首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
对含碲金矿中碲化物物相组成和元素赋存特征开展系统的研究,有助于对此类金矿矿床成因的理解和找矿勘查工作。山东金青顶金矿床伴生的碲化物由于碲化物颗粒较小,不易被发现,以往的研究缺乏对碲化物元素分布的精细刻画。本文通过电子探针背散射图像、波谱分析、能谱分析结合面扫描技术对金青顶金矿床碲化物进行了分析,研究碲化物的种类、共生关系、化学成分以及元素分布特征等。结果表明:碲金银矿与碲银矿密切共生,常形成连生体,Au、Ag在连生体中不均匀分布,面扫描图局部可见碲金矿亮斑;Te总是优先和Ag结合,生成碲银矿,随着Ag的消耗碲金银矿开始出现,Ag被耗尽后Te与Au生成碲金矿,成矿后期热液中多余的金与碲金银矿或碲银矿反应生成非常规碲化物(如本文发现的Ag2.95Au1.83Te),当Te消耗完后生成自然金;金银矿物的生长顺序是碲银矿—碲金银矿—碲金矿—自然金。本研究为含碲金矿的综合利用提供了技术支持。  相似文献   

2.
中国某些金矿床中碲化物的特征   总被引:6,自引:0,他引:6  
罗镇宽  关康 《黄金地质》1999,5(3):69-74
我国含碲化物的金矿床主要有4种类型,太古宙花岗-绿岩地体中的含金石英脉型矿床、元古宙火山岩中的蚀变构造岩型金矿床、中-新生代火山岩中的浅成低温热液金银矿床,与花岗岩有关的金矿床。总结了我国已发现的碲化物的光学性质,硬度及其共生组合特征,列出了主要碲化物的电子探针定量分析结果,最后讨论了碲化物形成的某些地球化学习性,碲化物总是与自然金一起形成于矿化的晚期,这表明它与金有某些一致的地球化学习性,并可能  相似文献   

3.
甘肃寨上金矿床矿物组成特征与矿质沉淀机理   总被引:2,自引:0,他引:2       下载免费PDF全文
位于西秦岭礼(县)—岷(县)成矿带西段的寨上金矿床,是近年发现的一个大型微细浸染型金矿。笔者通过显微镜观察、电子探针和扫描分析等综合分析技术,确认金矿床中矿物组成相当丰富,既有大量硫化物、硫盐、氧化物、硫酸盐、碳酸盐、钨酸盐,又有碲化物、自然金属及多金属互化物。除常见矿物为自然金、黄铁矿、黄铜矿、黝铜矿、方铅矿、闪锌矿、辉锑矿、石英、白钨矿、方解石、菱铁矿、铁白云石和重晶石外,笔者还鉴定出在卡林型金矿床较少见的一些矿物,如硫铜锑矿、车轮矿、辉锑铅矿、辉钼矿、碲汞矿、碲镍矿、Cu-Zn-Ni-Sn-Fe的金属互化物和白钨矿等。矿石中矿物种类较多,组成较复杂以及存在显微自然金,构成寨上金矿床的一大特色。赋矿围岩中含Fe碳酸盐矿物溶解释放Fe以及溶解Fe的大量硫化物化,是寨上金矿床中存在显微可见自然金的最重要因素和金沉淀富集的有利条件。  相似文献   

4.
The Dongping gold deposit is a mesothermal lode gold deposit hosted in syenite. The ore petrography and chemistry of the tellurides from the alteration zone of the deposit have been studied in detail using optical microscopy, scanning electron microscopy, electron probe micro-beam and X-ray diffraction facilities. The tellurides, consisting mostly of calaverite, altaite, petzite tellurobismuthite and tetradymite, are hosted irregularly in pyrite fractures and voids. In the ore bodies, the species and quantity of tellurides decrease from the top downwards, accompanied with lowering of gold fineness, and the existence of tellurides exhibits a positive correlation with gold enrichment. Mineral paragenesis and chemical variations suggest that during evolution of the ore-forming fluids Te preferably incorporated with Pb to form altaite, followed in sequence by precipitation of petzite, and calaverite when Ag has been exhausted, and the residue fluids were enriched in Au, giving rise to formation of native gold. Calculation with reference of the fineness of native gold coexisting with the tellurides indicates that at 300 °C, log f (Te2) varied between − 8.650 and − 7.625. Taking account of the Au–Ag–Te mineral paragenesis, it is inferred that log ƒ (Te2) varies from − 9.12 to − 6.43, log ƒ (S2) − 11.47 to − 8.86. In consideration of the physicochemical conditions for formation of tellurides, with comparison to some known telluride deposits, it is suggested that high log ƒ (Te2) is a key factor for high fineness of native gold as well as precipitation of abundant tellurides.  相似文献   

