首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
康志军  谭勇  李想  卫彬  徐长节 《岩土力学》2016,37(10):2909-2914
围护结构最大侧移所在深度是衡量基坑变形的重要指标之一,而目前鲜有关于其对周边环境变形影响的研究。基于工程实测数据分析和有限元数值模拟,系统地研究了基坑围护结构最大侧移深度对邻近桩基础建筑物不均匀沉降和坑外深层土体位移场的影响。经研究发现:围护结构最大侧移的下移会导致坑外土体位移场扩大,进而降低相应区域的桩基础承载力,导致邻近桩基础建筑物发生显著的不均匀沉降。不同深度的土体经历复杂的竖向位移,且位移形态与围护结构最大侧移深度密切相关。随围护结构最大侧移深度的逐渐下移,坑外土体位移场向深层土体发展,且主要影响范围相应地扩大。在实际工程中,根据基坑周边环境合理地控制围护结构最大侧移所在深度,可有效降低基坑开挖对周边环境的不利影响。  相似文献   

2.
Numerous studies have been devoted to the performance of excavations and adjacent facilities. In contrast, few studies have focused on retaining wall deflections induced by pre-excavation dewatering. However, considerable inward cantilever deflections were observed for a diaphragm wall in a pre-excavation dewatering test based on a long and narrow metro excavation, and the maximum deflection reached 10 mm (37.6% of the allowable wall deflection for the project). Based on the test results, a three-dimensional soil–fluid coupled finite element model was established and used to study the mechanism of the dewatering-induced diaphragm wall deflections. Numerical results indicated that the diaphragm wall deflection results from three factors: (1) the seepage force around the dewatering well and the soil–wall interaction caused the inward horizontal displacement of the soil inside the excavation; (2) the reduced total earth pressure on the excavated side of the diaphragm wall above approximately 1/2 of the maximum dewatering depth disequilibrated the original earth pressure on both sides of the diaphragm wall; and (3) the different negative friction on the excavated and retained sides of the diaphragm wall led to the rotation of the diaphragm wall into the excavation.  相似文献   

3.
采用有限单元法研究了影响软土地区地下连续墙最大侧向变形的主要参数。针对基坑开挖深度H、基坑开挖宽度B、单位宽度地下连续墙系统刚度S、支撑结构的轴向刚度 及黏土归一化的不排水抗剪强度 为不排水抗剪强度, 为有效垂直应力)5个参数进行分析研究,通过回归分析研究结果,给出地下连续墙最大侧向变形的简易计算方法。利用简易计算方法,计算实际工程中基坑案例的地下连续墙最大侧向变形,并与现场监测结果进行对比,验证了计算方法的准确性,可为以后预估地下连续墙最大侧向变形及检查设计提供参考。  相似文献   

4.
Installation of buttress walls against diaphragm walls has been used as an alternative measure for the protection of adjacent buildings during excavation, but their mechanism in reducing movements has not yet been fully understood. This study performs three-dimensional finite element analyses of two excavation case histories, one in clay with T-shape buttress walls and another in dominant sand with rectangular buttress walls, to establish analysis model. Then, a series of parametric study were performed by varying soil types, types and length of buttress walls based on the above-mentioned excavations. Results show that the mechanism of buttress walls in reducing wall deflections mainly came from the frictional resistance between the side surface of buttress wall and adjacent soil rather than from the combined bending stiffness from diaphragm and buttress walls. The buttress wall with a length <2.0 m had a poor effect in reducing the wall deflection because the soil adjacent to the buttress wall had almost the same amount of movement as the buttress wall, causing the frictional resistance little mobilized. Since the frictional resistance of buttress walls in a deep excavation has fully been mobilized prior to the final excavation depth, the efficiency of buttress walls in reducing the wall deflection in a deep excavation was much less than that in a shallow excavation. Rectangular shape of buttress walls was of a better effect than T-shape in the shallow excavation because frictional resistance between buttress walls and adjacent soil played a major role in reducing the wall deflection rather than bearing resistance of the flange. When the excavation went deeper, the difference in reducing the wall deflection between the R-shape and T-shape became small.  相似文献   

5.
软土地区采用灌注桩围护的深基坑变形性状研究   总被引:14,自引:1,他引:13  
徐中华  王建华  王卫东 《岩土力学》2009,30(5):1362-1366
根据上海软土地区80个钻孔灌注桩围护的深基坑工程案例有关数据,系统地分析了基坑开挖引致的灌注桩变形性状。所有基坑的灌注桩最大侧向位移介于0.1 %~1.0 %倍的开挖深度之间,平均值为开挖深度的0.44 %。钢筋混凝土支撑和钢支撑在控制墙体的变形上没有明显差别,最大侧向位移一般位于开挖面上下5 m的范围内。无量纲化最大侧向位移随着支撑系统刚度的增大而减小,随着墙底以上软土层厚度的增加而增大,但与灌注桩插入比及坑底抗隆起稳定系数之间并无明显的关系。墙顶侧向位移随着首道支撑位置深度的增加而呈现出指数增长的趋势,而灌注桩最大侧向位移与首道支撑的深度位置无明显关系。  相似文献   

