首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Organotin compounds are used in a variety of industrial processes therefore their subsequent discharge into the environment is widespread. Bacteria play an important role in biogeochemical transformations acting as natural decontamination agents. Therefore, screening for tributyltin (TBT)-resistant and -degrading bacteria is relevant for the selection of isolates with decontamination ability of these polluted areas. With this purpose, 50 strains were isolated from sediment and water from Ria de Aveiro and their tolerance to TBT, up to 3mM, was evaluated. Generally, occurrence of highly TBT-resistant bacteria was observed, and Gram negative bacteria exhibited more tolerance to TBT than Gram positive bacteria. A memory response was observed when bacteria were progressively exposed to increasingly higher TBT concentrations. One isolate, Aeromonas veronii Av27, highly resistant to TBT (3mM) uses this compound as carbon source and degrades it to less toxic compounds.  相似文献   

2.
The mechanisms by which TBT produces modulations of the endocrine systems are not fully described. In this study, juvenile salmon were force-fed diet containing TBT (0: solvent control, 0.1, 1 and 10 mg/kg fish) for 72 h. Subsequently, fish exposed to solvent control and 10 mg/kg TBT were exposed to waterborne concentration of the adenyl cyclase stimulator forskolin (200 μg/L) for 2 and 4 h. Tissue and blood were sampled from individual fish (n = 6). Gene expression patterns of CYP11β, steroidogenic factor-1 (SF-1), and glucocorticoid receptor (GlucR) were determined by qPCR. TBT generally decreased mRNA levels of CYP11β, GlucR and SF-1, compared to the solvent control and these effects were differentially modulated by the presence of forskolin. This study suggests that TBT may exert broader endocrine disrupting effects through possible modulation of cAMP/PKA second messenger systems.  相似文献   

3.
《Ocean & Coastal Management》1999,42(6-7):591-601
The intertidal zone around the Suva Peninsula, Fiji, supports separate finfish and invertebrate subsistence fisheries. This important source of fresh marine food for many low-income families around metropolitan Suva is under threat from foreshore reclamation projects and from anthropogenic biochemical pollution. Damage to or loss of this invertebrate intertidal fishery would remove a significant area where urban dwellers can pursue this traditional (non-cash) means of seafood acquisition. In 1996, Suva Peninsula was considered for the development of a marina, hotel, aquarium, roads, walls, and other structures. There is also increasing evidence of a serious anthropogenic TBT (tributyltin) pollution threat to the local invertebrate fishery. Although this substance is well known to have ecologically deleterious effects, its use is unregulated in Fiji. The inputs are likely to be large commercial vessels, and in particular the shipyards around the west side of Suva Harbour, where TBT antifouling coatings are both applied and removed, the old paint debris being allowed to wash into the harbour. Inputs from small boats are probably less important as there are relatively few (<150 boats) but uses of TBT, as a wood treatment chemical, for example, may lead to other inputs (but these have not been investigated). Samples of Anadara antiquata and Gafarium tumidum contained high levels of TBT ranging from <50 ng TBT gm−1 to 240 ng TBT gm−1. Samples of the edible bivalve G. tumidum taken from the Lami Dump intertidal zone had accumulated 10,500 ng TBT gm−1. The values of TBT in Suva Harbour and Laucala Bay sediments have reached levels that are among the highest in the world and indicate that these sediments are functioning as geochemical sinks for this toxic organotin substance.  相似文献   

4.
《Journal of Sea Research》2000,43(3-4):287-296
Acrylate accumulates to concentrations of 1.3–6.5 mM in the mucus of Phaeocystis colonies and may have an effect on the surrounding bacterial community, either as an inhibitor or as a carbon source. Both in the field and in the laboratory, effects of acrylate on bacterial growth and on its consumption were investigated. During a Phaeocystis bloom, acrylate-consuming bacteria were found to be present (1% of total number counted by microscopy) and a 5-fold increase of the number of these bacteria was observed after the Phaeocystis bloom (4.9% of the total number counted by microscopy). Acrylate consumption rates were higher in filtered (≤20 μm) seawater samples than in unfiltered samples, indicating that particles larger than 20 μm, mostly Phaeocystis colonies, caused a reduction in the rate of acrylate consumption. This was not found when axenic Phaeocystis was added to an acrylate-consuming bacterium (strain AC-2) that had been isolated from the highest MPN dilution from field samples. Furthermore, we could not find a decrease in growth rates of the total bacterial community or of isolated strains in the presence of high acrylate concentrations (≤10 mM). In co-cultures of Phaeocystis and strain AC-2 we observed that the production of acrylate was not affected by the bacterium and that the consumption of acrylate by strain AC-2 was not affected by the presence of Phaeocystis. Acrylate concentrations in the mucous layer of the Phaeocystis colonies in those co-cultures were high (6.7–7.7 mM) and comparable with acrylate concentrations in the mucous layer of axenic Phaeocystis colonies. Acrylate seems to be sorbed to the mucus matrix of the colony and diffusion of acrylate out of this mucus matrix appears to be slow. Upon disruption of the colony skin acrylate was immediately solubilised from the mucus matrix.  相似文献   