5.
Summary Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi–Te(–Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu–Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu–(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of l?llingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.  相似文献   

6.
The Mesozoic Yangzhaiyu lode gold deposit is situated in the southern edge of the North China craton. Gold mineralization is hosted in Archean amphibolite facies metamorphic rocks, and consists mainly of auriferous quartz veins. Pyrite is the predominant sulfide mineral, with minor amounts of chalcopyrite, sphalerite, and galena. Based on morphology and paragenesis, there are three generations of pyrite, termed as first generation (G1), second generation (G2), and third generation (G3). They have distinct contents, occurrences, and distribution patterns of gold. The coarse-grained, euhedral G1 pyrite contains negligible to low levels of gold, whereas both invisible and visible gold are present in the fine- to medium-grained G2 pyrite that is characterized by abundance of microfractures and porosities, forming a foam-like texture. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) depth profiles indicate that invisible gold occurs either as solid solution or as nanoparticles of gold-bearing tellurides in the G2 pyrite. Visible gold is widespread and present as irregular grains and stringers of native gold mostly along grain boundaries or filling microfractures of pyrite, likely resulting from remobilization of invisible gold once locked in the G2 pyrite. The G3 pyrite, invariably intergrown with chalcopyrite, sphalerite, and galena, contains the highest levels of invisible gold. There is a positive correlation between Au, Ag, and Te, indicating that gold occurs as submicroscopic Au-bearing telluride inclusions in the host minerals. Whenever gold, either invisible or visible, is present, As is always below or only marginally higher than the detection limit of LA-ICP-MS. This indicates that As played an insignificant role in gold mineralization. Tellurides are widespread in the auriferous quartz veins, consisting mainly of petzite, calaverite, hessite, altaite, and tellurobismuthite. Native gold commonly occurs as intergrowths with tellurides. Textural evidence indicates a precipitation sequence, in a temporal order, of calcaverite, petzite, altaite, tellurobismuthite, and hessite. Little amount of sulfide phases has been found in association with the tellurides, indicating that tellurides were deposited under low S fugacity (fS 2 ) and/or high Te fugacity (fTe 2 ) conditions. The textural relationships, when combined with fluid inclusion microthermometric data of auriferous quartz veins and tellurides thermodynamic data, permit estimation for logfTe 2 during telluride formation, which are −6.8 to −10.8 at 300°C and −9.6 to −17.6 at 250°C. Available geochronological and geochemical data suggest that Te was most likely derived from the late Mesozoic magmatic rocks widespread in the Xiaoqinling district and other parts of the southern North China craton, which were emplaced broadly contemporaneous with gold mineralization at Yangzhaiyu. This study highlights the role of Te and tellurides as important gold scavengers in As-deficient ore fluids.  相似文献   

7.
班公湖-怒江成矿带是西藏重要的铜多金属成矿带。嘎拉勒铜金矿床是该成矿带中发现较晚、研究程度较低且具代表性的矽卡岩型铜金矿床,矿石有用组分中金、银的赋存状态研究相对开展的较少,限制了矿床进一步的综合开发利用。作者通过野外地质调查与采样,采用光学显微镜鉴定、扫描电镜观察和X射线能谱仪测试分析等手段和方法,对矿石成分组分做了详细的研究,重点研究了矿床中金、银的赋存状态及主要载金矿物的特征。嘎拉勒铜金矿床金矿物以自然金、银金矿为主,其次为金银矿,可见粒间金、裂隙金及相对较少的包裹金形式,主要的载金矿物为石英、白云石、方解石、金属氧化物、硫化物及自然铋等。银矿物主要以金银系列矿物形式存在,少量自然银与放射性元素共生,此外,还有少量辉银矿。研究成果填补了该矿区金、银赋存状态研究的空白,对矿床的开发、利用有着重要的指示意义。  相似文献   