6.
Deep excavations particularly in deep deposits of soft clay can cause excessive ground movements and result in damage to adjacent buildings. Extensive plane strain finite element analyses considering the small strain effect have been carried out to examine the wall deflections for excavations in soft clay deposits supported by retaining walls and bracing. The excavation geometry, soil strength and stiffness properties, and the wall stiffness were varied to study the wall deflection behavior. Based on these results, a simple Polynomial Regression (PR) model was developed for estimating the maximum wall deflection. Wall deflections computed by this method compare favorably with a number of field and published records.  相似文献   

7.
We examine the small-strain behavior of Taipei clays in braced excavation through a detailed analysis of a well-documented case history. Specifically, we analyze the case of the Taipei National Enterprise Center (TNEC) excavation using two soil models, the Modified Cam-clay model (MCC) and the three-Surface Kinematic Hardening model (3-SKH). Our finite element analysis includes a consideration of the over-consolidated stress state and the high initial shear modulus of the clay. Results show that the observed wall deflection and surface settlement can be satisfactorily predicted simultaneously using the 3-SKH model. This is an improvement on the MCC model, for which only wall deflection, not ground settlement, can be accurately predicted. This study re-confirms the importance of considering small-strain non-linear behavior for the over-consolidated stress state in finite element analyses of braced excavation responses.  相似文献   

8.
This paper presents an efficient Bayesian back-analysis procedure for braced excavations using wall deflection data at multiple points. Response surfaces obtained from finite element analyses are adopted to efficiently evaluate the wall responses. Deflection data for 49 wall sections from 11 case histories are collected to characterize the model error of the finite element method for evaluating the deflections at various points. A braced excavation project in Hang Zhou, China is chosen to illustrate the effectiveness of the proposed procedure. The results indicate that the soil parameters could be updated more significantly for the updating that uses the deflection data at multiple points than that only uses the maximum deflection data. The predicted deflections from the updated parameters agree fairly well with the field observations. The main significance of the proposed procedure is that it improves the updating efficiency of the soil parameters without adding monitoring effort compared with the traditional method that uses the maximum deflection data.  相似文献   

9.
The influence of vertical spatial variability of sands on the excavation-induced lateral wall deflection and bending moment of excavations supported by cantilever retaining walls is investigated in this paper. Herein, the random finite element method (RFEM) is adopted to explicitly study the effect of one-dimensional spatial variability of internal friction angle of sands on the predicted wall and ground responses. The RFEM analysis consists of three components: (1) finite element method for analyzing lateral wall deflection and bending moment, (2) random field theory implemented with Monte Carlo simulation (MCS), and (3) statistical interpretation of MCS results through confidence intervals. This study reveals the importance of random field modeling in coping with the spatial variability of sands in the problem of supported excavations: (1) neglecting spatial variability of soil property will cause an overestimation of the variation in the predicted wall deflection and bending moment; (2) the estimated probability of failure based on a well-established serviceability limit state may be overestimated or underestimated depending on the chosen limiting lateral wall deflection. This study further investigates the effect of the number of MCS on the confidence intervals of the predicted statistics of the maximum lateral wall deflection and the maximum bending moment. The results also demonstrate that the confidence interval analysis of the predicted statistics of the maximum lateral wall deflection and the maximum bending moment provides a rational tool for interpreting the statistical data from RFEM.  相似文献   

10.
介绍了铁皮坑开挖中测斜仪监测和三维有限元反分析的结果。所研究的铁皮坑为深度27 m、总直径26 m的圆形深基坑,最终开挖面以上土层以砂土为主。每个开挖阶段采用腰梁加固的咬合桩作为挡土墙对基坑进行支护。采用硬化土模型作为土体本构模型,反分析结果表明,桩墙位移的趋势与测斜仪测量的结果接近,最大位移为5.1mm。案例中胶结土的有效黏聚力c′取决于胶结砂层的厚度,约为50~200kPa。NSPT为标准贯入试验中分离式取样器打入土体30cm的锤击数。模拟结果表明,砂土模量约为1 400NSPT~2 000NSPT(单位:k Pa),而对于胶结砂,其模量为7 000NSPT。还研究了腰梁和外部荷载对咬合桩变形和受力的影响。结果表明,外部荷载对桩墙位移具有主导作用;同时,腰梁对减少桩墙位移没有明显作用。  相似文献   

