mildly evolved, higher Archean values (6.5–7.5‰) are interpreted to result from exchange of protoliths with surface waters at low temperature followed by melting or contamination to create mildly elevated magmas that host the zircons. During the Proterozoic, the range of δ18O(Zrc) and the highest values gradually increased in a secular change that documents maturation of the crust. After ∼1.5 Ga, high δ18O zircons (8 to >10‰) became common in many Proterozoic and Phanerozoic terranes reflecting δ18O(whole rock) values from 9 to over 12‰. The appearance of high δ18O magmas on Earth reflects nonuniformitarian changes in the composition of sediments, and rate and style of recycling of surface-derived material into magmas within the crust. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
Mid-Proterozoic anorthosite-suite magmatism is a major volumetric component of the southern Grenville Province, and provides an important probe of the compositions and types of lower crustal rocks. The ∼1.15 Ga Morin Complex (Quebec) consists of two anorthosite plutons with distinct compositions. Plagioclase from the western lobe of the anorthosite has δ18O values that average 9.6 ± 0.7‰, which is ∼3‰ higher than the values found in “normal” anorthosites and in mantle-derived mafic igneous rocks worldwide. Plagioclase from the eastern lobe of the massif (deformed by the Morin Shear Zone) has δ18O values that average 8.7 ± 0.6‰, also high compared to mantle-derived rocks. Numerous lines of evidence, including homogeneity of δ18O values within individual plutons, O–Sr–Nd mixing relations, and preservation of igneous δ18O in adjacent mangerite units argue against anorthosite interaction with high δ18O fluids as the cause of the high δ18O values seen in both anorthosite lobes. High δ18O values are best explained as primary magmatic compositions resulting from melting and assimilation of crustal materials by the anorthosite's parent magma. The Morin and Marcy massifs are located in the Allochthonous Monocyclic Belt of the Grenville Province, and have the highest known δ18O values for anorthosites in the Grenville. Although the Monocyclic Belt is juvenile in terms of radiogenic isotope systematics, the new oxygen isotope data indicate the presence high δ18O supracrustal materials at the base of the crust, probably buried during the ∼1.2 Ga Elzevirian orogeny in the Monocyclic Belt prior to anorthosite magmatism. This process is not recognized in other parts of the Grenville Province and points to differences in the pre-1.2-Ga continental margins. Received: 29 September 1999 / Accepted: 7 March 2000  相似文献   

4.
Isotopic composition of monthly composite precipitation samples from Kozhikode (n = 31), a wet tropic station and Hyderabad (n = 25), a semi-arid station across southern India were studied for a period of four years from 2005 to 2008. During the study period, the Kozhikode station recorded an average rainfall of 3500 mm while the Hyderabad station showed an average rainfall of 790 mm. The average stable isotope values in precipitation at the Kozhikode station were δ 18O = −3.52‰, d-excess = 13.72‰; δ 18O = −2.94‰, d-excess = 10.57‰; and δ 18O = −7.53‰, d-excess = 13.79‰, respectively during the pre-monsoon (March–May), monsoon (June–September) and post-monsoon (October–February) seasons. For the Hyderabad station, the average stable isotope values were δ 18O = −5.88‰, d-excess = 2.34‰; δ 18O = −4.39‰, d-excess = 9.21‰; and δ 18O = −8.69‰, d-excess = 14.29‰, respectively for the three seasons. The precipitation at the two stations showed distinctive isotopic signatures. The stable isotopic composition of precipitation at the Hyderabad station showed significant variations from the global trend while the Kozhikode station almost followed the global value. These differences are mainly attributed to the latitudinal differences of the two stations coupled with the differences in climatic conditions.  相似文献   