8.
内蒙古中部大青山东段二道洼岩群分布区金矿找矿方向   总被引:2,自引:0,他引:2  
古元古代二道洼岩群分布区已发现一批金矿床和金矿化点。它们均赋存于该岩群上部层位内。主要控制金矿成矿的因素为层位 +岩性 +剪切变形变质带。因此只要有该岩群上部层位的存在 ,又有金化探异常 ,那就可能找到新的金矿床。  相似文献   

9.
湖南苗儿山韧性剪切带与金矿化   总被引:1,自引:0,他引:1  
康如华 《黄金地质》2000,6(4):23-27
湖南雪峰弧形构造带中的苗儿山韧性剪切带存在糜棱岩和片理化岩石两大构造岩类,各具不同的变形特征,根据金矿的产出规律,认为该地区金矿化受韧性剪切带,老地层,后期脆性断裂等多重因素控制,发育于老地层中的片理化带提供了成矿流体的运移通道和容矿空间,加强片理化带的研究对于在雪峰弧形构造带上找金具有重要意义。  相似文献   

10.
The structure and petrologic composition of new gold-ore provinces in southeastern East Sayan (Tissa-Sarkhoi cluster) are considered. Several morphogenetic types of gold mineralization have been established: quartz veins with beresitization zones, veinlet-disseminated ores in granitoids, and listwaenitization and sulfidation zones in effusions of the Sarkhoi Group and intrusive rocks of the Late Riphean Khorin-Gol complex. According to geochronological dates and some mineralogical and geochemical features, the gold mineralization is close in age to these Precambrian island-arc complexes. Parageneses of two stages of ore formation have been recognized: early high-temperature (250–460 °C) gold-pyrite and late low-temperature (110–280 °C) gold-telluride. The latter mineralization is widespread and is represented by tellurides of Au, Ag, Pb, Bi, and Ni — petzite, calaverite, hessite, tellurobismuthite, altaite, and melonite. Native gold associated with these tellurides is characterized by a fineness of 750–900‰. The intimate temporal and spatial relationships of the gold mineralization with island-arc volcanoplutonic complexes and the wide occurrence of its veinlet-disseminated type suggest that this is porphyry gold mineralization related to the Late Riphean-Vendian island-arc magmatism.  相似文献   

11.
黑龙江三道湾子金矿Au-Ag-Te系列矿物特征及其成矿流体   总被引:5,自引:1,他引:4  
本文采用光学显微镜、扫描电镜和电子探针对黑龙江省三道湾子金矿中Au-Ag-Te系列矿物碲银矿、碲金银矿、针碲金银矿、斜方碲金矿和碲金矿进行了详细的矿物学研究,本次研究还发现Au2Te的存在。碲化物矿物多呈粒状或脉状分布于石英或硫化物矿物的裂隙中。Au-Ag-Te系列矿物中,Au含量与Ag含量呈负相关性,与Te含量呈弱的负相关性。结合Au-Ag-Te成分共生图解及镜下特征对金银碲化物矿物共生组合进行分析表明Te优先与Ag结合形成碲银矿或碲金银矿,只有成矿流体中Ag被大量消耗后,Te才与Au结合形成针碲金银矿、斜方碲金矿、碲金矿,最后当成矿流体中Te也被大量消耗后,Au才会形成自然金。氦、氩同位素研究表明石英—黄铁矿阶段流体包裹体中3He/4He值为0.01~0.03Ra,金银碲化物阶段3He/4He值为0.08~1.04Ra,指示金银碲化物阶段有大量地幔物质参与。  相似文献   