11.
This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one thousand finite element cases were numerically analyzed,followed by extensive parametric studies.Surrogate models were developed via ensemble learning methods(ELMs),including the e Xtreme Gradient Boosting(XGBoost),and Random Forest Regression(RFR)to predict the maximum lateral wall deformation(δhmax).Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression(DTR),Multilayer Perceptron Regression(MLPR),and Multivariate Adaptive Regression Splines(MARS).This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast,alternative way.  相似文献   

12.
In this study, a series of inverse-analysis numerical experiments was performed to investigate the effect of soil models on the deformations caused by excavation by using the finite element method. The nonlinear optimization technique that was incorporated into the finite element code was used for the inverse-analysis numerical experiments. Three soil models (the hyperbolic model, pseudo-plasticity model, and modified pseudo-plasticity model) were employed in the intended numerical experiments on a well-documented excavation case history. The results indicate that wall deflection due to excavation can be accurately back-figured by each of the three soil models, while the ground surface settlement can be reasonably optimized only by the pseudo-plasticity model and the modified pseudo-plasticity model. Importantly, the modified pseudo-plasticity model can yield more reasonable simulations when the wall deflection and the ground surface settlement are simultaneously back-figured. The results show that selection of an adequate soil model that is capable of adequately describing the stress–strain-strength characteristics of the soils is essentially crucial when predicting the excavation-induced ground response.  相似文献   

13.
A series of three-dimensional finite element analyses of deep excavations with the integrated system between buttress walls and diaphragm walls was conducted to investigate the effect of the buttress wall intervals, treatments, locations, height, and thickness on limiting deformations induced by deep excavation. The integrated retaining system was formed by maintaining buttress walls when soil was excavated. The wall deflection control mechanism of the integrated retaining system mainly came from the combined stiffness between the buttress wall and the diaphragm wall. In addition, the ground settlement control mechanism came from the combined stiffness between the buttress wall and the diaphragm wall, and the frictional resistance between the buttress wall and the surrounding soil. For achieving 50% reduction in the wall deflection and the ground surface settlement, the length and intervals of buttress walls that were applied to the integrated retaining system were at least 4 and 8 m, respectively. When the deflection at the diaphragm wall head was well restrained, for example, by the floor slab, the position of the buttress wall head could be located at a depth the diaphragm wall starts to bulge out. In such a case, the performance between the full height and limited height of buttress walls was quite close. Furthermore, a new well-documented excavation project was analyzed to verify the performance of the integrated retaining system. Results showed that the integrated retaining system worked excellently if the joints between buttress walls and diaphragm walls were constructed properly.  相似文献   

14.
针对济南地区典型地层上的基坑工程,土体采用PLAXIS 3D中的硬化土小应变(HSS)模型,建立了有限元模型,并根据实际监测数据结合位移反分析技术,得到了该典型地层下土体HSS模型参数的一般选取方法。之后简化模型,分别采用土体的HSS模型与Mohr-Coulomb(M-C)模型进行有限元分析,对比基坑开挖至不同深度时,应用两种模型模拟所得挡土墙变形与墙后地表沉降的差异。结果表明:基坑数值分析中,土体采用M-C模型与HSS模型所得结果的差异随基坑挖深增加而增加,且采用HSS模型所得结果更符合深基坑的实际变形。综合考虑采用HSS模型与M-C模型建模时的参数选取难易程度、经济性以及两种模型数值分析的工程适用性,建议基坑开挖超过15 m时,土体采用HSS模型进行数值分析,反之可采用M-C模型。研究结果对指导深基坑支护设计及岩土工程参数的勘察、选取,具有重要参考价值。  相似文献   

15.
应用PLAXIS 2D/3D有限元分析软件,对某黄土洞室进行了二维、三维分步掘进、三维一次掘进等工况的弹塑性有限元分析,研究分析了不同工况下洞室围岩位移的变化规律,并对掌子面的空间效应进行了分析。分析结果表明,二维与三维分步计算的最终位移基本一致,可以用二维的计算结果来估算洞室开挖的最终位移。三维分步掘进的分析表明,不同埋深的洞室其位移比的变化规律基本一致,当L/B<1时(L为掘进深度,B为洞室跨度),位移比呈线性增加;当L/B>1时,位移比呈非线性增加;当L/B>3时,其最大位移接近最终位移。掌子面的空间效应分析表明,在掌子面处的位移约为最终位移的1/3,距掌子面0.5倍跨度处的位移约为最终位移的2/3,距掌子面2.5倍跨度处的位移基本达到了最终位移。  相似文献   