5.
Between October 2001 and March 2002 six transects were completed at monthly intervals in the Sub-Antarctic Zone (SAZ) and Inter-Sub-Antarctic Front Zone (ISAFZ)/Polar Frontal Zone (PFZ) in the Southern Ocean south of Australia. Zooplankton were collected with a Continuous Plankton Recorder and NORPAC net and multivariate analysis was used to analyse the seasonal succession of communities. Despite strong, seasonally consistent, biogeographic differences between the SAZ and ISAFZ/PFZ, community structure in all zones was dominated by a suite of common taxa. These included the ubiquitous Oithona similis, foraminiferans and appendicularians (Core taxa), occurring in >97% of samples and contributing an average of 75% to total sample abundance, and Calanus simillimus, Rhincalanus gigas, Ctenocalanus citer, Clausocalanus brevipes, Clausocalanus laticeps, Oithona frigida, Limacina spp. and chaetognaths (Summer taxa), present in >57% of samples and occurring at seasonally high densities. Because of the dominance of the Core and Summer taxa, the seasonal succession was most clearly evident as a change in zooplankton densities. In October densities averaged <15 ind m−3, rising to 52 ind m−3 (max=92 ind m−3) in November, and subsequently increasing slowly through to January (ave=115 ind m−3; max=255 ind m−3). Densities peaked abruptly in February (ave=634 ind m−3; max=1593 ind m−3), and remained relatively high in March (ave=193 ind m−3; max=789 ind m−3). A latitudinal lag in seasonal development was observed with peak densities occurring first in the SAZ (February) and then in the ISAFZ/PFZ (March). The seasonal community succession was strongly influenced by species population cycles. The role of zooplankton in biogeochemical cycling in the SAZ and ISAFZ/PFZ was discussed in the light of past sediment trap data collected from the study area.  相似文献   

6.
Nutrient inputs associated with coastal population growth threaten the integrity of coastal ecosystems around the globe. In order to assess the threat posed by rapid growth in tourism, we analyzed the nutrient concentrations as well as the δ15N of NO3 and macrophytes to detect wastewater nitrogen (N) at 6 locations along a groundwater-dominated coastal seagrass bed on the Caribbean coast of Mexico. We predicted that locations with greater coastal development would have higher concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (P), as well as δ15N of NO3, reflecting wastewater sources of N. However, concentrations of NO3 were not significantly different between developed (3.3 ± 5.3 μM NO3) and undeveloped (1.1 ± 0.7 μM) marine embayments. The most important control on DIN concentration appeared to be mixing of fresh and salt water, with DIN concentrations negatively correlated with salinity. The δ15N of NO3 was elevated at an inland pond (7.0 ± 0.42‰) and a hydrologically-connected tide pool (7.6 ± 0.57‰) approximately 1 km downstream of the pond. The elevated δ15N of NO3 at the pond was paralleled by high δ15N values of Cladophora sp., a ubiquitous green alga (10 ± 1‰). We hypothesize that inputs of nitrogen rich (NO3 > 30 μM) groundwater, characterized by 15N enriched signatures, flow through localized submarine groundwater discharges (SGD) and contribute to the elevated δ15N signatures observed in many benthic macrophytes. However, changes in nitrogen concentrations and isotope values over the salinity gradient suggest that other processes (e.g. denitrification) could also be contributing to the 15N enrichments observed in primary producers. More measurements are needed to determine the relative importance of nitrogen transformation processes as a source of 15N to groundwaters; however, it is clear that continued inputs of anthropogenic N via SGD have the potential to severely impact ecologically and economically valuable seagrass meadows and coral reefs along the Caribbean coast of Mexico.  相似文献   

