首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Yuqi block is an important area for oil and gas exploration in the northern Akekule uplift, Tarim Basin, northwestern China. The Upper Triassic Halahatang Formation (T3h) within the Yuqi block can be subdivided into a lowstand system tract (LST), a transgressive system tract (TST), and a highstand system tract (HST), based on a study of initial and maximum flood surfaces. Oil in the lowstand system tract of the Halahatang Formation is characterized by medium to lightweight (0.8075 g/cm3–0.9258 g/cm3), low sulfur content (0.41%–1.4%), and high paraffin content (9.65%–10.25%). The distribution of oil and gas is principally controlled by low-amplitude anticlines and faults. Based on studies of fluorescence thin sections and homogenization temperatures of fluid inclusions, reservoirs in the T3h were formed in at least two stages of hydrocarbon charge and accumulation. During the first stage (Jurassic–Cretaceous) both the structural traps and hydrocarbon reservoirs were initiated; during the second stage (Cenozoic) the structural traps were finally formed and the reservoirs were structurally modified. The reservoir-forming mechanism involved external hydrocarbon sources (i.e. younger reservoirs with oil and gas sourced from old rocks), two directions (vertical and lateral) of expulsion, and multi-stage accumulation. This model provides a theoretical fundament for future oil and gas exploration in the Tarim Basin and other similar basins in northwestern China.  相似文献   

2.
The origin of the fourteen major oil fields in the Bozhong sub-basin, Bohai Bay basin was studied based on the results of Rock-Eval pyrolysis on more than 700 samples and biomarker analysis on 61 source rock samples and 87 oil samples. The three possible source rock intervals have different biomarker assemblages and were deposited in different environments. The third member of the Oligocene Dongying Formation (E3d3, 32.8–30.3 Ma in age) is characterized mainly by high C19/C23 tricyclic terpane (>0.75), high C24 tetracyclic terpane/C26 tricyclic terpane (>2.5), low gammacerane/αβ C30 hopane (<0.15) and low 4-methyl steranes/ΣC29 steranes (<0.15) ratios, and was deposited in sub-oxic to anoxic environments with significant terrigenous organic matter input. The first (E2s1, 35.8–32.8 Ma) and third (E2s3, 43.0–38.0 Ma) members of the Eocene Shahejie Formation have low C19/C23 tricyclic terpane and low C24 tetracyclic terpane/C26 tricyclic terpane ratios and were deposited in anoxic environments with minor terrestrial organic matter input, but have different abundances of 4-methyl steranes and gammacerane. The hydrocarbon-generating potential and biomarker associations of these three source rock intervals were controlled by tectonic evolution of the sub-basin and climate changes. Three oil families derived from E2s3, E2s1 and E3d, respectively, and three types of mixed oils have been identified. All large oil fields in the Bozhong sub-basin display considerable heterogeneities in biomarker compositions and originated from more than one source rock interval, which suggests that mixing of oils derived from multiple source rock intervals or multiple generative kitchens, and/or focusing of oils originated from a large area of a generative kitchen, is essential for the formation of large oil fields in the Bozhong sub-basin. E2s3- and E2s1-derived oils experienced relatively long-distance lateral migration and accumulated in traps away from the generative kitchen. E3d3-derived oils had migrated short distances and accumulated in traps closer to the generative kitchen. Such a petroleum distribution pattern has important implications for future exploration. There is considerable exploration potential for Dongying-derived oils in the Bozhong sub-basin, and traps close to or within the generative kitchens have better chance to contain oils generated from the Dongying Formation.  相似文献   