5.
Antarctic ice core records have provided unprecedented information on past climatic changes and forcing factors on decadal to millennial timescales. The glaciochemical and stable isotope records of a shallow ice core from the coastal Dronning Maud Land (East Antarctica) were used here to reconstruct the coastal Antarctic environmental variability during the past ∼470 years. Sea salt ion data indicate a significant additional contribution of chloride ions compared to sea water values, possibly through atmospheric scavenging. The nitrate (NO3 ) profile exhibit significant temporal shifts than that of the sulphate (SO4 2−), with a major shift around 1750 AD. The changes in NO3 record are synchronous with the proxy record of solar activity (10Be profile from a South Pole ice core), suggesting enhanced NO3 values during periods of reduced solar activity like the Dalton Minimum (∼1790–1830 AD) and Maunder Minimum (∼1640–1710 AD). The δ18O records reveal that the more negative δ18O values were coeval with several events of increased NO3 concentrations, suggesting enhanced preservation of NO3 during periods of reduced air temperatures. The δ18O and δD records of the core also suggest significant short-term and long-tem variability with more negative values indicating relatively lower air temperatures prior to 1715 AD. The δ18O records also revealed a significant warming of 2.7°C for the past 470 years, with a warming of ∼0.6°C per century.  相似文献   

6.
Lake Xingcuo is a small closed,hard-water lake ,situated on eastern Tibet Plateau.Stable isotope data(δ^18O and δ^13C) from the freshwater snail Gyraulus sibirica(Dunker)in a34 cm long,radioactive isotope-dated sediment core represent the last 200 years of Lake Xingcuo environmental history.Carbon and oxygen isotope ratios in the shells of the freshwater snail bear information on the isotopic composition of the water in which the shells were formed ,which in turn characterizes the climatic conditions prevailing during the snail‘s life span.Whole-shell and incremental growth data were collected from modern and fossil shells from Lake Xingcuo.The δ18^O values of modern shells from Lake Xingcuo are in equilibrium with high δ^13CTDIC.By calibrating δ^18O and δ^13C in the shell Gyraulus sibirica(Dunker)with in-strument-measured data for the period 1954-1992,we found that the δ^18O of the snail shells is an efficient indicator to reveal air temperature in the warmer half year instead of that around the whole year,and that there is a certain positive correlation between index δ^18O and the run-ning average temperature in the warmer half-yiar period.Climatic variability on eastern Tibet Plateau,for the last two centuries,has been successfully inferred from the δ^18O record in freshwater snails in the sediments of Lake Xingcuo.As such,the last 200 years of palaeocli-matic record for this region can be separated into three periods representing oscillations between warming and cooling,which are confirmed by the Guliya ice record on the Tibet Plateau.  相似文献   

7.
We have measured the δ18O values of the major phenocrysts (olivine, clinopyroxene and plagioclase) present in lavas from Tristan da Cunha and Gough Island. These islands, which result from the same mantle plume, have enriched radiogenic isotope ratios and are, therefore, prime candidates for an oxygen isotope signature that is distinct from that of MORB. Consistent differences between the δ18O values of olivine, pyroxene and feldspar in the Gough lavas show that the phenocrysts in the mafic Gough Island lavas are in oxygen isotope equilibrium. The olivines in lavas with SiO2 <50 wt% have a mean δ18O value of 5.19‰, consistent with crystallization from a magma having the same oxygen isotope composition as MORB. Phenocrysts in all the Gough lavas show a systematic increase in δ18O value as silica content increases, which is consistent with closed-system fractional crystallization. The lack of enrichment in δ18O of the Gough magmas suggests that the mantle source contained <2% recycled sediment. In contrast, the Tristan lavas with SiO2 >48 wt% contain phenocrysts which have δ18O values that are systematically ∼0.3‰ lower than their counterparts from Gough. We suggest that the parental mafic Tristan magmas were contaminated by material from the volcanic edifice that acquired low δ18O values by interaction with water at high temperatures. The highly porphyritic SiO2-poor lavas show a negative correlation between olivine δ18O value and whole-rock silica content rather than the expected positive correlation. The minimum δ18O value occurs at an SiO2 content of about 45 wt%. Below 45 wt% SiO2, magmas evolved via a combination of assimilation, fractionational crystallization and crystal accumulation; above 45 wt% SiO2, magmas appeared to have evolved via closed-system fractional crystallization. Received: 23 November 1998 / Accepted: 27 September 1999  相似文献   

