首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrological connectivity between floodplain wetlands and rivers is one of the principal driving mechanisms for the diversity, productivity and interactions of the major biota in river–floodplain systems. This article describes a method of quantifying flood‐induced overbank connectivity using a hydrodynamic model (MIKE 21) to calculate the timing, the duration and the spatial extent of the connections between several floodplain wetlands and rivers in the Tully–Murray catchment, north Queensland, Australia. Areal photogrammetry and field surveyed stream cross data were used to reproduce floodplain topography and rivers in the model. Laser altimetry (LiDAR)–derived fine resolution elevation data, for the central floodplain, were added to the topography model to improve the resolution of key features including wetlands, flow pathways and natural and artificial flow barriers. The hydrodynamic model was calibrated using a combination of in‐stream and floodplain gauge records. A range of off‐stream wetlands including natural and artificial, small and large were investigated for their connectivity with two main rivers (Tully and Murray) flowing over the floodplain for flood events of 1‐, 20‐ and 50‐year recurrence intervals. The duration of the connection of individual wetlands varied from 1 to 12 days, depending on flood magnitude and location in the floodplain, with some wetlands only connected during large floods. All of the wetlands studied were connected to the Tully River for shorter periods than they were to the Murray River because of the higher bank heights and levees on the Tully River and wetland proximity to the Murray River. Other than hydrology, land relief, riverbank elevation and levee banks along the river were found key factors controlling the degree of connectivity. These variations in wetland connectivity could have important implications for aquatic biota that move between rivers and off‐stream habitats during floods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a one‐dimensional hydrodynamic model to simulate time‐varying water depths across the stream network (i.e. rivers, streams and man‐made drains). The timing and duration of connectivity of seven wetlands (four natural and three artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high‐resolution laser altimetry, and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps, and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Controls on the characteristics of floodplain wetlands in drylands are diverse and may include extrinsic factors such as tectonic activity, lithology and climate, and intrinsic thresholds of channel change. Correct analysis of the interplay between these controls is important for assessing possible channel–floodplain responses to changing environmental conditions. Using analysis of aerial imagery, geological maps and field data, this paper investigates floodplain wetland characteristics in the Tshwane and Pienaars catchments, northern South Africa, and combines the findings with previous research to develop a new conceptual model highlighting the influence of variations in aridity on flow, sediment transport, and channel–floodplain morphology. The Tshwane–Pienaars floodplain wetlands have formed in response to a complex interplay between climatic, lithological, and intrinsic controls. In this semi‐arid setting, net aggradation (alluvium >7 m thick) in the wetlands is promoted by marked downstream declines in discharge and stream power that are related to transmission losses and declining downstream gradients. Consideration of the Tshwane–Pienaars wetlands in their broader catchment and regional context highlights the key influence of climate, and demonstrates how floodplain wetland characteristics vary along a subhumid to semi‐arid climatic gradient. Increasing aridity tends to be associated with a reduction in the ability of rivers to maintain through‐going channels and an increase in the propensity for channel breakdown and floodout formation. Understanding the interplay between climate, hydrology and geomorphology may help to anticipate and manage pathways of floodplain wetland development under future drier, more variable climates, both in South African and other drylands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A key aspect of large river basins partially neglected in large‐scale hydrological models is river hydrodynamics. Large‐scale hydrologic models normally simulate river hydrodynamics using simplified models that do not represent aspects such as backwater effects and flood inundation, key factors for some of the largest rivers of the world, such as the Amazon. In a previous paper, we have described a large‐scale hydrodynamic approach resultant from an improvement of the MGB‐IPH hydrological model. It uses full Saint Venant equations, a simple storage model for flood inundation and GIS‐based algorithms to extract model parameters from digital elevation models. In the present paper, we evaluate this model in the Solimões River basin. Discharge results were validated using 18 stream gauges showing that the model is accurate. It represents the large delay and attenuation of flood waves in the Solimões basin, while simplified models, represented here by Muskingum Cunge, provide hydrographs are wrongly noisy and in advance. Validation against 35 stream gauges shows that the model is able to simulate observed water levels with accuracy, representing their amplitude of variation and timing. The model performs better in large rivers, and errors concentrate in small rivers possibly due to uncertainty in river geometry. The validation of flood extent results using remote sensing estimates also shows that the model accuracy is comparable to other flood inundation modelling studies. Results show that (i) river‐floodplain water exchange and storage, and (ii) backwater effects play an important role for the Amazon River basin hydrodynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
