首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochemical studies of the trace metal concentrations in suspended particulate matter (SPM) and sediment trap material from a permanently anoxic fjord, Framvaren, South Norway in 1989 and 1993 indicate that extremely high concentrations of zinc (max = 183920 mg/kg), copper (max = 4130 mg/kg), lead (max = 2752 mg/kg), and cadmium (max= 8.1 mg/kg) sometimes (1993) occur in the SPM collected in the anoxic water layer. The highest concentrations of Zn occur just below the redoxcline at 22 m water depth (in 1993), and copper, lead and cadmium have maximum concentrations between 30 and 80 m depth, where the amount of total SPM is at a minimum (about 0.3 mg/L). On a mass per volume (g/L) basis, the maximum concentrations of Cd, Cu and Fe occur at the interface (21m) and those of Zn occur just below the redoxcline (22 m depth). The SPM and sediment trap data suggest that the metals are precipitated as sulfide minerals in the anoxic water. The presence of particulate sulfides was confirmed by SEM studies that show the occurrence of discrete metal (Cu, Fe, Pb, and Zn) sulfide particles in size from 10–20 m as well as framboidal pyrites (1–5 m in size). Higher levels of metal sulfides at intermediate depths rather than in the deep water of Framvaren (> 100 m), may be due to input of trace metals by water exchange over the sill in the upper part of the water column. In the deep water, less metal sulfide precipitation takes place due to depletion of trace metals, and the dilution of particulate metal concentrations by organic matter and by the chemogenic formation of calcite.  相似文献   

2.
 A total of 121 bed sediment samples were collected from a 5.8-km stretch of Manoa Stream, Hawaii. Samples were physically partitioned into two grain-size fractions, <63 μm and 63–125 μm, acid digested and analyzed by ICP-AES and FAAS. Non-parametric matched-pair statistical testing and correlation analysis were used to assess differences and strengths of association between the two fractions for Al, Ba, Cu, Fe, Mn, Ni, Pb, Ti and Zn. Results indicated statistically significant differences between fractions for all elements except Mn. Concentrations were significantly greater in the <63 μm fraction for Al, Cu, Pb, Ti and Zn, while Ba, Fe and Ni were higher in the 63–125 μm fraction. Though some elements had statistically significant differences between fractions (Al, Ba, Fe and Zn) percentage differences were in the range of analytical precision of the instrument and thus differences were not practically significant. Correlation analysis indicated strong positive associations for all elements between the two fractions (p<0.0001). Three contamination indices indicated similar degrees of pollution for each size fraction for four elements having an anthropogenic signal (Ba, Cu, Pb and Zn). The environmental information obtained from the 63–125 μm fraction was essentially equivalent to that from the <63 μm fraction. In this system it is clear that both bed sediment fractions indicate anthropogenic enrichment of trace metals, especially Pb, and further supports previous research that has found that aquatic sediments are critical median for tracing sources of pollution. Received: 17 August 1998 · Accepted: 30 October 1998  相似文献   

3.
Soil samples collected from various places in and around Mysore were analyzed for the total trace elements such as Fe, Mn, Cu, Zn, Pb, and Cd. The results of the analysis indicate that the concentration of lead and cadmium in soils is below 2.5 g ml–1 and 0.2 g ml–1, respectively, which are the minimum detection levels, whereas the concentration of iron, manganese, copper, and zinc in most of the samples is within the global average ranges of 3%, 500–1000 g g–1, 15–40 g g–1, and 50–100 g g–1, respectively. The investigated area has the presence of gneisses and schists, in which partly there are igneous intrusions and pegmatitic intrusions. There are amphibolite enclaves in gneisses that account for the higher concentration of trace elements. The lower concentration may be attributed to the presence of silicic type of rock.  相似文献   