12.
阳山金矿带是西秦岭金矿带已探明金储量最大的独立金矿区,其矿化样式主要为微细浸染状矿化,其次为石英脉型矿化,可见金与“不可见金”均有发育,该金矿带是研究造山型金矿金赋存状态的理想地区,其研究成果对理解金成矿作用和过程以及指导选矿工艺具有重要意义。论文在翔实的野外地质调查和显微观察基础上,将成矿期划分为早阶段(黄铁矿石英)、主阶段(黄铁矿毒砂绢云母石英)和晚阶段(辉锑矿石英方解石),综合应用电子探针、激光剥蚀电感耦合等离子体质谱、电感耦合等离子质谱仪、高分辨率透射电镜、X射线粉晶衍射等技术,剖析阳山金矿带不同成矿阶段金的赋存状态,进而探讨其对成矿过程的指示意义。研究表明:成矿早、主阶段以微细浸染状硫化物矿化为主,金主要以晶格金的形式赋存于黄铁矿和毒砂中;而成矿晚阶段以脉状矿化为主,金主要以自然金的形式存在。金的赋存状态的变化,指示从成矿早阶段到晚阶段,成矿温度、压力逐渐降低,成矿流体成分由富As流体演化为相对贫As且富Sb的流体。  相似文献   

13.
The first findings of Au and Ag tellurides (sylvanite and petzite) in sulfide-quartz ore of the Shirokinsky ore and placer cluster located in the Sette-Daban Horst-Anticlinorium are described. These minerals were found for the first time at the gold deposits of East Yakutia. The chemical compositions (wt %) of sylvanite (23.65–24.61 Au, 12.7–13.13 Ag, 59.3–59.97 Te, 96.26–97.97 in total) and petzite (23.17–25.24 Au, 42.27–44.40 Ag, 31.26–33.37 Te, 98.19–102.55 in total) are reported. Galena as a host mineral is associated with native gold, electrum, hessite, and stützite. The finding of Au-Ag and Ag tellurides provides evidence for the development of Au-telluride mineralization in the Sette-Daban Horst-Anticlinorium.  相似文献   

14.
The Rajkonkoski ore occurrence is located within the region of the Karelian craton (AR2) and the Svecofennian folded belt (PR1) conjugation. It is presented by quartz-carbonate veins in metadoleriles and a zone of brecciation, crumple, and silification of carbonaceous shales within the volcanites of the Soanlakhtinsky suite (PR1). Ore mineralization in black shales and quartz veins has features of genetic similarity presenting different levels of the ore system controlled by different range strike-slip fault dislocations. At the Rajkonkoski ore occurrence, 41 ore minerals have been identified: 12 tellurides (native tellurium, hedleyite, pilsenite, tsumoite, tellurobismuthite, hessite, stuetzite, radclidzhite, joseite-B, altaite, volynskite, petzite); 4 bismuth-tellurides of the following compositions Bi3Te, Bi3Te2, BiTe4, PbBiTe; 3 selenides (clausthalite, tellurolaitakarite, native selenium); and 12 native metals (gold, silver, electrum, copper, iron, lead, tin, bismuth, osmiridium). The contents of the main ore minerals in places exceed 10%, and the concentrations of elements reach as follows: Cu and Pb, 5%; Zn, Bi, 1%; Se, 219 ppm; Te, 171 ppm; Sb, 3 ppm; As, 5 ppm; Ag, >0.1%; Au, 35.28 ppm. Ore mineralization is formed during the temperature interval from 550°C up to <170oC in the conditions of high activity of Se and Te, and beginning from medium temperatures (>300°C) complete miscibilities galenite-clausthalite and galenite-altaite are observed. In aggregate with a wide temperature interval (>400°C) of ore process evolution and mineral specia variety of telluride and native metal mineralizations, the original “torsion” of different temperature mineralizations makes it possible to determine the affiliation of the Rajkonkoski ore occurrence to the xenothermal type deposits or epithermal “alkaline,” gold-telluride A-type characterized by a close connection with magmatism of increased alkalinity and the original geochemical (Te-V-F) and mineral (tellurides of gold, silver and other metals, fluorite, roscoelite, vanadium-containing sulfides) associations. Taking into consideration that many of the xenothermal and epithermal A-type gold and silver deposits are large commercial objects, the prospects of the Rajkonkoski ore occurrence and the region of the Karelian craton and Svecofennian folded belt conjugation seem to be significant for noble metal mineralization.  相似文献   