8.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

9.
The origin of monzonitic intrusions that are associated with Proterozoic massif-type anorthosite complexes is controversial. A detailed oxygen isotope study of the Sybille intrusion, a monzonitic intrusion of the Laramie Anorthosite Complex (Wyoming), indicates that either derivation from a basaltic magma of mantle origin with a metasedimentary component (∼20%) incorporated early in its magmatic history, or a partial melt of lower crustal rocks is consistent with the data. The oxygen isotope compositions of plagioclase, pyroxene and zircon from the Sybille monzosyenite, the dominant rock type in the Sybille intrusion, were analyzed in order to establish the isotopic composition of the source of the magma. Plagioclase δ18O values range from 6.77 to 9.17‰. We interpret the higher plagioclase δ18O values (average 8.69 ± 0.30‰, n = 19) to be magmatic in origin, lower plagioclase δ18O values (average 7.51 ± 0.44‰, n = 22) to be the result of variable subsolidus alteration, and pyroxene δ18O values (average 6.34 ± 0.38‰, n = 19) to be the result of closed-system diffusional exchange during cooling. Low magnetic zircons, which have been shown to retain magmatic oxygen isotope values despite high grade metamorphism and extensive subsolidus hydrothermal alteration, have δ18O values (7.40 ± 0.24‰, n = 11) which are consistent with our interpretation of the plagioclase and pyroxene results. Oxygen isotope data from all three minerals indicate that the magmatic oxygen isotope composition of the Sybille intrusion is enriched in 18O relative to the composition of average or “normal” mantle-derived magmas. This enrichment is approximately twice the oxygen isotope enrichment that could result from closed-system fractionation, rendering a closed-system, comag- matic petrogenetic model between the Sybille intrusion and the mantle-derived anorthositic lithologies of the Laramie Anorthosite Complex improbable. Received: 7 April 1998 / Accepted: 19 January 1999  相似文献   

10.
The oxygen isotopic composition of gem corundum was measured from 22 deposits and occurrences in Madagascar to provide a gemstone geological identification and characterization. Primary corundum deposits in Madagascar are hosted in magmatic (syenite and alkali basalt) and metamorphic rocks (gneiss, cordieritite, mafic and ultramafic rocks, marble, and calc-silicate rocks). In both domains the circulation of fluids, especially along shear zones for metamorphic deposits, provoked in situ transformation of the corundum host rocks with the formation of metasomatites such as phlogopite, sakenite, and corundumite. Secondary deposits (placers) are the most important economically and are contained in detrital basins and karsts. The oxygen isotopic ratios (18O/16O) of ruby and sapphire from primary deposits are a good indicator of their geological origin and reveal a wide range of δ18O (Vienna Standard Mean Ocean Water) between 1.3 and 15.6‰. Metamorphic rubies are defined by two groups of δ18O values in the range of 1.7 to 2.9‰ (cordieritite) and 3.8 to 6.1‰ (amphibolite). “Magmatic” rubies from pyroxenitic xenoliths contained in the alkali basalt of Soamiakatra have δ18O values ranging between 1.3 and 4.7‰. Sapphires are classified into two main groups with δ18O in the range of 4.7 to 9.0‰ (pyroxenite and feldspathic gneiss) and 10.7 to 15.6‰ (skarn in marble from Andranondambo). The δ18O values for gem corundum from secondary deposits have a wide spread between −0.3 and 16.5‰. The ruby and sapphire found in placers linked to alkali basalt environments in the northern and central regions of Madagascar have consistent δ18O values between 3.5 and 6.9‰. Ruby from the placers of Vatomandry and Andilamena has δ18O values of 5.9‰, and between 0.5 and 4.0‰, respectively. The placers of the Ilakaka area are characterized by a huge variety of colored sapphires and rubies, with δ18O values between −0.3 and 16.5‰, and their origin is debated. A comparison with oxygen isotope data obtained on gem corundum from Eastern Africa, India, and Sri Lanka is presented. Giant placer deposits from Sri Lanka, Madagascar, and Tanzania have a large variety of colored sapphires and rubies with a large variation in δ18O due to mingling of corundum of different origin: mafic and ultramafic rocks for ruby, desilicated pegmatites for blue sapphire, syenite for yellow, green, and blue sapphire, and skarn in marbles for blue sapphire.  相似文献   