3.
The Songliao Basin is a large-scale petroliferous basin in China. With a gradual decline in conventional oil production, the exploration and development of replacement resources in the basin is becoming increasingly important. Previous studies have shown that the Cretaceous Qingshankou Formation (K2qn) has favorable geological conditions for the formation of shale oil. Thus, shale oil in the Qingshankou Formation represents a promising and practical replacement resource for conventional oil. In this study, geological field surveys, core observation, sample tests, and the analysis of well logs were applied to study the geochemical and reservoir characteristics of shales, identify shale oil beds, build shale oil enrichment models, and classify favorable exploration areas of shale oil from the Cretaceous Qingshankou Formation. The organic matter content is high in shales from the first member of the Cretaceous Qingshankou Formation (K2qn1), with average total organic carbon (TOC) content exceeding 2%. The organic matter is mainly derived from lower aquatic organisms in a reducing brackish to fresh water environment, resulting in mostly type I kerogen. The vitrinite reflectance (Ro) and the temperature at which the maximum is release of hydrocarbons from cracking of kerogen occurred during pyrolysis (Tmax) respectively range from 0.5% to 1.1% and from 430 °C to 450 °C, indicating that the K2qn1 shales are in the low-mature to mature stage (Ro ranges from 0.5% to 1.2%) and currently generating a large amount of oil. The favorable depth for oil generation and expulsion is 1800–2200 m and 1900–2500 m, respectively as determined by basin modeling. The reserving space of the K2qn1 shale oil includes micropores and mircofractures. The micropore reservoirs are developed in shales interbedded with siltstones exhibiting high gamma ray (GR), high resistivity (Rt), low density (DEN), and slightly abnormal spontaneous potential (SP) in the well-logging curves. The microfracture reservoirs are mainly thick shales with high Rt, high AC (acoustic transit time), high GR, low DEN, and abnormal SP. Based on the shale distribution, geochemical characteristics, reservoir types, fracture development, and the process of shale oil generation and enrichment, the southern Taikang and northern Da'an are classified as two favorable shale oil exploration areas in the Songliao Basin.  相似文献   

4.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

5.
土霉素在牙鲆体内的药代动力学研究   总被引:1,自引:0,他引:1  
采用高效液相色谱法为定性、定量手段,研究土霉素在牙鲆(Paralichthys olivaceus)体内的药代动力学过程,采用DAS(Drug and Statistics)药代动力学程序对数据进行分析.结果表明,牙鲆单剂量口服土霉素后(200 mg/kg),血药经时过程符合二室模型,主要动力学参数如下:吸收半衰期(T(1/2)a)为10.043 h,单剂量给药后牙鲆体内出现最高质量分数的时间(Tmax)为4.000 h,单剂量给药后牙鲆体内最高血药质量分数(Cmax)为0.54 mg/L,药时曲线下总面积(CAU0-72)为17.15 (mg*h)/L,吸收速率常数(Ka)为0.223,消除速率常数(k)为0.476 h-1.牙鲆肌肉中土霉素的经时过程符合一级吸收一室模型,主要动力学参数:T(1/2)a为74.893 h,Tmax为4.000 h,Cmax为3.58 mg/L,CAU0-72为148.56 (mg*h)/L,Ka为0.731,k为2.991 h-1.牙鲆肝脏中土霉素的经时过程符合一级吸收一室模型,主要动力学参数:T(1/2)a为31.376 h,Tmax为4.000 h,Cmax为13.78 mg/L,CAU0-72为494.14 (mg*h)/L,Ka为0.876,k为4.940 h-1.  相似文献   

6.
Two large oil fields (QHD32-6 and QHD33-1), located in the middle part of the Shijiutuo Uplift, have generally suffered mild biodegradation. Based on multivariate statistical analysis of the biomarker parameters, this study discussed the origin and charging directions for these two oil fields.In contrast to Ed3-derived oil, all available oil samples from these two large oil fields displayed low C19/C23, C24/C26 and high G/H and 4-MSI, which are attributed to the mixtures of oils derived from the Shahejie (Es1 and Es3) source rocks. Oils in QHD32-6, which contain relatively more Es3-derived oil, are called Group I oils, and most oils in QHD33-1, which share relatively more Es1-derived oil, are called Group II oils. Our mixed oil experiments reveal the predominant Es3- and Es1-derived oil contribution for Group I and Group II oil groups, respectively; however, the selection of end member oils warrants further research.Based on comparisons of biomarker parameters, the QHD32-6 oil field was mainly charged in the north by oil generated from Shahejie formation source rocks in the Bozhong depression. However, oils from the north of QHD32-6 field display a remarkable difference to the oils in the south of this field, which may indicate that a charging pathway exists from the QHD33-1 field. Considering the variations in biomarker compositions in the west to -east and northwest to -southeast sections across the QHD33-1 and QHD32-6 oil fields, it can be deduced that Es3-sourced oil migrated westward to the QHD32-6 traps, and then charging by Es1 oil from the Bozhong Sag resulted in the QHD33-1 oil field being characterized by the mixture of Es3- and Es1-sourced oil. Moreover, migration of Es1-derived oil from the Qinnan Sag was not identified, implying that the QHD33-1 oil field is mainly charged from the northeast of the Bozhong Sag.  相似文献   