15.
新疆东天山康古尔塔格金矿带成矿作用的构造制约   总被引:2,自引:4,他引:2  
康古尔塔格金矿带呈东西向展布于新疆东天山晚古生代造山带的中部,发育在秋格明塔什-黄山韧性剪切带的南缘,阿奇山-雅满苏火山岩带的北缘,形成的金矿床可划分为三种主要端元类型,即浅成低温热液型(热泉型)、剪切带交代蚀变岩型、与中浅成花岗岩类有关的石英脉型。金的成矿作用主要受控于二叠纪后碰撞阶段秋格明塔什-黄山大型韧性剪切带形成的右行走滑剪切系统,在剪切系统的不同构造部位由于应力应变状态的不同、岩石渗透率的不同、构造层次(深度)的不同等,导致成矿流体和成矿物质在组成比例上的差异,从而形成不同类型的金矿床。所有类型的金矿资源是在同一构造环境下相同区域成矿事件的产物,在不同构造部位产出的金矿床类型可以组成一个连续的金矿化系列。区域一级剪切构造带控制金矿带成矿物质和成矿流体的主要来源,二级剪切构造控制金矿床的发育,三级剪切裂隙系统控制金矿体(脉)的产出,从而构成三级构造控矿系统。  相似文献   

16.
The Ergelyakh gold and rare-metal deposit is located somewhat aside of the gold-bearing belt of the Soviet Northeast and is distinguished from other deposits by many specific geological features. It lies near the northern boundary of a geoanticlinal structural unit, the Okhotsk residual massif, and is overlain by thin, calm-water deposits of the Verkhoyansk geosynclinal complex. The Ergelyakh deposit is confined to plutonic granitoid rocks, which are younger than the granitoid intrusions of the Upper Jurassic complex.

A combination of wolframite, scheelite, cobalt and nickel arsenides, younger gold-bearing bismuth tellurides and subordinate finely-dispersed native gold (low standard) is characteristic of the ore vein of this deposit and this is the most essential difference from the ore veins common for Soviet Northeast gold-quartz deposits. Search for deposits of the Ergelyakh deposit type is difficult since they are not accompanied by alluvial native-gold halos.—Auth. English summ.  相似文献   

17.
海南戈枕金矿带金矿床剪切成矿模式研究   总被引:5,自引:0,他引:5  
海南戈枕金矿带金矿床严格受戈枕韧性剪切带的控制。研究戈枕韧性剪切带特征、金矿带中金矿类型及其特征、金矿床、金矿脉(体)产出与分布规律及剪切带对金矿成矿的控制作用,提出戈枕金矿带金矿床的剪切成矿模式。指出戈枕韧性剪切带发展演化制约着戈枕金矿带中金矿床的成矿作用,变形-构造岩-矿石(成矿作用)三位一体。  相似文献   

18.
The Dongping gold deposit is located near the center of the northern margin of the North China Craton. It is hosted in the Shuiquangou syenite and characterized by large amounts of tellurides. Numerous studies have addressed this deposit; the mineral paragenesis and ore‐forming processes, however, are still poorly studied. In this contribution, a new mineral paragenesis has been evaluated to further understand ore formation, including sulfides (pyrite, chalcopyrite, galena, sphalerite, molybdenite, and bornite), tellurides (altaite, calaverite, hessite, muthmannite, petzite, rucklidgeite, sylvanite, tellurobismuthite, tetradymite, and volynskite), and native elements (tellurium and gold). Molybdenite, muthmannite, rucklidgeite, and volynskite are reported for the first time in this deposit. We consider the Dongping gold deposit mainly formed in the Devonian, and the ore‐forming processes and the physicochemical conditions for ore formation can be reconstructed based on our newly identified ore paragenesis, that is, iron oxides → (CO2 effervescence) → sulfides → (fTe2/fS2 ratio increase) → Pb‐Bi‐tellurides → (condensation of H2Te vapor) → Au‐Ag‐tellurides → (mixing with oxidizing water) → carbonate and microporous gold → secondary minerals → secondary minerals. The logfO2 values increase from the early to late stages, while the fH2S and logfS2 values increase initially and then decrease. CO2 effervescence is the main mechanism of sulfides precipitation; this sulfidation and condensation of H2Te vapor lead to deposition of tellurides. The development of microporous gold indicates that the deposit might experience overprint after mineralization. The Dongping gold deposit has a close genetic relationship with the Shuiquangou syenite, and tellurium likely originated from Shuiquangou alkaline magmatic degassing.  相似文献   