11.
The relationship between the variation of δ 18O in precipitation in Yarlungzangbo River basin and the moisture flux was analyzed with NCEP/NCAR reanalysis grid data and δ 18O in precipitation at four stations (Lazi, Nugesha, Yangcun and Nuxia) of the region investigated. In terms of spatial variations, there is obviously a positive correlation between them for the entire basin. With the decrease in moisture flux from the downstream to the upstream area, δ 18O in precipitation became gradually decreased. However, in terms of temporal variations, higher δ 18O in precipitation during spring is linked to small moisture flux while low δ 18O in precipitation during summer is linked to large moisture flux. A model involving meteorological data from NCEP/NCAR was subsequently set up which successfully traced the moisture transport trajectories at Yangcun station. Based on the traced moisture transport trajectories and the δ 18O in precipitation at Yangcun station, the relationship between δ18O in precipitation in Yarlungzangbo River basin and the moisture transport history was discussed. We found that the humid marine air mass from the Indian Ocean in general has significantly lower δ 18O values than the continental air mass from the north or local re-evaporation. The fluctuation of δ 18O in precipitation during the monsoon season is very pronounced; the lower values are usually related to farther distance and multilayer moisture transport, as well as moisture crossing the Himalaya Mountains. __________ Translated from Advances in Earth Science, 2007, 22(8): 842–850 [译自: 地球科学进展]  相似文献   

12.
Copper–nickel sulfide mineralization in the Partridge River Intrusion of the 1.1 Ga Duluth Complex is restricted primarily to a 100 m thick zone near the base of the intrusion, which is heterogeneous at meter scales in terms of both sulfide contents and rock types, which include dunite, melatroctolite, troctolite, leucotroctolite, gabbro, olivine gabbro, gabbronorite, and rare norite. Olivine-rich troctolites and melatroctolites appear to have required mineral accumulation on a substrate, whereas augite troctolite and gabbros are thought to have formed via in situ crystallization of magmas ranging in composition from high-Al olivine tholeiite to high-Ti tholeiite. δ18O values of orthopyroxene-poor rocks in the Partridge River Intrusion range from 5.2 to 6.7‰. δ18O values of 6.7‰ are consistent with less than 20% contamination by high-18O metasedimentary country rock, either via devolatilization or local partial melting. Rocks with greater than ∼15% orthopyroxene, gabbronorites, and norites, are characterized by δ18O values in excess of 6.9‰, and required the assimilation of larger amounts of siliceous country rocks. Sulfur isotopic values in leucotroctolitic rocks that contain less than ∼400 ppm S and that overlie the basal zone range between −1.5 and 2‰, values that are consistent with those of mantle-derived sulfur. In contrast, δ34S values in the basal zone range from −1.4 to 10.5‰, where the 34S-enriched samples require an input of sulfur from metasedimentary country rocks. δ34S values of the rocks in the basal zone correlate with variations in olivine Fo content but not with S abundance. The wide range in δ34S values of rocks in the basal zone strongly suggests that magmas interacted with layers in the sedimentary country rocks that were themselves characterized by variable sulfide contents and δ34S values. The S isotopic data suggest that the heterogeneity observed in the basal zone results from the emplacement of relatively thin sheets of compositionally distinct magma. All rock types present in the basal zone can be produced as a result of variable degrees of fractionation of a parental high-Al olivine tholeiite, followed by varying degrees of contamination of derivative liquids by country rocks. The S-contamination process was essential for the development of Cu–Ni mineralization, and was restricted to the earliest stages in the development of the Duluth Complex at a time when volatile species such as S and H2O, and low-T partial melts of country rocks, were available to magmas. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

