首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
3.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The current generation of landscape evolution models use a digital elevation model for landscape representation. These programs also contain a hydrological model that defines overland flow with the drainage network routed to an outlet. One of the issues with landscape evolution modelling is the hydrological correctness of the digital elevation model used for the simulations. Despite the wide use and increased quality of digital elevation models, data pits and depressions in the elevation data are a common feature and their removal will remain a necessary step for many data sets. This study examines whether a digital elevation model can be hydrologically correct (i.e. all depressions removed so that all water can run downslope) before use in a landscape evolution model and what effect depression removal has on long‐term geomorphology and hydrology. The impact on sediment transport rates is also examined. The study was conducted using a field catchment and a proposed landform for a post‐mining landscape. The results show that there is little difference in catchment geomorphology and hydrology for the non‐depression removed and depression removed data sets. The non‐depression removed and depression removed digital elevation models were also evaluated as input to a landscape evolution model for a 50 000 year simulation period. The results show that after 1000 years there is little difference between the data sets, although sediment transport rates did vary considerably early on in the simulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Australian arid zone ephemeral rivers are typically unregulated and maintain a high level of biodiversity and ecological health. Understanding the ecosystem functions of these rivers requires an understanding of their hydrology. These rivers are typified by highly variable hydrological regimes and a paucity, often a complete absence, of hydrological data to describe these flow regimes. A daily time‐step, grid‐based, conceptual rainfall–runoff model was developed for the previously uninstrumented Neales River in the arid zone of northern South Australia. Hourly, logged stage data provided a record of stream‐flow events in the river system. In conjunction with opportunistic gaugings of stream‐flow events, these data were used in the calibration of the model. The poorly constrained spatial variability of rainfall distribution and catchment characteristics (e.g. storage depths) limited the accuracy of the model in replicating the absolute magnitudes and volumes of stream‐flow events. In particular, small but ecologically important flow events were poorly modelled. Model performance was improved by the application of catchment‐wide processes replicating quick runoff from high intensity rainfall and improving the area inundated versus discharge relationship in the channel sections of the model. Representing areas of high and low soil moisture storage depths in the hillslope areas of the catchment also improved the model performance. The need for some explicit representation of the spatial variability of catchment characteristics (e.g. channel/floodplain, low storage hillslope and high storage hillslope) to effectively model the range of stream‐flow events makes the development of relatively complex rainfall–runoff models necessary for multisite ecological studies in large, ungauged arid zone catchments. Grid‐based conceptual models provide a good balance between providing the capacity to easily define land types with differing rainfall–runoff responses, flexibility in defining data output points and a parsimonious water‐balance–routing model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
The SIBERIA landscape evolution model was used to simulate the geomorphic development of the Tin Camp Creek natural catchment over geological time. Measured hydrology, erosion and geomorphic data were used to calibrate the SIBERIA model, which was then used to make independent predictions of the landform geomorphology of the study site. The catchment, located in the Northern Territory, Australia is relatively untouched by Europeans so the hydrological and erosion processes that shaped the area can be assumed to be the same today as they have been in the past, subject to the caveats regarding long‐term climate fluctuation. A qualitative, or visual comparison between the natural and simulated catchments indicates that SIBERIA can match hillslope length and hillslope profile of the natural catchments. A comparison of geomorphic and hydrological statistics such as the hypsometric curve, width function, cumulative area distribution and area–slope relationship indicates that SIBERIA can model the geomorphology of the selected Tin Camp Creek catchments. Copyright 2002 © Environmental Research Institute of the Supervising Scientist, Commonwealth of Australia.  相似文献   

8.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Rainfall–runoff models are widely used to predict flows using observed (instrumental) time series of air temperature and precipitation as inputs. Poor model performance is often associated with difficulties in estimating catchment‐scale meteorological variables from point observations. Readily available gridded climate products are an underutilized source of temperature and precipitation time series for rainfall–runoff modelling, which may overcome some of the performance issues associated with poor‐quality instrumental data in small headwater monitoring catchments. Here we compare the performance of instrumental measured and E‐OBS gridded temperature and precipitation time series as inputs in the rainfall–runoff models “PERSiST” and “HBV” for flow prediction in six small Swedish catchments. For both models and most catchments, the gridded data produced statistically better simulations than did those obtained using instrumental measurements. Despite the high correspondence between instrumental and gridded temperature, both temperature and precipitation were responsible for the difference. We conclude that (a) gridded climate products such as the E‐OBS dataset could be more widely used as alternative input to rainfall–runoff models, even when instrumental measurements are available, and (b) the processing applied to gridded climate products appears to provide a more realistic approximation of small catchment‐scale temperature and precipitation patterns needed for flow simulations. Further research on this issue is needed and encouraged.  相似文献   