7.
The Lophelia pertusa community at Viosca Knoll (VK826) is the most extensive found to date in the Gulf of Mexico. As part of a multi-disciplinary study, the physical setting of this area was described using benthic landers, CTD transects and remotely operated vehicle observations. The site was broadly characterised into three main habitats: (1) dense coral cover that resembles biogenic reef complexes, (2) areas of sediment, and (3) authigenic carbonate blocks with sparse coral and chemosynthetic communities. The coral communities were dominated by L. pertusa but also contained numerous solitary coral species. Over areas that contained L. pertusa, the environmental conditions recorded were similar to those associated with communities in the north-eastern Atlantic, with temperature (8.5–10.6 °C) and salinity (~35) falling within the known species niche for L. pertusa. However, dissolved oxygen concentrations (2.7–2.8 ml l?1) and density (σΘ, 27.1–27.2 kg m?3) were lower and mass fluxes from sediment trap data appeared much higher (4002–4192 mg m?2 d?1). Yet, this species still appears to thrive in this region, suggesting that L. pertusa may not be as limited by lower dissolved oxygen concentrations as previously thought. The VK826 site experienced sustained eastward water flow of 10–30 cm s?1 over the 5-day measurement period but was also subjected to significant short-term variability in current velocity and direction. In addition, two processes were observed that caused variability in salinity and temperature; the first was consistent with internal waves that caused temperature variations of 0.8 °C over 5–11 h periods. The second was high-frequency variability (20–30 min periods) in temperature recorded only at the ALBEX site. A further pattern observed over the coral habitat was the presence of a 24 h diel vertical migration of zooplankton that may form part of a food chain that eventually reaches the corals. The majority of detailed studies concerning local environmental conditions in L. pertusa habitats have been conducted within the north-eastern Atlantic, limiting most knowledge of the niche of this species to a single part of an ocean basin. Data presented here show that the corals at VK826 are subjected to similar conditions in temperature, salinity, and flow velocity as their counterparts in the north-east Atlantic, although values for dissolved oxygen and density (sigma-theta: σΘ) are different. Our data also highlight novel observations of short-term environmental variability in cold-water coral habitat.  相似文献   

8.
To evaluate the interaction between 17β-trenbolone (TB) and 17α-ethinylestradiol (EE2) in relevant environmental concentrations, male eelpout Zoarces viviparus were exposed in a flow-through seawater-system for 21 days to 5 ng l−1 EE2, 5 ng l−1 or 20 ng l−1 TB or to combinations of both compounds. The effects on hepatosomatic index (HSI), gonadosomatic index (GSI) and gonadal histology were studied. No significant effects on HSI were observed in any treatment; in contrast, decreased GSI was observed in males exposed to EE2 alone or in combination with TB compared to controls (p < 0.05). The histology revealed that the males were in the beginning of spermatogenesis. Males from the control group and some from the TB groups showed tubules with cysts containing spermatogonia, spermatocytes and spermatids; however, some testes of males exposed to TB showed slight to moderate interstitial fibrosis. Nevertheless, the most severely affected were males exposed to EE2 showing marked interstitial fibrosis, necrosis of germinal cells and reduced number of spermatocytes and spermatogonia in the cyst. Likewise, increased tubule number and proportionally decreased tubule diameter were observed in the testis of all EE2 exposed groups (p < 0.05). Finally, a similar tubule number was observed in males exposed to EE2 + 20 ng l−1 TB compared to control (p > 0.05). This study shows that EE2 dramatically disrupts the spermatogenesis and low doses of 17β-trenbolone are unable to effectively counteract the morphological effects of EE2.  相似文献   

9.
Deep-water benthic algal composition and cover were studied with a submersible on the deep fore reef of Lee Stocking Island, Bahamas, from 45 to 150 m. Algal cover decreased from 57% to 16% over this depth range. Although there was substantial overlap in depth distributions, different species or groups of species dominated benthic cover at different depths. Lobophora and Halimeda copiosa co-dominated the fore reef from 45 to 60 m. A Corallinales/Peyssonnelia group was abundant from 60 to 120 m. The Corallinales/Peyssonnelia group shared dominance with Ostreobium between 90 and 120 m. Ostreobium was the only alga observed below 150 m and remained abundant below 200 m. Movement of sand down the fore reef is recognized as having substantial influence on algal cover.  相似文献   