13.
Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.  相似文献   

14.
We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9–6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.  相似文献   

15.
The hydrothermal and magmatic evolution of the Sturgeon Lake caldera complex is graphically documented by a regional-scale (525 km2) analysis of oxygen isotopes. Spatial variations in whole-rock oxygen isotope compositions provide a thermal map of the cumulative effects of multiple stages of hydrothermal metasomatism before, during, and after volcanogenic massive sulfide (VMS) mineralization. There is a progressive, upward increase in δ18O from less than 2‰ to greater than 15‰ through a 5-km-thick section above the Biedelman Bay subvolcanic intrusive complex. This isotopic trend makes it clear that at least the earlier phases of this intrusive complex were coeval with the overlying VMS-hosting cauldron succession and provided thermal energy to drive a convective hydrothermal circulation system. The sharp contrast in δ18O values between late stage phases of the Biedelman Bay intrusion and immediate hanging wall strata indicates that the main phase of VMS-related hydrothermal activity took place before late-stage resurgence in the cauldron-related magmatic activity. Mineralogical and isotopic evidence indicates the presence of both syn- and postmineralization hydrothermal activity defined by the presence of widespread semiconformable and more restricted discordant alteration zones that affect the pre- and syncauldron strata. The semiconformable alteration zones formed during early stages of hydrothermal circulation and are defined by widespread silicification and carbonatization in association with relatively high δ18O values. The discordant alteration assemblages, containing Al-silicate minerals with chloritoid and/or Fe-rich carbonate or chlorite, centered on synvolcanic faults represent restricted zones of both seawater inflow and hydrothermal fluid upflow. A rapid increase in δ18O values (∼7–9‰) over a short distance (<200 m) suggests marked cooling of hydrothermal fluid from ∼350°C to less than 130°C either just before or during discharge onto the seafloor. Late emplacement of diorite sills and a dacite dome disrupted the isotopic imprint of cauldron-stage hydrothermal activity. The abrupt lowering of δ18O values at the transition from explosive to passive volcanism (andesite flows and dacite domes) indicates postcauldron emergence. Subsequently, thrust faulting disrupted the older synvolcanic hydrothermal isotopic patterns.  相似文献   

16.
Summary Oxygen isotope ratios of igneous zircon from magmatic rocks in Finland provide insights into the evolution and growth of the Precambrian crust during the Svecofennian orogeny. These data preserve magmatic δ18O values and correlate with major discontinuities in the lower crust. Oxygen isotope ratios of zircon across the 1.88–1.87 Ga Central Finland granitoid complex (CFGC) range from 5.50‰ to 6.84‰, except for three plutons in contact with the adjacent greenstone and metasedimentary belts (δ18O(Zrc) = 7.60‰–7.78‰). There is a systematic variation in δ18O(Zrc) with respect to geographic location in the CFGC, ranging from 6.60±0.23‰ (σ) in the northeast to 5.90±0.40‰ in the west-southwest. These values correlate with a change in crustal thickness and shift in geochemical composition. The oxygen isotope composition of the 1.65–1.54 Ga rapakivi granites and related rocks in southern Finland show a decreasing trend from north to south, independent of their emplacement age. The southern anorogenic granite group has an average δ18O in zircon of 6.14±0.07‰ and the northern anorogenic group has an average δ18O in zircon of 8.14±0.59‰. This difference reflects the boundary between island arc terrains accreted during the Paleoproterozoic. Deceased  相似文献   