4.
The chemical and microbiological characteristics of groundwater from two provinces of central Spain were studied. In some zones of this area, the concentrations of As in groundwater exceed the guideline concentrations, set internationally between 10 g/l and 50 g/l, reaching levels over 100 g/l. A narrow correlation between the contents of arsenic and HCO3 was observed. These data suggest a possible mechanism of the As mobilization from aquifer sediments to groundwater: the bicarbonate ions could displace HAsO42– adsorbed on aquifer oxyhydroxides. Sediments containing relatively high contents of adsorbed arsenic are deposited in surface water environments with low carbonate concentrations. Subsequently, the sediments become exposed to groundwater with highly dissolved carbonate content, and arsenic can be mobilized by displacement from mineral surfaces. In addition, the presence of Pseudomonas genera bacteria, which secrete siderophores (Fe chelating agents) could mobilize As adsorbed on Fe oxides through their dissolution. These combined microbiological and chemical processes might have increased the natural mobility of As.  相似文献   

5.
The distribution of some trace metals (Cu, Zn, Ni, Co,Fe, Mn) and of DOC over a particulate (> 1 m),a colloidal (size < 0.45 m and molecular weight > 10 kD) and an ultrafiltered fraction (< 10 kD)was determined at several sites on the Thur River,Switzerland, at various times of the year. Thecomplexation of Cu by strong ligands in theultrafiltrate and in the conventional filtrate (<0.45 m) was compared using a ligand-exchange/CSV method.The <0.45 m concentrations of Cu (from anaverage of 7 nM to 24 nM), Zn (<5–23 nM), Ni (5–13 nM),Co (1.5–3 nM) and Mn (7–92 nM)increased downstream. The major part of Cu, Zn, Niand Co usually occurred in the ultrafiltratefraction at all sites, whereas Fe and Mn were mostlyin the particulate fraction, under conditions of lowsuspended matter content (< 10 mg L-1) in theriver. The percentage of metal in the colloidalfraction, with respect to the 0.45-m filtrate,decreased in the order: Cu (median 11%) > Zn Ni(median 5–6%) > Mn Co (median < 5%). DOCalso consisted mostly of molecules in the < 10 kDrange.Cu was strongly complexed by natural organic ligandsin all filtrate and ultrafiltrate samples. A largepart of the strong Cu binding ligands consisted ofcompounds in the < 10 kD range, but colloidalligands with similar properties also occurred. Cu wasdistributed among the dissolved and the colloidalligands, roughly in proportion to organic carbon.The colloidal fraction (as defined here) did notincrease in its proportional amount downstream and wasonly of limited significance in transporting traceelements in the Thur River under low discharge conditions.  相似文献   

6.
Overbank sediments of the Geul River (East Belgium) are highly contaminated by the heavy metals Pb, Zn, and Cd due to former Pb-Zn mining activities in the drainage basin. Geochemical variations in vertical overbank sediment profiles sampled 1 km north of the mine tailings of Plombiéres allow metal fluxes back to the 17th century to be reconstructed. The vertical profiles are subdivided into three major units corresponding to different industrial periods based on sedimentological criteria as well as on the distribution of contaminants. Alluvial sediments with the highest heavy metal concentrations correspond to the major period of mining activity of the 19th century. The fact that Zn mining at the La Calamine open mine started before large-scale mining of the PbS-ZnS subsurface exploitations is reflected in the vertical profiles by an increase in Zn content before a marked increase in Pb and Cu. The regional extent of contamination in the alluvial deposits was evaluated on the basis of the geochemical analysis of sediments at depths of the 0–20 cm and 80–100 cm. Most of the upper samples are extremely contaminated. Significant local variations in heavy metal concentration in the lower samples are interpreted in terms of which overbank sediment horizon has been sampled at a depth of 80–100 cm. This indicates that blind sampling of overbank sediments to characterize the degree of contamination in shallow boreholes can give very erratic results.  相似文献   