10.
Effective fisheries management needs to consider spatial behavior in addition to more traditional aspects of population dynamics. Acoustic telemetry has been extensively used to provide information on fish movements over different temporal and spatial scales. Here, we used a fixed-receiver array to examine the movement patterns of Labrus bergylta Ascanius 1767, a species highly targeted by the artisanal fleet of Galicia, NW Spain. Data from 25 individuals was assessed for a period of 71 days between September and November 2011 in the Galician Atlantic Islands Maritime-Terrestrial National Park. Fish were present within the monitored area more than 92% of the monitored time. The estimated size of individual home ranges, i.e. the area where fish spent most of their time, was small. The total minimum convex polygons area based on all the estimated positions was 0.133 ± 0.072 km2, whereas the home range size estimated using a 95% kernel distribution of the estimated positions was 0.091 ± 0.031 km2. The core area (50% kernel) was 0.019 ± 0.006 km2. L. bergylta exhibited different patterns of movement in the day versus the night, with 92% of the fish detected more frequently and traveling longer distances during the daytime. In addition, 76% of the fish displayed a larger home range during the day versus during the night. The linearity index was less than 0.005 for all fish suggesting random movements but within a relatively small area, and the volume of intersection index between consecutive daily home ranges was 0.75 ± 0.13, suggesting high site fidelity. The small home range and the sedentary behavior of L. bergylta highlight the potential use of small MPAs as a management tool to ensure a sustainable fishery for this important species.  相似文献   

11.
We tested the idea that bacterial cells with high nucleic acid content (HNA cells) are the active component of marine bacterioplankton assemblages, while bacteria with low nucleic acid content (LNA cells) are inactive, with a large data set (>1700 discrete samples) based on flow cytometric analysis of bacterioplankton in the Northeast Pacific Ocean off the coast of Oregon and northern California, USA. Samples were collected in the upper 150 m of the water column from the coast to 250 km offshore during 14 cruises from March 2001 to September 2003. During this period, a wide range of trophic states was encountered, from dense diatom blooms (chlorophyll-a concentrations up to 43 μg l−1) at shelf stations during upwelling season (March–September) to lower chlorophyll-a concentrations (0.1–5 μg l−1) during winter (November–February) and at basin stations (>1700 m depth). We found only weakly positive relations of log total bacterial abundance to log chlorophyll-a concentration (as a proxy for availability of organic substrate), and of HNA bacteria as a fraction of total bacteria to log chlorophyll-a. Abundance of HNA and LNA bacteria co-varied positively in all regions, although HNA bacteria were more responsive to high phytoplankton biomass in shelf waters than in slope and basin waters. Since LNA cell abundance in general showed responses similar to those of HNA cell abundance to changes in phytoplankton biomass, our data do not support the hypothesis that HNA cells are the sole active component of marine bacterioplankton.  相似文献   

12.
Cockle (Cerastoderma edule) population dynamics were studied at the southern limit of the distribution of this marine bivalve in Merja Zerga, Morocco. Parameters such as growth, mortality, and production were compared with those of a population at Arcachon Bay (France) a site in the center of the cockle's range. At each sampling period between two and three cohorts were simultaneously observed at each site and the average total abundance was usually higher at Merja Zerga. Recruitment occurred at both sites in spring when temperature rose above 19 °C, independently of the month. In Merja Zerga, winter recruitment was also observed at one occasion, following high sediment disturbance. The first year (2005–06) at Merja Zerga, the mortality rate was close to nil for juveniles and was Z = 1.5 yr? 1 for adults, providing a high production (64 g dry weight m? 2 yr? 1). At Arcachon during the same period, the juvenile mortality rate was Z = 10.9 yr? 1, the adult mortality rate was 3.4 yr? 1 and production was 26 gDW m?2 yr? 1. The second year (2006–07), mortality after recruitment was much higher (Z = 8.6 yr? 1, for juveniles) and similar to what was observed at Arcachon (Z = 8.4 yr? 1). Mortality rate of adults was higher at Merja Zerga (Z = 3.0 yr? 1) than at Arcachon (Z = 1.5 yr? 1). Production was lower at Arcachon than at Merja Zerga although growth performances were higher at Arcachon. The higher growth performance at Arcachon (Φ′ = 3.3) was mainly due to high asymptotic length (L = 38 mm) and was related to low intraspecific competition compared to Merja Zerga where cockle abundance was higher (Φ′ = 3.1, L = 31 mm). P/B was low in both sites and slightly higher at Arcachon (1.1–1.5 against 1.0–1.1 yr? 1). At Arcachon, recruitment was correlated with temperature, a peak occurring when temperature rose above 19 °C (June–July). At Merja Zerga, recruitment was already 2–3 months earlier but was not significantly correlated to temperature.This study showed that population dynamics of cockles at the southern limit of this distribution fell in the range of what was observed elsewhere in the North-Eastern Atlantic coast. Most factors that were involved in population regulation (intraspecific competition, predation and sediment dynamics) were not strictly dependent on latitude. The direct role of temperature (latitude dependent factor) was not obvious. Variation in temperature could explain the recruitment delay between Arcachon and Merja Zerga and the low maximum shell length at Merja Zerga.  相似文献   