10.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Snowmelt is an important source of runoff in high mountain catchments. Snowmelt modelling for alpine regions remains challenging with scarce gauges. This study simulates the snowmelt in the Karuxung River catchment in the south Tibetan Plateau using an altitude zone based temperature‐index model, calibrates the snow cover area and runoff simulation during 2003–2005 and validates the model performance via snow cover area and runoff simulation in 2006. In the snowmelt and runoff modelling, temperature and precipitation are the two most important inputs. Relevant parameters, such as critical snow fall temperature, temperature lapse rate and precipitation gradient, determine the form and amount of precipitation and distribution of temperature and precipitation in hydrological modelling of the sparsely gauged catchment. Sensitivity analyses show that accurate estimation of these parameters would greatly help in improving the snowmelt simulation accuracy, better describing the snow‐hydrological behaviours and dealing with the data scarcity at higher elevations. Specifically, correlation between the critical snow fall temperature and relative humidity and seasonal patterns of both the temperature lapse rate and the precipitation gradient should be considered in the modelling studies when precipitation form is not logged and meteorological observations are only available at low elevation. More accurate simulation of runoff involving snowmelt, glacier melt and rainfall runoff will improve our understanding of hydrological processes and help assess runoff impacts from a changing climate in high mountain catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper analyses the spatial and temporal variability of the hydrological response in a small Mediterranean catchment (Cal Rodó). The first part of the analysis focuses on the rainfall–runoff relationship at seasonal and monthly scale, using an 8‐year data set. Then, using storm‐flow volume and coefficient, the temporal variability of the rainfall–runoff relationship and its relationship with several hydrological variables are analysed at the event scale from hydrographs observed over a 3‐year period. Finally, the spatial non‐linearity of the hydrological response is examined by comparing the Cal Rodó hydrological response with the Can Vila sub‐catchment response at the event scale. Results show that, on a seasonal and monthly scale, there is no simple relationship between rainfall and runoff depths, and that evapotranspiration is a factor that introduced some non‐linearity in the rainfall–runoff relationship. The analysis of monthly values also reveals the existence of a threshold in the relationship between rainfall and runoff depths, denoting a more contrasted hydrological response than the one usually observed in humid catchments. At the event scale, the storm‐flow coefficient has a clear seasonal pattern with an alternance between a wet period, when the catchment is hydrologically responsive, and a dry summer period, when the catchment is much less reactive to any rainfall. The relationship between the storm‐flow coefficient and rainfall depth, rainfall maximum intensity and base‐flow shows that observed correlations are the same as those observed for humid conditions, even if correlation coefficients are notably lower. Comparison with the Can Vila sub‐catchment highlights the spatial heterogeneity of the rainfall‐runoff relationship at the small catchment scale. Although interpretation in terms of runoff processes remains delicate, heterogeneities between the two catchments seem to be related to changes in the ratio between infiltration excess and saturation processes in runoff formation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
One of the most important functions of catchments is the storage of water. Catchment storage buffers meteorological extremes and interannual streamflow variability, controls the partitioning between evaporation and runoff, and influences transit times of water. Hydrogeological data to estimate storage are usually scarce and seldom available for a larger set of catchments. This study focused on storage in prealpine and alpine catchments, using a set of 21 Swiss catchments comprising different elevation ranges. Catchment storage comparisons depend on storage definitions. This study defines different types of storage including definitions of dynamic and mobile catchment storage. We then estimated dynamic storage using four methods, water balance analysis, streamflow recession analysis, calibration of a bucket‐type hydrological model Hydrologiska Byråns Vattenbalansavdelning model (HBV), and calibration of a transfer function hydrograph separation model using stable isotope observations. The HBV model allowed quantifying the contributions of snow, soil and groundwater storages compared to the dynamic catchment storage. With the transfer function hydrograph separation model both dynamic and mobile storage was estimated. Dynamic storage of one catchment estimated by the four methods differed up to one order of magnitude. Nevertheless, the storage estimates ranked similarly among the 21 catchments. The largest dynamic and mobile storage estimates were found in high‐elevation catchments. Besides snow, groundwater contributed considerably to this larger storage. Generally, we found that with increasing elevation the relative contribution to the dynamic catchment storage increased for snow, decreased for soil, but remained similar for groundwater storage.  相似文献   

15.