19.
碲(Te)属于稀散元素,是我国的战略性关键矿产资源之一,富碲化物金矿床是碲元素的重要载体.将富碲化物金矿床划分为3种成因类型,分别为造山型金矿床、浅成中-低温热液型金矿床以及与碱性岩浆岩有关的金矿床.富碲化物金矿床可以形成于岛弧、大陆边缘、弧后盆地、绿岩带等多种构造环境,常受区域性断裂构造控制,其围岩专属性不强,矿床中存在大量碲化物,与自然金和硫化物伴生产出.成矿作用常可划分为3个阶段:石英-黄铁矿阶段、石英-多金属硫化物-碲化物阶段、石英-碳酸盐阶段,其中金和碲主要在第二阶段发生沉淀富集.成矿流体一般为中-低温、中-低盐度,呈弱酸性-中性,具有较高的fTe2.富碲化物金矿床中的碲主要来源于地幔、岩浆热液和赋矿围岩.碲在流体中可以呈碲氯络合物、碲硫络合物、碲氢络合物等形式迁移,也可呈气态迁移.引起碲发生沉淀的因素主要为温度或/和压力的变化、水岩反应、流体混合、流体不混溶(沸腾)、含碲气体的冷凝以及多因素的叠加.在碲的成矿作用研究中,应重视碲化物结构和成分的微区原位分析、碲同位素分析以及热力学分析.   相似文献   

20.
The Jiaodong gold district of eastern China, the largest gold producing district in China, is located on the eastern margin of the North China Craton. It consists of three mineralisation belts: the western Zhao-Ye belt, the middle Qixia belt, and the eastern Muping–Rushan (Muru) belt. Over 85% of mineralisation is hosted in the Zhao-Ye belt, which is bordered by the mantle-tapping Tan Lu fault zone. Pyrite crystals from three deposits in the Zhao-Ye belt and three deposits in the Muru belt were studied using a combination of optical petrography, bulk pyrite geochemistry, and in-situ laser ablation ICP-MS. Results show that although mineralisation is broadly similar between the two belts, there are significant differences in ore and gangue mineral textures, pyrite geochemistry, and style of gold mineralisation.Texturally, pyrite grains from the Zhao-Ye belt are generally cubic and do not exhibit zoning. In contrast, Muru pyrite grains are more often pyritohedral, commonly exhibit well-defined concentric zoning, and display textures in ore and gangue minerals indicative of open space growth. Bulk pyrite geochemistry suggests a distinct enrichment in Pb, Bi, Au, Ag and Te in the Zhao-Ye belt, whereas the Muru belt pyrite is significantly enriched in As, Cu and Co. In situ pyrite geochemistry indicates that Au and As are variably correlated in the Zhao-Ye belt, typically only exhibiting correlation at low Au concentrations. Most gold occurs as visible electrum along pyrite fractures and grain boundaries, with a minor generation of invisible gold formed through As-facilitated uptake into pyrite. In the Muru belt, Au and As have a strong correlation and there is limited occurrence of gold particles, indicating that most gold in the Muru belt is invisible gold contained in the crystal structure of As-rich pyrite.The differences in style of gold mineralisation between the belts indicates an inherent difference in timing of gold introduction: in the Zhao-Ye belt, the visible electrum accounting for most of the gold endowment is formed post-pyrite, whereas the invisible gold in the Zhao-Ye and Muru belts is formed syn-pyrite. The heterogeneity in gold distribution in the Jiaodong district is attributed to melting of metallogenically fertile Archean crust at the base of the well-endowed Zhao-Ye belt, and the lack of a similarly fertile source region beneath the Muru belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号