7.
We conducted reconnaissance experiments to synthesize aqueous and hydrocarbon inclusions trapped in calcite at conditions relevant to petroleum basins, and characterize the microthermometric properties of such inclusions. Fluid inclusions (FIs) were synthesized in a system of saline aqueous solution (5 or 20 wt% NaCl) coexisting with either heavy crude oil or gasoline under gas-undersaturated conditions, from 90 to 210 °C and 200–550 bar. The synthetic inclusions are not representative of gas-bearing systems, and methane (CH4) was not detected in any aqueous inclusions. The FIs are mainly distributed along planar healed cracks, indicating that the inclusions formed by fracture healing in the calcite crystal. Microthermometric measurements were conducted on coeval aqueous and hydrocarbon inclusions, and Raman spectroscopic analyses were done on aqueous inclusions, to determine the properties of FIs trapped at these conditions.Homogenization temperatures of synthetic FIs are mostly lower than the experimental trapping temperature, although the FIs show high variability in measured homogenization temperature. Results allow comparison of Th values for each sample with the expected Th, isochores and pressure corrections calculated for the system H2ONaCl. The latter parameters are broadly consistent with the known PVTX properties of H2ONaCl fluids, suggesting little effect of hydrocarbons on the homogenization behavior, although the low precision of the Th data limits this assessment. Nevertheless, this result is not unexpected considering that light hydrocarbons (gas) is not present in the experiments (as corroborated by Raman spectroscopy), a consequence of using “dead” oil in the experiments. Simulation of gas-bearing petroleum basins will require additional protocols for producing gas, either by in-situ cracking of the starting hydrocarbon material, or by other means. The reconnaissance experiments documented here provide a basis for such future experiments.  相似文献   

8.
The Shijiutuo uplift is an oil enriched uplift in the offshore Bohai Bay Basin. Petroleum migration is a key factor for oil enrichment in Neogene reservoirs far away from the hydrocarbon kitchen. In this article, an integration of geological, geophysical and geochemical analyses are employed to investigate the petroleum migration and accumulation on the Shijiutuo uplift. Hydrocarbons in the QHD32-6 and QHD33 oilfields are mainly originated from the third (E2s3) and first (E2s1) member of the Shahejie Formation. The shallow traps have significant contributions of late-stage E2s1-derived oil. Lateral petroleum migration is a major mechanism forming large oilfields on the Shijiutuo uplift. The large oilfields have multiple hydrocarbon kitchens, multiple source rocks, and numerous preferential petroleum migration pathways (PPMPs). Once petroleum arrives at the structural highs on the Shijiutuo uplift through the Guantao Formation (N1g) carrier-beds, neotectonic faults cutting through Guantao (N1g) and Minghuazhen (N1mL) formations could serve as effective conduits for vertical petroleum migration. Neotectonic faults have experienced polycyclic fault activities. Fluid inclusions indicate episodic hydrocarbon charging. Crude oils display duplex properties of biodegradation and non-biodegradation, which is strong evidence for multiple and episodic oil charging on the Shijiutuo uplift. Finally, episodic petroleum charging along polycyclic neotectonic faults causes the late-stage E2s1-derived oils to occur in the shallow reservoirs.  相似文献   