17.
Density, δ18O and δ13C were measured along two tracks, one close to the central growth axis and the other, ∼20ℴ off the axis, in a coral (Porites lutea) collected from the Stanley Reef, Central Great Barrier Reef, Australia. The δ18O variations in the coral are well correlated with sea surface temperature changes. The common variances between the two tracks were about 60% in the δ18O, δ{13}C, and the skeletal density variations. Part of the noise (40%) could be due to the difficulty of sampling exactly time contemporaneous parts of each band along the two tracks and part of it could be due to genuine intraband variability. In spite of the intraband variability, the time series obtained from the two tracks are similar, indicating that the dominant causative factor for the isotopic variations is external, i.e., the environmental conditions that prevail during the growth of the coral; density band formation does not appear to be directly controlled by the sea surface temperature.  相似文献   

18.
The Biwabik Iron Formation of Minnesota (1.9 Ga) underwent contact metamorphism by intrusion of the Duluth Complex (1.1 Ga). Apparent quartz–magnetite oxygen isotope temperatures decrease from ∼700°C at the contact to ∼375°C at 2.6 km distance (normal to the contact in 3D). Metamorphic pigeonite at the contact, however, indicates that peak temperatures were greater than 825°C. The apparent O isotope temperatures, therefore, reflect cooling, and not peak metamorphic conditions. Magnetite was reset in δ18O as a function of grain size, indicating that isotopic exchange was controlled by diffusion of oxygen in magnetite for samples from above the grunerite isograd. Apparent quartz–magnetite O isotope temperatures are similar to calculated closure temperatures for oxygen diffusion in magnetite at a cooling rate of ∼5.6°C/kyr, which suggests that the Biwabik Iron Formation cooled from ∼825 to 400°C in ∼75 kyr at the contact with the Duluth Complex. Isotopic exchange during metamorphism also occurred for Fe, where magnetite–Fe silicate fractionations decrease with increasing metamorphic grade. Correlations between quartz–magnetite O isotope fractionations and magnetite–iron silicate Fe isotope fractionations suggest that both reflect cooling, where the closure temperature for Fe was higher than for O. The net effect of metamorphism on δ18O–δ56Fe variations in magnetite is a strong increase in δ18OMt and a mild decrease in δ56Fe with increasing metamorphic grade, relative to the isotopic compositions that are expected at the low temperatures of initial magnetite formation. If metamorphism of Iron Formations occurs in a closed system, bulk O and Fe isotope compositions may be preserved, although re-equilibration among the minerals may occur for both O and Fe isotopes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
 Late Proterozoic to Cambrian carbonate rocks from Lone Mountain, west central Nevada, record multiple post-depositional events including: (1) diagenesis, (2) Mesozoic regional metamorphism, (3) Late Cretaceous contact metamorphism, related to the emplacement of the Lone Mountain granitic pluton and (4) Tertiary hydrothermal alteration associated with extension, uplift and intrusion of silicic porphyry and lamprophyre dikes. Essentially pure calcite and dolomite marbles have stable isotopic compositions that can be divided into two groups, one with positive δ13C values from+3.1 to +1.4 ‰ (PDB) and high δ18O values from +21.5 to +15.8 ‰ (SMOW), and the other with negative δ13C values from –3.3 to –3.6‰ and low δ18O values from +16.9 to +11.1‰. Marbles also contain minor amounts of quartz, muscovite and phlogopite. Brown and blue luminescent, clear, smooth textured quartz grains from orange luminescent calcite marbles have high δ18O values from +23.9 to +18.1‰, while brown luminescent, opaque, rough textured quartz grains from red luminescent dolomite marbles typically have low δ18O values from +2.0 to +9.3‰. The δ18O values of muscovite and phlogopite from marbles are typical of micas in metamorphic rocks, with values between +10.4 and +14.4‰, whereas mica δD values are very depleted, varying from −102 to −156‰. No significant lowering of the δ18O values of Lone Mountain carbonates is inferred to have occurred during metamorphism as a result of devolatilization reactions because of the essentially pure nature of the marbles. Bright luminescence along the edges of fractures, quartz cements and quartz overgrowths in dolomite marbles, low δD values of micas, negative δ13C values and low δ18O values of calcite and dolomite, and depleted δ18O values of quartz from dolomite marbles all indicate that meteoric fluids interacted with Lone Mountain marbles during the Tertiary. Partial oxygen isotopic exchange between calcite and low 18O meteoric fluids lowered the δ18O values of calcite, resulting in uniform quartz-calcite fractionations that define an apparent pseudoisotherm. These quartz-calcite fractionations significantly underestimate both the temperature of metamorphism and the temperature of post-metamorphic alteration. Partial oxygen isotopic exchange between quartz and meteoric fluids also resulted in 18O depletion of quartz from dolomite marbles. This partial exchange was facilitated by an increase in the surface area of the quartz as a result of its dissolution by meteoric fluids. The negative δ13C values in carbonates result from the oxidation of organic material by meteoric fluids following metamorphism. Stable isotopic data from Lone Mountain marbles are consistent with the extensive circulation of meteoric hydrothermal fluids throughout western Nevada in Tertiary time. Received: 1 February 1994/Accepted: 12 September 1995  相似文献   