16.
One important consideration in the design of a braced excavation system is to ensure that the structural bracing system is designed both safely and economically. The forces acting on the struts are often determined using empirical methods such as the Apparent Pressure Diagram (APD) method developed by Peck (1969). Most of these empirical methods that were developed from either numerical analysis or field studies have been for excavations with flexible wall types such as sheetpile walls. There have been only limited studies on the excavation performance for stiffer wall systems such as diaphragm walls and bored piles. In this paper, both 2D and 3D finite element analyses were carried out to study the forces acting on the struts for braced excavations in clays, with focus on the performance for the stiffer wall systems. Subsequently, based on this numerical study as well as field measurements from a number of reported case histories, empirical charts have been proposed for determining strut loads for excavations in stiff wall systems.  相似文献   

17.
围岩的应力应变是分析隧道开挖中围岩稳定性的重要依据。目前比较成熟的隧道施工力学方法主要是对隧道开挖过程进行数值模拟。通过大型有限元软件ANSYS,计算了不同埋深、不同坡度角、不同覆盖层厚度条件下,马鞍形浅埋偏压软岩隧道围岩的应力应变,分析其规律并进行方案比选,确定了此类隧道比较合理的设计方案。分析结果表明:以2倍洞径的埋深作为偏压隧道深埋或浅埋的判断依据是合理的;在保证围岩稳定不发生片帮冒顶的前提下,减小埋深和覆盖层厚度是比较合理的;隧道内壁各点的应力应变规律可以为隧道开挖中支护结构参数的选取提供参考。  相似文献   

18.
刘念武  龚晓南  俞峰  房凯 《岩土力学》2014,35(8):2293-2298
具有内支撑结构的围护系统在基坑边角处具有更大的系统刚度,使得基坑边角附近处土体的位移小于距离边角较远处土体的位移,即基坑的变形问题表现出空间特性。为了更好地研究L/He(L为沿基坑纵向方向上的距离;He为开挖深度)、开挖深度等因素对空间效应的影响,量测了两个狭长形地铁车站深基坑不同位置处土体的侧向位移、土体沉降等。通过对现场监测资料的分析发现,边角效应能够减小侧向位移的平面应变比,灌注桩围护结构、SMW工法桩围护结构和地下连续墙在边角附近处的平面应变比(PSR)分别为0.50、0.61和0.72。当平面应变比(PSR)接近于1.00时,对应的L/He值分别为2.50、6.00和4.00。随着L/He值的增大,土体的纵向最大沉降呈先增大后保持稳定的趋势。随开挖深度的增加,边角效应的影响范围呈增大的趋势。在基坑纵向沉降的空间效应中,灌注桩围护结构、SMW工法桩围护结构的土体最大沉降值达到稳定时对应的L/He值分别为2.50和5.20。土体沉降和侧向位移的空间效应有一定的相关性。  相似文献   

19.
Multi-aquifer pumping tests, using a multi-screen pumping well and multi-level piezometers, were carried out for groundwater flow control in a large-scale excavation site in Tokyo, Japan. The site was underlain by multi-layered confined aquifers. In the tests, pumping was carried out using a multi-aquifer pumping well in which a screen depth was chosen arbitrarily. Changes in groundwater pressure heads in each aquifer were measured at each screen position of the multi-aquifer pumping well. Hydraulic conductivity (K) and specific storage (S s) of not only aquifers, but also for low permeability layers between the aquifers, were estimated using the Cooper-Jacob method, and calibrated by a finite element method (FEM) groundwater model. Four different cutoff wall lengths were assumed for final excavation depth, and correlations among wall length, pumping discharge and drawdown at the back of the cutoff wall were obtained from simulations using the K and S s parameters in the FEM model. Then, the most suitable wall length was selected based on the simulated correlations considering environmental condition, construction period and cost of the cutoff wall.  相似文献   

20.
基坑开挖对邻近地下管线影响的变形控制标准   总被引:8,自引:0,他引:8  
张陈蓉  俞剑  黄茂松 《岩土力学》2012,33(7):2027-2034
基坑开挖会引起邻近区域地埋管线的附加受力和变形,甚至会引起管线的开裂破坏。基于位移控制理论,对板式支护体系由于基坑开挖而引起的周边自由土体位移场的分布规律进行了探讨,通过位移控制两阶段简化分析方法与位移控制有限元方法的对比,验证了简化方法的合理性。其次对最近修订的《上海市基坑工程技术规范》的基坑环境保护标准进行了探讨,利用简化方法通过算例计算以分析其仍需改进的方面,在此基础上,基于地下管线的自身承受能力,提出了基坑开挖对管线保护的变形控制标准,给出了为保证管线正常使用,基坑开挖深度与基坑允许侧向变形的关系,从而可以为基坑开挖环境影响评价标准的建设提供相应的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号