9.
The petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin was investigated using an integrated fluid inclusion analysis workflow and geohistory modelling. One and two-dimensional basin modelling was performed to unravel the oil generation history of the Eocene Shahejie Formation (Es3 and Es4) source rocks based on the reconstruction of the burial, thermal and maturity history. Calibration of the model with thermal maturity and borehole temperature data using a rift basin heat flow model indicates that the upper interval of the Es4 source rocks began to generate oil at around 35 Ma, reached a maturity level of 0.7% Ro at 31–30 Ma and a peak hydrocarbon generation at 24–23 Ma. The lower interval of the Es3 source rocks began to generate oil at around 33–32 Ma and reached a maturity of 0.7% Ro at about 27–26 Ma. Oil generation from the lower Es3 and upper Es4 source rocks occurred in three phases with the first phase from approximately 30–20 Ma; the second phase from approximately 20–5 Ma; and the third phase from 5 Ma to the present day. The first and third phases were the two predominant phases of intense oil generation.Samples from the Es3 and Es4 reservoir intervals in 12 wells at depth intervals between 2677.7 m and 4323.0 m were investigated using an integrated fluid inclusion workflow including petrography, fluorescence spectroscopy and microthermometry to determine the petroleum charge history in the northern Dongying Depression. Abundant oil inclusions with a range of fluorescence colours from near yellow to near blue were observed and were interpreted to represent two episodes of hydrocarbon charge based on the fluid inclusion petrography, fluorescence spectroscopy and microthermometry data. Two episodes of oil charge were determined at 24–20 Ma and 4–3 Ma, respectively with the second episode being the predominant period for the oil accumulation in the northern Dongying Depression. The oil charge occurred during or immediately after the modelled intense oil generation and coincided with a regional uplift and a rapid subsidence, suggesting that the hydrocarbon migration from the already overpressured source rocks may have been triggered by the regional uplift and rapid subsidence. The expelled oil was then charged to the already established traps in the northern Dongying Depression. The proximal locations of the reservoirs to the generative kitchens and the short oil migration distance facilitate the intimate relationship between oil generation, migration and accumulation.  相似文献   

10.
The Penglai 9-1 (PL9-1) oil field, which contains China's third largest offshore oil accumulation (in-place reserves greater than 2.28 × 108 ton or 1.49 × 109 bbl), was found in shallow reservoirs (700–1700 m, 2297–5577 ft) within the most active fault zone in east China. The PL9-1 field contains two oil-bearing series, the granite intrusions in Mesozoic (Mz) and both the sandstone reservoirs in Neogene Guantao (Ng) and Neogene Minghuazhen (Nm) Formation. The origins of the PL9-1 field, both in terms of source rock intervals and generative kitchens, were determined by analyzing biomarker distributions for 61 source rock samples and 33 oil samples. The Mesozoic granite intrusions, which hold more than 80% of the oil reserves in the field, were charged in the west by oil generated from the third member (Es3) of the Shahejie Formation in the Bodong depression. The Neogene reservoirs of the PL9-1 field were charged in the west by oil generated from the third member (Es3) of the Shahejie Formation in the Bodong depression and in the south by oil generated from the first member (Es1) of the Shahejie Formation in the Miaoxibei depression. Interactive contact between the large fan delta and the mature source rocks residing in the Es3 Formation of the Bodong depression resulted in a high expulsion efficiency from the source rocks and rapid oil accumulation in the PL9-1 field, which probably explains how can this large oil field accumulate and preserve within the largest and most active fault zone in east China.  相似文献   

11.
The Erlian Basin is located in the Central Asia-Mongolian fold belt between the Siberian and Sino-Korean Cratons. It is a Mesozoic continental rift basin composed of 52 individual fault-depressions. The main phase of rifting took place during the Early Cretaceous when a series of fluvial-lacustrine sediments were deposited. Each depression forms an independent sedimentary system and behaves as an independent petroleum system. Hydrocarbon source rocks are found in the upper Arshan and lower Tengger Formations. These are mainly type II source rocks and are mainly located in oil generation window at the present day. A series of oilfields and commercial oil flows have been found in the basin, highlighting its good petroleum potential. Many of these oils are heavy.Six oil samples from the Anan and ten from the Jirgalangtu Depressions have been subjected to routine geochemical analytical techniques in order to evaluate the origins. The methods used include gas chromatography of the saturated and aromatic hydrocarbon fractions, gas-chromatography-mass-spectrometry of the saturated hydrocarbon fraction and stable carbon isotope analyses. The trace metal elements of the biodegraded oils from the Jirgalangtu Depression were also analysed by atomic absorption spectroscopy.Two types of heavy oils : primary and biodegraded were identified on the basis of these data. The former includes both immature and mature heavy oils. A filtering-and-spill process was proposed to explain the origin of primary mature heavy oils (or tar-mat) in the Anan Depression. The biodegraded oils from the Jirgalangtu Depression were ranked and classified in terms of the degree of biodegradation, using a series of geochemical parameters based on the gas chromatographic concentrations and biomarker fingerprints of gas-chromatography-mass-spectrometry of the saturated hydrocarbon fraction. The relationship between oil saturation and porosity indicates that the heavy oils in the Jirgalangtu Depression were biodegraded after they accumulated.  相似文献   