13.
《Marine Chemistry》2007,103(1-2):30-45
The chemistry of dissolved Fe(III) was studied in the Scheldt estuary (The Netherlands). Two discrete size fractions of the dissolved bulk (< 0.2 μm and < 1 kDa) were considered at three salinities (S = 26, 10 and 0.3).Within the upper estuary, where fresh river water meets seawater, the dissolved Fe concentration decreases steeply with increasing salinity, for the fraction < 0.2 μm from 536 nM at S = 0.3 to 104 nM at S = 10 and for the fraction < 1 kDa from 102 nM to 36 nM Fe. Further downstream, in the middle and lower estuary, this decrease in the Fe concentration continues, but is far less pronounced. For all samples, the traditionally recognised dissolved strong organic Fe-binding ligand concentrations are lower than the dissolved Fe concentrations.Characteristics of dissolved Fe-binding ligands were determined by observing kinetic interactions with adsorptive cathodic stripping voltammetry. From these kinetic experiments we concluded that apart from the well-known strong Fe-binding organic ligands (L, logK = 19–22) also weak Fe-binding ligands (P) existed with an α value (binding potential = K · [P]) varying between 1011.1 and 1011.9. The presence of this relatively weak ligand explained the high concentrations of labile Fe present in both size fractions in the estuary. This weak ligand can retard or prevent a direct precipitation after an extra input of Fe.The dissociation rate constants of the weak ligand varied between 0.5 × 10 4 and 4.3 × 10 4 s 1. The rate constants of the strong organic ligand varied between kd = 1.5 × 10 3–17 × 10 2 s 1 and kf = 2.2 × 108–2.7 × 109 M 1 s 1. The dissociation rate constant of freshly amorphous Fe-hydroxide was found to be between 4.3 × 10 4 and 3.7 × 10 3 s 1, more labile or equal to the values found by Rose and Waite [Rose, A.L., Waite, T.D., 2003a. Kinetics of hydrolysis and precipitation of ferric iron in seawater. Environ. Sci. Technol., 37, 3897–3903.] for freshly precipitated Fe in seawater.Kinetic rate constants of Fe with the ligand TAC (2-(2-Thiazolylazo)-p-cresol) were also determined. The formation rate constant of Fe(TAC)2 varied between 0.1 × 108 and 3.6 × 108 M 1 s 1, the dissociation rate constant between 0.2 × 10 5 and 17 × 10 5 s 1 for both S = 26 and S = 10. The conditional stability constant of Fe(TAC)2 (βFe(TAC)2′) varied between 22 and 23.4 for S = 10 and S = 26 more or less equal to that known from the literature (logβFe(TAC)2 = 22.4; [Croot, P.L., Johansson, M., 2000. Determination of iron speciation by cathodic stripping voltammetry in seawater using the competing ligand 2-(2-Thiazolylazo)-p-cresol (TAC). Electroanalysis, 12, 565–576.]). However, at S = 0.3 the logβFe(TAC)2′ was 25.3, three orders of magnitude higher. Apparently the application of TAC to samples of low salinity can only be done when the correct βFe(TAC)2′ is known.  相似文献   