7.
The geochemical partitioning of ten elements in stratified Holocene sediments from Loch Dee, southwest Scotland, has been established by use of a five-stage sequential extraction procedure. Samples from below 15 cm sediment depth show minimal evidence of modification by anthropogenic contamination or active diagenesis and hold Fe, Mg, Cu, Cd, Co, Pb, and Ni primarily in detrital silicates or organic complexes, while Mn, Ca, and Zn reside largely in adsorbed and reducible oxide phases. In the uppermost ca 15 cm of sediment, enhanced total concentrations of Zn, Cu, and Pb reflect increased atmospheric deposition during the postindustrial period. Of these metals, only Pb displays any notable adjustment of partitioning in the enriched zone, showing disproportionate accumulation in labile oxides and organic-Pb phases. The lack of Pb and Zn carbonates in the contaminated horizon may reflect inherent thermodynamic instability under the acid surface and pore-water conditions of Loch Dee. Increments to total Mn and Co in the surficial ca 5 cm of sediment are attributable to the accumulation of secondary oxides and adsorbed species, consistent with precipitation from the interstitial pore-waters across a sedimentary redox front. The presence of metals such as Zn and Cd in soluble or acid-volatile phases in the interfacial sediment has implications for the future management of the Loch Dee basin, with leaching into the overlying waters likely, given the continuation of current trends of lake acidification.  相似文献   

8.
The Oso Bay, Texas, sediments from nine sites were analyzed by GC-MS for organics to measure contamination in the bay. In most of the sites sediments contained tetrachloroethene (87–1433 g/kg), bis (2-ethylhexyl)phthalate (40–193 g/kg), and aliphatic hydrocarbons, C8-C13 (720–2491 g/kg). Sources of these contaminants include a landfill, military facilities, and municipal and industrial discharges. Size analysis of the sediments indicates they contain a high percentage of muddy sand (50–75 percent), which suggests that Oso Bay consists of common bay margin sediments.  相似文献   

9.
To evaluate the magnitude of variation in grain size distribution in the Krishna river, bed sediments and suspended sediments collected along the length of the river have been studied. There are both temporal and seasonal variation in the grain size distribution of suspended sediments. The statistical parameters show the change along the river in a non-linear fashion which may be due to human interference and due to different types of sediments contributed by tributaries to the Krishna river. The suspended sediments are mostly fine silt (4 to 16m), poorly sorted, showing coarse to fine skewed and are platyto leptokurtic. The bed sediments are mostly medium sand (350m) showing moderate to well sorted, coarse to fine skewed and are platy- to leptokurtic. The CM diagram of Krishna river bed sediments suggests that deposition takes place by (1) rolling (2) rolling and suspension and (3) graded suspension. The suspended sediments represent deposits of uniform suspension.  相似文献   

10.
Lake Suwa, located in the center of the largest Japanese island of Honshu was a typical hypertrophic lake with a dense scum Microcystis species in summer during the 1970's. However, due to the introduction of a sewage treatment plant and the awareness of environmental pollution by local residents, a decrease in the concentration of nutrients in lake water since 1981 has been observed (from 1600 g l–1 and 160 g l–1 in 1977 to 990 g l–1 and 110 g l–1 in 1984 for total nitrogen and phosphorus respectively).  相似文献   

11.
Water and sediment samples collected from the Gomti River, a tributary of the Ganges River system, during the postmonsoon season have been analyzed to estimate major elemental chemistry. Water chemistry of the River Gomti shows almost monotonous spatial distribution of various chemical species, especially because of uniform presence of alluvium Dun gravels throughout the basin. The river annually transports 0.34×106 tonnes of total suspended material (TSM) and 3.0×106 tonnes of total dissolved solids (TDS), 69 percent of which is accounted for by bicarbonate ions only. Samples collected downstream of the city of Lucknow show the influence of anthropogenic loadings for a considerable distance in the river water. Na+, Cl, and SO4 2– concentrations build up downstream. The bed sediment chemistry is dominated by Si (36 percent), reflecting a high percentage of detrital quartz, which makes up about 74 percent of the mineralogy of the bed sediments in the River Gomti. The average Kjeldahl nitrogen concentration (234 g/g) indicates indirectly the amount of organic matter in the sediments. The Hg concentration in sediments has been found to be higher (average 904 ppb) than the background value. The suspended sediments are well sorted, very finely skewed, and extremely leptokurtic, indicating a low energy condition of flow in the Gomti River. The influence of chemical loads in the Gomti has been found to be small or nonexistent on the Ganges River, perhaps because the water discharge of the Gomti (1.57 percent) to the Ganges is quite low.  相似文献   