12.
The Pearl River Mouth Basin in the South China Sea has accumulated >2 km of Eocene sediments in its deep basin, and has become the exploration focus due to the recent discoveries of the HZ25-7 oil field in the Eocene Wenchang (E2w) Formation. In this study, the geochemical characteristics of potential source rocks and petroleum in the HZ25-7 oil field are investigated and the possible origins and accumulation models developed. The analytical results reveal two sets of potential source rocks, E2w and Enping (E2e) formations developed in the study area. The semi-deep-to-deep lacustrine E2w source rocks are characterized by relatively low C29 steranes, low C19/C23 tricyclic terpane (<0.6), low C24 tetracyclic terpane/C30 hopane (<0.1), low trans-trans-trans-bicadinane (T)/C30 hopane (most <2.0), and high C30 4-methyl sterane/ΣC29 sterane (>0.2) ratios. In contrast, the shallow lacustrine and deltaic swamp-plain E2e source rocks are characterized by relatively high C29 steranes, high C19/C23 tricyclic terpane (>0.6), high C24 tetracyclic terpane/C30 hopane (>0.1), variable yet overall high T/C30 hopane, and low C30 4-methyl sterane/ΣC29 sterane (<0.2) ratios. The relatively low C19/C23 tricyclic terpane ratios (mean value: 0.39), low C24 tetracyclic terpane/C30 hopane ratios (mean value: 0.07), high C30 4-methyl sterane/ΣC29 sterane ratios (mean value: 1.14), and relatively high C27 regular sterane content of petroleum in the HZ25-7 oil field indicate that the petroleum most likely originated from the E2w Formation mudstone in the Huizhou Depression. One stage of continuous charging is identified in the HZ25-7 oil field; oil injection is from 16 Ma to present and peak filling occurs after 12 Ma. Thin sandstone beds with relatively good connectivity and physical properties (porosity and permeability) in the E2w Formation are favorable conduits for the lateral migration of petroleum. This petroleum accumulation pattern implies that the E2w Formation on the western and southern margins of the Huizhou Depression are favorable for petroleum accumulation because they are located in a migration pathway. Thus exploration should focus in these areas in the future.  相似文献   

13.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

14.
Geochemical as well as multivariate statistical analyses (PCA) were carried out on 20 crude oil samples from ‘Middle’ Pliocene Production Series (MPPS) of Guneshli-Chirag-Azeri (GCA), Bahar, and Gum Adasi fields in the western South Caspian Basin (SCB). PCA analysis employed to source-specific biomarkers distinguishes the oils into two types one being divided into two sub-types; Type 1 (GCA oils), Type 2A (Bahar field oils) and Type 2B (Gum Adasi field oils). Indirect oil-to-source rock correlations to available source rock data from previous studies suggest that Type 1 oils, located in the Apsheron-Balkhans uplift area, are derived from basinal shales of the Oligocene-Lower Miocene Middle Maikop Formation. Type 2A and 2B oils, located in the Gum-deniz-Bahar-Shakh-deniz trend area, are more likely derived from shelf-edge shales of the Upper Maikop Formation and the Middle-Upper Miocene Diatom Suite, respectively.Biomarker maturity study reveals that Type 1 oils (mean %Rc=0.78) are more mature than Type 2 oils (mean %Rc=0.71). Source rocks, which generated these oils, were at generation depth interval between 5200 m (112 °C) and 7500 m (153 °C) at the time of expulsion. This indicates that the western SCB oils experienced significant long-range vertical migration along the deep-seated faults to accumulate in the MPPS reservoirs. Post-accumulation biodegradation process was only observed in the Guneshli field where bacterial alteration (level 4) began between 4.2 and 2.6 mybp and stopped with the deposition of the overlying impermeable Upper Pliocene Akchagyl Formation. Subsequent light hydrocarbon (C1–C16) charge into the Guneshli fields caused precipitation of asphaltenes, which is evidenced by high resin to asphaltene ratios for the present-day Guneshli oils. Evaporative-fractionation examined using the scheme of [Thompson, 1987] showed high correlations of the ‘aromaticity’ B parameter (=toluene/n-C7) and ‘parafinicity’ F parameter (=n-C7/MCH with the %Rc (maturity) and C27/C29 sterane ratio (organic matter type). This implies that Thompson's approach should be used with caution in the SCB. Among the several mechanisms, rapid and thick deposition of Pliocene sediments and subsequent high heating rate on the Maikop Formation and Diatom Suite is probably the most plausible way of explaining the origin of light hydrocarbons in the Guneshli and Bahar fields.  相似文献   