14.
《Marine and Petroleum Geology》2012,29(10):1838-1843
The hydrate-bearing sediments above the bottom simulating reflector (BSR) are associated with low attenuation or high quality factor (Q), whereas underlying gas-bearing sediments exhibit high attenuation. Hence, estimation of Q can be important for qualifying whether a BSR is related to gas hydrates and free-gas. This property is also useful for identifying gas hydrates where detection of BSR is dubious. Here, we calculate the interval Q for three submarine sedimentary layers bounded by seafloor, BSR, one reflector above and another reflector below the BSR at three locations with moderate, strong and no BSR along a seismic line in the Makran accretionary prism, Arabian Sea for studying attenuation (Q−1) characteristics of sediments. Interval Q for hydrate-bearing sediments (layer B) above the BSR are estimated as 191 ± 11, 223 ± 12, and 117 ± 5, whereas interval Q for the underlying gas-bearing sediments (layer C) are calculated as 112 ± 7, 107 ± 8 and 124 ± 11 at moderate, strong and no BSR locations, respectively. The large variation in Q is observed at strong BSR. Thus Q can be used for ascertaining whether the observed BSR is due to gas hydrates, and for identifying gas hydrates at places where detection of BSR is rather doubtful. Interval Q of 98 ± 4, 108 ± 5, and 102 ± 5, respectively, at moderate, strong and no BSR locations for the layer immediately beneath the seafloor (layer A) show almost uniform attenuation.  相似文献   

15.
The latitudinal distributions of phytoplankton biomass, composition and production in the Atlantic Ocean were determined along a 10,000-km transect from 50°N to 50°S in October 1995, May 1996 and October 1996. Highest levels of euphotic layer-integrated chlorophyll a (Chl a) concentration (75–125 mg Chl m−2) were found in North Atlantic temperate waters and in the upwelling region off NW Africa, whereas typical Chl a concentrations in oligotrophic waters ranged from 20 to 40 mg Chl m−2. The estimated concentration of surface phytoplankton carbon (C) biomass was 5–15 mg C m−2 in the oligotrophic regions and increased over 40 mg C m−2 in richer areas. The deep chlorophyll maximum did not seem to constitute a biomass or productivity maximum, but resulted mainly from an increase in the Chl a to C ratio and represented a relatively small contribution to total integrated productivity. Primary production rates varied from 50 mg C m−2 d−1 at the central gyres to 500–1000 mg C m−2 d−1 in upwelling and higher latitude regions, where faster growth rates (μ) of phytoplankton (>0.5 d−1) were also measured. In oligotrophic waters, microalgal growth was consistently slow [surface μ averaged 0.21±0.02 d−1 (mean±SE)], representing <20% of maximum expected growth. These results argue against the view that the subtropical gyres are characterized by high phytoplankton turnover rates. The latitudinal variations in μ were inversely correlated to the changes in the depth of the nitracline and positively correlated to those of the integrated nitrate concentration, supporting the case for the role of nutrients in controlling the large-scale distribution of phytoplankton growth rates. We observed a large degree of temporal variability in the phytoplankton dynamics in the oligotrophic regions: productivity and growth rates varied in excess of 8-fold, whereas microalgal biomass remained relatively constant. The observed spatial and temporal variability in the biomass specific rate of photosynthesis is at least three times larger than currently assumed in most satellite-based models of global productivity.  相似文献   

16.
Rocky shore ecosystems are considered sentinels of climate warming because they are in close contact with the atmosphere and their shallow waters present low thermal inertia. Concerns on the vulnerability of rocky shore species subject to climate warming make the investigation of their thermal tolerance an urgent topic. The aim of this study was to determine the upper thermal limits of species that are common in tidal pools of rocky shore ecosystems of the Northeast Atlantic. The method used was the Critical Thermal Maximum (CTMax), which allowed the ranking of species in terms of their upper thermal limits as follows: Coryphoblennius galerita (32.0 °C), Palaemon serratus (33.0 °C), Gobius paganellus (33.1 °C), Palaemon elegans (33.4 °C), Lipophrys pholis (33.9 °C) and Paralipophrys trigloides (35.0 °C). Intraspecific variability was always lower than 2%.  相似文献   