20.
Peraluminous granitoids provide critical insight as to the amount and kinds of supracrustal material recycled in the central Sierra Nevada batholith, California. Major element concentrations indicate Sierran peraluminous granitoids are high-SiO2 (68.9–76.9) and slightly peraluminous (average molar Al2O3/(CaO + Na2O + K2O)=1.06). Both major and trace element trends mimic those of other high-silica Sierran plutons. Garnet (Grt) in the peraluminous plutons is almandine–spessartine-rich and of magmatic origin. Low grossular contents are consistent with shallow (<4 kbar) depths of garnet crystallization. Metasediments of the Kings Sequence commonly occur as wallrocks associated with the plutons, including biotite schists that are highly peraluminous (A/CNK=2.25) and have high whole rock (WR) δ18O values (9.6–21.8‰, average=14.5±2.9‰, n=26). Ultramafic wallrocks of the Kings–Kaweah ophiolite have lower average δ18O (7.1±1.3‰, n=9). The δ18O(WR) of the Kings Sequence is variable from west to east. Higher δ18O values occur in the west, where quartz in schists is derived from marine chert; values decrease eastward as the proportion of quartz from igneous and metamorphic sources increases. Peraluminous plutons have high δ18O(WR) values (9.5–13‰) consistent with supracrustal enrichment of their sources. However, relatively low initial 87Sr/86Sr values (0.705–0.708) indicate that the supracrustal component in the source of peraluminous magmas was dominantly altered ocean crust and/or greywacke. Also, plutons lack or have very low abundances (<1% of grains) of inherited zircon (Zrc) cores. Average δ18O(Zrc) is 7.9‰ in peraluminous plutons, a higher value than in coeval metaluminous plutons (6–7‰). Diorites associated with peraluminous plutons also have high δ18O(Zrc), 7.4–8.3‰, which is consistent with the diorites being derived from a similar source. Magmatic garnet has variable δ18O (6.6–10.5‰, avg.=7.9‰) due to complex contamination and crystallization histories, evidenced by multiple garnet populations in some rocks. Comparison of δ18O(Zrc) and δ18O(Grt) commonly reveals disequilibrium, which documents evolving magma composition. Minor (5–7%) contamination by high δ18O wallrocks occurred in the middle and upper crust in some cases, although low δ18O wallrock may have been a contaminant in one case. Overall, oxygen isotope analysis of minerals having slow oxygen diffusion and different times of crystallization (e.g., zircon and garnet), together with detailed textural analysis, can be used to monitor assimilation in peraluminous magmas. Moreover, oxygen isotope studies are a valuable way to identify magmatic versus xenocrystic minerals in igneous rocks. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号