15.
16.
Pore structure is a critical parameter to estimate the reservoir quality and evaluate the resource potential. However, the pore structure and heterogeneity of the unconventional tight oil reservoirs of Permian Lucaogou Formation of Jimusaer Sag, Junggar Basin are not studied well. In this paper, the multifractal analysis based on the NMR T2 distributions was applied to investigate the pore structure and heterogeneity. The reservoir quality index (RQI) and flow zone indicator (FZI) were calculated using porosity and permeability. Two parameters T35 and T50 were newly defined as relaxation times corresponding to the 35% and 50% saturation on the T2 reverse accumulative curve, respectively. The results showed that the RQI, and FZI values were extremely low, and that the NMR T2 distributions of water saturated samples had much short relaxation components with no or little long relaxation components, indicating a complex and poor microscopic pore structure of tight oil rocks. The typical multifractal characteristics, such as the large values of singularity strength range (Δα), revealed that the pore structures of samples were strongly heterogeneous. It was also found that the clay contents have an obvious influence on the multifractal parameters, and the FZI and new defined T35 are two good indicators for heterogeneity of pore structure. In addition, the feasibility and applicability of calculating the multifractal parameters from NMR and other well logs were discussed.  相似文献   

17.
Direct measurements of eddy diffusivities for momentum K m and heat K h by Doppler radar and by a radio acoustic sounding system in the upper troposphere and lower stratosphere were used to examine the applicability of three Reynolds-averaged Navier-Stokes (RANS) schemes of stratified turbulence in the environment: the E — ? turbulence scheme modified for stratified flows, the algebraic two-parameter E — ? Reynolds-stress scheme, and the three-parameter \(E - \varepsilon - \overline {\theta ^2 } \) turbulence scheme. All turbulence parameters-the turbulent kinetic energy (E), the dissipation rate (?), and vertical profiles of potential temperature (atmospheric stability) and mean wind velocity-were derived from direct measurements for all three turbulence schemes. It is shown that the profile of the vertical diffusivity of momentum (K m ) obtained from the three-parameter RANS turbulence scheme agrees well with its directly measured analog. The profile of K m calculated by the two-parameter turbulence schemes fits measurements rather qualitatively.  相似文献   

18.
Theoretical considerations allow the calculation of the potential significance of mixed-ligand solution complexes. It can be shown that the solution concentration, [MXY], of a chemical species, MXY, cannot represent more than 50% of a metal's total dissolved concentration, MT. For higher ligand number mixed-ligand complexes it is found that ([MX2y]+ [MXY2)/MT 0.75 and ([MX3y] + [MX2Y2 ] + [MXY3] /MT 0.875. In high average ligand number systems, mixed complexes, MXaYb, can dominate a metal's solution chemistry even when only one single-ligand type species, MXa + b, is important. Mixed-ligand complexes may dominate the chemistry of highly associated hydrothermal solutions.  相似文献   

19.
According to small-amplitude theory, the surface gravity-wave spectrum can be estimated from a subsurface pressure-fluctuation spectrum by applying a factor (K) that compensates for the attenuation of surface-wave amplitude as the depth below the water surface and the wave frequency increase.There are a number of factors, however, that cause K to be inaccurate over a large portion of the spectrum's frequency range. Numerous attempts have been made to derive an empirical correction factor (n) that could be applied to K to provide a better estimate of the surface-wave spectrum. This paper evaluates some of these empirical factors, specifically for use in an estuarine environment, and recommends Graces' (1978) equation for n as a function of the non-dimensional frequency parameter kh (where k = L is the local wavenumber, h the local depth and L the wavelength).The paper also evaluates the maximum limit (Kmax) on the magnitude of K suggested by Esteva & Harris (1970), where relative depth dh (d is the pressure transducer height above the bottom) and koh (a parameter directly related for large values of kh to wave frequency by the dispersion relation) are the independent variables. The choice of Kmax may be made unimportant if d is selected beforehand using an equation (Knowles, 1981a) for the minimum dh limit affected by the choice of Kmax.  相似文献   

20.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号