12.
Ferromanganese micro- and macronodules in eupelagic clays at Site 35 of the South Basin were examined in order to check the REE distribution during the ferromanganese ore formation in nonproductive zones of the Pacific Ocean. We studied host sediments and their labile fraction, ferromanganese micronodules (fractions 50–100, 100–250, 250–500, and >500 m) from eupelagic clays (horizons 37–40, 105–110, 165–175, and 189–190 cm), and buried ferromanganese micronodules (horizons 64–68, 158–159, and 165–166 cm). Based on phase analysis data, the anomalous REE enrichment of eupelagic clays from Site 35 is related to the accumulation of rare earth elements in iron hydroxophosphates. The Ce concentration, generally linked to manganese oxyhydroxides, is governed by the oxidation of Mn and Ce in oceanic surficial waters. Micronodules (Mn/Fe = 0.7–1.6) inherit compositional features of the labile fraction of sediments. The Ce, Co, and Th concentrations depend on the micronodule dimension. The enrichment of micronodules in hydrogenic or hydrothermal substance is governed by their dimension and the dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in the compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. The compositional variation of micro- and macronodules, relative to the labile fraction of sediments, in the Pacific nonproductive zone dramatically differs from the pattern in bioproductive zones, where micronodule compositions in larger fractions are similar to those in associated macronodules and labile fractions of the host sediment as a result of the more intense suboxidative diagenesis.  相似文献   

13.
Suspended and bed sediments collected from the entire region of the Godavari River basin were analyzed for Fe, Mn, Cr, Cu, Ni, and Zn. There are pronounced temporal and spatial variations in the heavy metal distributions. The concentrations of heavy metals in the suspended sediments are significantly higher than the bed sediments.Throughout the basin heavy metals are enriched in the finer fractions (<2 µm) of the bed sediments. The average heavymetal composition of the sediments is higher when compared to the average Indian river sediments. Heavy-metal concentration in the two shallow cores collected shows, to some extent, the influence of urbanization. When compared to the other tropical Indian rivers such as the Krishna, the Godavari appears to be a significant contributor of heavy metals to the Bay of Bengal. Considering the enormous sediment load of the Godavari River—170 million tons/yr, the heavy metal fluxes to the Bay of Bengal is very significant. Except for the Pranhita, other tributaries of the Godavari do not contribute significant loads of heavy metals. All the metals show high correlation among themselves and the correlation is more pronounced in suspended sediments than in the bed sediments. The heavy-metal distribution, fractionation, and its relationship with total suspended sediments and depth in various parts of the basin are discussed in detail.  相似文献   

14.
Major (Al and Fe), minor (Mn) andtrace (As, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sb, Vand Zn) metals along with material of grain size<63 m, TOC and TN have been determined insediment grab and core samples from the Kara Sea, andthe Ob and Yenisey estuaries, Russia. Surprisingly,the levels of trace metals, with the exception of As,were much lower than was anticipated from speculativereports of extensive contamination in the Arcticmarine areas adjacent to the Siberian coastline ofRussia. Lithium normalization indicates that theabundance and distribution of the metals, with theexception of As and Mo, are controlled by theaccumulation of their fine grained aluminosilicatehost minerals at sites determined by hydrodynamicconditions in the Kara Sea and in the estuaries. Metallevels in the Kara Sea and the Ob and Yeniseyestuaries, except for some anomalous As, Cu and Nivalues, are close to natural baseline levels of otherEurasian Arctic shelf sediments. High levels of As,however, occur in surface and subsurface sediments.The accumulation of As, as well as Mo, can beattributed to the post-depositional diagenetic effectsof Fe-Mn cycling both at and near the sediment waterinterface. Subsurface As and Fe maxima and minimasuggest alternating oxic and anoxic water conditionsduring post-glacial rises in sea level. In contrast tothe results from the adjacent Pechora Sea, in the KaraSea there is no correlation between the levels of Asand radionuclides in the sediments.  相似文献   