In this paper, the controls of different indicators on the statistical moments (i.e. mean annual flood (MAF), coefficient of variation (CV) and skewness (CS)) of the maximum annual flood records of 459 Austrian catchments are analysed. The process controls are analysed in terms of the correlation of the flood moments within five hydrologically homogeneous regions to two different types of indicators. Indicators of the first type are static catchment attributes, which are associated with long‐term observations such as mean annual precipitation, the base flow index, and the percentage of catchment area covered by a geological unit or soil type. Indicators of the second type are dynamic catchment attributes that are associated with the event scale. Indicators of this type used in the study are event runoff coefficients and antecedent rainfall. The results indicate that MAF and CV are strongly correlated with indicators characterising the hydro‐climatic conditions of the catchments, such as mean annual precipitation, long‐term evaporation and the base flow index. For the catchments analysed, the flood moments are not significantly correlated with static catchment attributes representing runoff generation, such as geology, soil types, land use and the SCS curve number. Indicators of runoff generation that do have significant predictive power for flood moments are dynamic catchment attributes such as the mean event runoff coefficients and mean antecedent rainfall. The correlation analysis indicates that flood runoff is, on average, more strongly controlled by the catchment moisture state than by event rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Highly seasonal boreal catchments are hydrologically complex and generally data poor and, hence, are ripe for investigation using tracer‐aided hydrologic models. The influence of physiography on isotopic metrics was assessed to identify the catchment characteristics dominating evaporative enrichment. A multiyear stable isotope of water dataset was collected at the outlets of 16 boreal catchments in central Canada ranging in area from 12 to 15,282 km2. Physiographic characteristics were obtained through raster analysis of freely available land cover images, stream networks, and digital elevation models. Correlation analysis indicated that as the percentage coverage of open water increased, so too did the evaporative effects observed at the catchment outlet. Correlation to wetland metrics indicated that increasing the percentage coverage of wetlands can reduce or increase evaporative effects observed, depending on the isotopic metric used and the corresponding drainage density, catchment slope, and presence of headwater lakes. The slopes of river evaporative‐mixing lines appear to reflect multifaceted relationships, strongest between catchment slope, headwater lakes, and connected wetlands, whereas mean line‐conditioned excess is more directly linked to physiographic variables. Hence, the slopes of river evaporative‐mixing lines and mean line‐conditioned excess are not interchangeable metrics of evaporative enrichment in a catchment. Relationships identified appear to be independent of catchment scale. These results suggest that adequate inclusion of the distribution of open water throughout a catchment, adequate representation of wetland processes, catchment slope, and drainage density are critical characteristics to include in tracer‐aided hydrologic models in boreal environments in order to minimize structural uncertainty.  相似文献   

17.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

18.