17.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

18.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   

19.
Determinations of the activity of the respiratory electron transport system (ETS), during the FRAM III expedition permit us to estimate oxygen utilization rates (RO2) from the surface to 2000 m under the polar pack ice in the Nansen Basin just north of Svalbard (83°N, 7°E) during April 1981. We found RO2 at in situ temperatures ranging from 20 pM O2 min−1 just below the ice to 0.2 pM O2 min−1 at 2000 m. These rates are low compared to most other ocean regions, but they could decrease particulate organic carbon and nitrogen by 76% and 74%, respectively, over a period of ∼6 months. The RO2 calculations based on measurements made at 0 °C yielded a power function of RO2 vs. depth (Z) of RO2=67Z−0.5534. When this RO2 profile was superimposed on a more recent oxygen utilization rate profile made using the 3He–3H–AOU method (OUR), in the same vicinity of the Nansen Basin during 1987 (OUR=52Z–0.4058, [Zheng, Y., Schlosser, P., Swift, J.W., Jones, E.P., 1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]), the agreement of the two profiles was close. On one hand, this was to be expected because RO2 is the biological basis of OUR, on the other hand, it was a surprise because the methodologies are so different. Nitrate mineralization obtained from ETS activities also compared favorably with calculations based on the data of Zheng et al. [1997. Oxygen utilization rates in the Nansen Basin, Arctic Ocean: implications for new production. Deep Sea Research I 44, 1923–1943]. Chlorophyll ranged from 6 ng L−1 at 5 m to 0.06 ng L−1 at 2000 m. Particulate organic carbon (POC) decreased from 0.93 μM C just below the ice to less than 0.4 μM C at 500 m. Particulate organic nitrogen (PON) was not detectable below 70 m, however in the upper 70 m it ranged from 0.16 to 0.04 μM N. The C/N mass ratio over these depths ranged from 5.8 to 11.3. Annual carbon productivity as calculated to balance the total water column respiration was 27 g C m−2 y−1. The integrated respiration rate between 50 and 4000 m suggests that exported production and carbon flux from the 50 m level was 24 g C m−2 y−1. These are minimal estimates for the southern Nansen Basin because they are based on measurements made at the end of the Arctic winter.  相似文献   

20.
Below the sill depth (at about 2400 m) of the Alpha-Mendeleyev ridge complex, the waters of the Canada Basin (CB) of the Arctic Ocean are isolated, with a 14C isolation age of about 500 yr. The potential temperature θ decreases with depth to a minimum θm≈−0.524°C near 2400 m, increases with depth through an approximately 300 m thick transition layer to θh≈−0.514°C, and then remains uniform from about 2700 m to the bottom at 3200–4000 m. The salinity increases monotonically with depth through the deep θm and transition layer from about 34.952 to about 34.956 and then remains uniform in the bottom layer. A striking staircase structure, suggestive of double-diffusive convection, is observed within the transition layer. The staircase structure is observed for about 1000 km across the basin and has been persistent for more than a decade. It is characterized by 2–3 mixed layers (10–60 m thick) separated by 2–16 m thick interfaces. Standard formulae, based on temperature and salinity jumps, suggest a double-diffusive heat flux through the staircase of about 40 mW m−2, consistent with the measured geothermal heat flux of 40–60 mW m−2. This is to be expected for a scenario with no deep-water renewal at present as we also show that changes in the bottom layer are too small to account for more than a small fraction of the geothermal heat flux. On the other hand, the observed interfaces between mixed layers in the staircase are too thick to support the required double-diffusive heat flux, either by molecular conduction or by turbulent mixing, as there is no evidence of sufficiently vigorous overturns within the interfaces. It therefore seems, that while the staircase structure may be maintained by a very weak heat flux, most of the geothermal heat flux is escaping through regions of the basin near lateral boundaries, where the staircase structure is not observed. The vertical eddy diffusivity required in these near-boundary regions is O(10−3) m2 s−1. This implies Thorpe scales of order 10 m. We observe what may be Thorpe scales of this magnitude in boundary-region potential temperature profiles, but cannot tell if they are compensated by salinity. The weak stratification of the transition layer means that the large vertical mixing rate implies a local dissipation rate of only O(10−10) W kg−1, which is not ruled out by plausible energy budgets. In addition, we discuss an alternative scenario of slow, continuous renewal of the CB deep water. In this scenario, we find that some of the geothermal heat flux is required to heat the new water and vertical fluxes through the transition layer are reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号