15.
In the aquatic system, heavy metals always exist in a number of physico-chemical forms: particulate (Cp), soluble which consists of labile (MALI) and bound (inorganic MAb and organic MLb). The environmental behaviors of a metal are critically dependent on these forms. In this paper, the forms of heavy metals in waters from the Changjiang River source to mainstream and lakes were determined by ASV method. The main results are as follows: 1. The total contents (Ct) of Zn, Pb, Cu and Cd in the source were 4.0, 1.88, 1.28 and 0.07 (g/L) respectively, while Ct (g/L) in the mainstem were in the order of Zn (20.1) > Cu (14.9) > Pb (6.73) > Cd (0.15). Ct (g/L) in Dianchi Lake were Zn (7.2) > Pb (0.72) > Cu (0.53) > Cd (0.05), and in Poyang Lake were Zn (12.5) > Pb (4.2) > Cu (3.4) > Cd (0.05), and in Poyang Lake were Zn (12.5) > Pb (4.2) > Cu (3.4) > Cd (0.05). However, most of them were presented as Cp. Their dissolved contents (Cs, /L) were lower. 2. The distribution of soluble forms was related to the type of metal and to environmental variables. In general, Zn and Cd have a tendency to be present in MALi, Pb in MAb and Cu in MLb.  相似文献   

16.
Partitioning of heavy metals in surface Black Sea sediments   总被引:1,自引:0,他引:1  
Bulk heavy metal (Fe, Mn, Co, Cr, Ni, Cu, Zn and Pb) distributions and their chemical partitioning, together with TOC and carbonate data, were studied in oxic to anoxic surface sediments (0–2 cm) obtained at 18 stations throughout the Black Sea. TOC and carbonate contents, and available hydrographic data, indicate biogenic organic matter produced in shallower waters is transported and buried in the deeper waters of the Black Sea. Bulk metal concentrations measured in the sediments can be related to their geochemical cycles and the geology of the surrounding Black Sea region. Somewhat high Cr and Ni contents in the sediments are interpreted to reflect, in part, the weathering of basic-ultrabasic rocks on the Turkish mainland. Maximum carbonate-free levels of Mn (4347 ppm), Ni (355 ppm) and Co (64 ppm) obtained for sediment from the shallow-water station (102 m) probably result from redox cycling at the socalled ‘Mn pump zone’ where scavenging-precipitation processes of Mn prevail. Chemical partitioning of the heavy metals revealed that Cu, Cr and Fe seem to be significantly bound to the detrital phases whereas carbonate phases tend to hold considerable amounts of Mn and Pb. The sequential extraction procedures used in this study also show that the metals Fe, Co, Ni, Cu, Zn and Pb associated with the ‘oxidizable phases’ are in far greater concentrations than the occurrences of these metals with detrital and carbonate phases. These results are in good agreement with the recent studies on suspended matter and thermodynamic calculations which have revealed that organic compounds and sulfides are the major metal carriers in the anoxic Black Sea basin, whereas Fe-Mn oxyhydroxides can also be important phases of other metals, especially at oxic sites. This study shows that, if used with a suitable combination of the various sequential extraction techniques, metal partitioning can provide important information on the varying geological sources and modes of occurrence and distribution of heavy metals in sediments, as well as, on the physical and chemical conditions prevailing in an anoxic marine environment.  相似文献   

17.
Measurements of O2, Fe(II), Mn(II)and HS5 in salt marshsediments in the Tagus Estuary, Portugal, made with a voltammetric microelectrode, reveal strong seasonal differences in pore water composition within the 20~cm deep root zone. In spring, oxygen was below detection limit except close to the sediment surface. Fe(II) was present below 5 cm in concentrations ranging from detection limit to 1700 M. In summer, oxygen was present in the pore water almost to the bottom of the root zone in concentrations ranging from detection limit to more than 100 M. The spatial variability was intense: O2 concentrations as high as 78 M and as low as 25 M existed within 2~mm of each other. Fe(II) was below detection limit except towards the bottom of the root zone. In late fall, oxygen was found to 8 cm depth, but in concentrations lower than in summer, and Fe(II) was present below 9 cm. Mn(II) was found at levels declining from typical values of 200 M in spring to less than 20 M in late fall. With one exception, sulfide was below the detection limit in all measurements. During periods when dissolved Fe(II) is available in the pore water at the same time as 2 is delivered by roots, iron-rich concretions can form on roots. These conditions, which lead to precipitation of iron oxide in the sediment adjacent to roots, exist in spring, when new roots infiltrate anoxic Fe(II) containing sediment. They do not exist in summer, when dissolved Fe(II) is unavailable, or in winter, when oxygen is unavailable. The seasonal redox pattern revealed by the pore water chemistry is driven by the annual cycle of growth and decay of roots.  相似文献   