Development of hydrological models for seasonal and real-time runoff forecast in rivers of high alpine catchments is useful for management of water resources. The conceptual models for this purpose are based on a temperature index and/or energy budget and can be either lumped or distributed over the catchment area. Remote sensing satellite data are most useful to acquire near real-time geophysical parameters in order to input to the distributed forecasting models. In the present study, integration of optical satellite remote sensing-derived information was made with ground meteorological and hydrological data, and predetermined catchment morphological parameters, to study the feasibility of application of a distributed temperature index snowmelt runoff model to one of the high mountainous catchments in the Italian Alps, known as Cordevole River Basin. Five sets of Landsat Multispectral Scanning System (MSS) and Thematic Mapper (TM) computer-compatible tapes (CCTs) were processed using digital image processing techniques in order to evaluate the snow cover variation quantitatively. Digital elevation model, slope and aspect parameters were developed and used during satellite data processing. The satellite scenes were classified as snow, snow under transition and snow free areas. A second-order polynomial fit has been attempted to approximate the snow depletion and to estimate daily snow cover areal extent for three elevation zones of the catchment separately. Model performance evaluation based on correlation coefficient, Nash–Sutcliffe coefficient and percentage volume deviation indicated very good simulation between measured and computed discharges for the entire snowmelt period. The use of average temperature values computed from the maximum and minimum temperatures into the model was studied and a suitable algorithm was proposed. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Two river catchments, the Huangfuchuan and the Hailiutu, located in the same climate zone in the Erdos Plateau, China, have distinctly different flow regimes. This study systematically compared differences between the flow regimes of these two catchments using several statistical methods, and analysed the possible causes. The variations in yearly, monthly and daily mean discharges were found to be much greater in the Huangfuchuan catchment than in the Hailiutu catchment. Preliminary analysis indicated that these differences are not caused by changes in climate, but are instead attributable to differences in geology, geomorphology, hydrological processes and human interventions. In the Hailiutu catchment, the dominant groundwater contribution maintains stationary daily and monthly river discharges, while shifts in yearly mean discharges were closely associated with the expansion or reduction of crop area. In the Huangfuchuan catchment, the dominant direct rainfall–runoff process generates flashier daily and monthly river discharges, while the decrease of yearly mean discharges is caused mainly by the construction of check dams. These findings have significant implications for water resource management and the implementation of proper soil and water conservation measures in the middle reach of the Yellow River Basin of China.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

20.
Land cover changes associated with urbanization have negative effects on downstream ecosystems. Contemporary urban development attempts to mitigate these effects by designing stormwater infrastructure to mimic predevelopment hydrology, but their performance is highly variable. This study used in situ monitoring of recently built neighbourhoods to evaluate the catchment‐scale effectiveness of landscape decentralized stormwater control measures (SCMs) in the form of street connected vegetated swales for reducing runoff volumes and flow rates relative to curb‐and‐gutter infrastructure. Effectiveness of the SCMs was quantified by monitoring runoff for 8 months at the outlets of 4 suburban catchments (0.76–5.25 ha) in Maryland, USA. Three “grey” catchments installed curb‐and‐gutter stormwater conveyances, whereas the fourth “green” catchment built parcel‐level vegetated swales. The catchment with decentralized SCMs reduced runoff, runoff ratio, and peak runoff compared with the grey infrastructure catchments. In addition, the green catchment delayed runoff, resulting in longer precipitation–runoff lag times. Runoff ratios across the monitoring period were 0.13 at the green catchment and 0.37, 0.35, and 0.18 at the 3 grey catchments. Runoff only commenced after 6 mm of precipitation at the decentralized SCM catchment, whereas runoff occurred even during the smallest events at the grey catchments. However, as precipitation magnitudes reached 20 mm, the green catchment runoff characteristics were similar to those at the grey catchments, which made up 37% of the total precipitation in only 10 of 72 events. Therefore, volume‐based reduction goals for stormwater using decentralized SCMs such as vegetated swales require additional redundant SCMs in a treatment train as source control and/or end‐of‐pipe detention to capture a larger fraction of runoff and more effectively mimic predevelopment hydrology for the relatively rare but larger precipitation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号