18.
The abandoned Kilembe copper mine in western Uganda is a source of contaminants, mobilised from mine tailings into R. Rukoki flowing through a belt of wetlands into Lake George. Water and sediments were investigated on the lakeshore and the lakebed. Metal associations in the sediments reflect the Kilembe sulphide mineralisation. Enrichment of metals was compared between lakebed sediments, both for wet and dry seasons. Total C in a lakebed core shows a general increment, while Cu and Co decrease with depth. The contaminants are predominant (> 65%) in the ≤ 63 μm sediment size range with elevated Cu and Zn (> 28%), while Ni, Pb and Co are low (< 18%) in all the fractions. Sequential extraction of Fe for lakeshore sediment samples reveals low Fe mobility. Relatively higher mobility and biological availability is seen for Co, Cu and S. Heavy metal contents in lake waters are not an immediate risk to the aquatic environment.  相似文献   

19.
The Brixen Quartzphyllite, basement of the Southern Alps (Italy), consists of metasediments which had suffered progressive deformation and low grade metamorphism (p max4 kbar, T max375±25° C) during the Palaeozoic. It has been excavated by pre-Permian erosion, buried again beneath a pile of Permo-mesozoic to Cainozoic sediments (estimated T max150° C), and is now exposed anew due to late Alpine uplift and erosion. The behavior of the K-Ar system of white micas is investigated, taking advantage of the narrow constraints on their thermal history imposed by the geological/stratigraphic reference systems.The six structurally and petrographically differing samples come from a single outcrop, whose position is roughly two kilometers beneath the Permian land-surface. White mica concentrates from five grain size fractions (<2 , 2–6 , 6–20 , 20–60 , 60–75 ) of each sample have been analyzed by the conventional K-Ar method, four selected concentrates additionally by the 40Ar/39Ar stepwise heating technique; furthermore, Ar content and isotopic composition of vein quartz were determined.The conventional ages of the natural grain size fractions (20–60 , 60–75) are in the range 316±8 Ma, which corresponds to the 40Ar/39Ar plateau age of 319.0±5.5 Ma within the error limits. The finer grain size fractions yield significantly lower ages, down to 233 Ma for fractions <2 . Likewise low apparent ages (down to 83 Ma) are obtained for the low temperature 40Ar/39Ar degassing steps.There is no correlation between microstructural generation of white mica prevailing in the sample and apparent age. This favours an interpretation of the 316±8 Ma values as cooling age; progressive deformation and metamorphism must be respectively older and their timing cannot be resolved by these methods. The data preclude any significant influence of a detrital mica component as well as of excess argon.The lower ages found for the fine grain-size fractions (respectively the low-T degassing steps) correspond to a near-surface period (p-T-minimum); the values are geologically meaningless. The effect is interpreted to result from partial Ar loss due to reheating during Mesozoic-Cainozoic reburial. A model based on diffusion parameters derived from the outgassing experiments and Dodson's (1979) equation yields a closure temperature of 284±40 °C for a cooling rate of 18° C/Ma. Furthermore, this model suggests that the observed argon loss of up to 5% may in fact have been induced by reheating to 150 °C for 50 Ma.  相似文献   

20.
Regional geochemistry of trace elements in Chesapeake Bay sediments   总被引:4,自引:0,他引:4  
The concentrations of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in 177 surface sediment samples from throughout Chesapeake Bay are reported. Analyses were made of both unfractionated samples and the <63 μm fractions. Analytical uncertainty, always less than ±10%, controlled reproducibility in analyses of the <63 μm fractions, but sampling variance controlled reproducibility in the unfractionated samples, especially when coarse-grained sediments were being analyzed. Sediments in the northernmost part of the bay are enriched relative to average continental crust in all elements except Cr. This reflects the composition of dissolved and suspended material being delivered to that region by the Susquehanna River. The enriched sediments appear not to be transported south of Baltimore in significant quantily. Zinc, cadmium, and lead are enriched relative to average crust throughout the bay and in most other estuaries in the eastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号