In this study, an approach is presented for handling hydraulic uncertainties in the prediction of floodplain. Different factors affect river flood characteristics. Furthermore, the high changeability of flooding conditions leads to high variability of the inundation. River morphology is one of the most effective factors in river flood characteristics. This factor is influenced by sedimentation and erosion in the river cross sections, which affects the discharge variation. The depth and the width of the river cross section lead to an increase or decrease in the river flow path. This results in changes in the extent of the floodplain based on the generated rainfall. The inundated region boundaries are determined by utilizing the mean first‐order second‐moment analysis. The proposed method is applied to the Kajoo River in the south‐eastern part of Iran. Determination of floodplain uncertainty is a damage‐reduction policy in this region. Also, it is useful to prepare the necessary activities for overcoming the flood hazards. Climate change is the second effective factor on the floodplain uncertainties. Climate change affects the magnitude, extent and depth of inundation and it may intensify the flood problem. Therefore, the future rainfall pattern of the study area under climate change is simulated to evaluate its impacts on the river flow characteristic. Subsequently, a hydraulic routing model is used to determine floodplain. Finally, the copula function is used to estimate the joint probability of the changes in the inundation area due to changes in river morphology and the rainfall changes due to impacts of climate change. Results show that the uncertainties of the extent of floodplain are affected by climate change and river morphology, leading to noticeable changes in the magnitude and frequency of floods. Evaluating these impacts and estimating corresponding river discharges will help in the study of river dynamics, and will also contribute towards devising effective mitigation and management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper uses numerical simulation of flood inundation based on a coupled one‐dimensional–two‐dimensional treatment to explore the impacts upon flood extent of both long‐term climate changes, predicted to the 2050s and 2080s, and short‐term river channel changes in response to sediment delivery, for a temperate upland gravel‐bed river. Results show that 16 months of measured in‐channel sedimentation in an upland gravel‐bed river cause about half of the increase in inundation extent that was simulated to arise from climate change. Consideration of the joint impacts of climate change and sedimentation emphasized the non‐linear nature of system response, and the possibly severe and synergistic effects that come from combined direct effects of climate change and sediment delivery. Such effects are likely to be exacerbated further as a result of the impacts of climate change upon coarse sediment delivery. In generic terms, these processes are commonly overlooked in flood risk mapping exercises and are likely to be important in any river system where there are high rates of sediment delivery and long‐term transfer of sediment to floodplain storage (i.e. alluviation involving active channel aggradation and migration). Similarly, attempts to reduce channel migration through river bank stabilization are likely to exacerbate this process as without bank erosion, channel capacity cannot be maintained. Finally, many flood risk mapping studies rely upon calibration based upon combining contemporary bed surveys with historical flood outlines, and this will lead to underestimation of the magnitude and frequency of floodplain inundation in an aggrading system for a flood of a given magnitude. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   

8.
For large‐scale sites, difficulties for applying coupled one‐dimensional (1D)/2D models for simulating floodplain inundation may be encountered related to data scarcity, complexity for establishing channel–floodplain connections, computational cost, long duration of floods and the need to represent precipitation and evapotranspiration processes. This paper presents a hydrologic simulation system, named SIRIPLAN, developed to accomplish this aim. This system is composed by a 1D hydrodynamic model coupled to a 2D raster‐based model, and by two modules to compute the vertical water balance over floodplain and the water exchanges between channel and floodplain. Results are presented for the Upper Paraguay River Basin (UPRB), including the Pantanal, one of the world's largest wetlands. A total of 3965 km of river channels and 140 000 km2 of floodplains are simulated for a period of 11 years. Comparison of observed and calculated hydrographs at 15 gauging stations showed that the model was capable to simulate distinct, complex flow regimes along main channels, including channel‐floodplain interactions. The proposed system was also able to reproduce the Pantanal seasonal flood pulse, with estimated inundated areas ranging from 35 000 km2 (dry period) to more than 120 000 km2 (wet period). Floodplain inundation maps obtained with SIRIPLAN were consistent with previous knowledge of Pantanal dynamics, but comparison with inundation extent provided by a previous satellite‐based study indicates that permanently flooded areas may have been underestimated. The results obtained are promising, and further work will focus on improving vertical processes representation over floodplains and analysing model sensitivity to floodplain parameters, time step and precipitation estimates uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Geographically isolated wetlands, those entirely surrounded by uplands, provide numerous landscape‐scale ecological functions, many of which are dependent on the degree to which they are hydrologically connected to nearby waters. There is a growing need for field‐validated, landscape‐scale approaches for classifying wetlands on the basis of their expected degree of hydrologic connectivity with stream networks. This study quantified seasonal variability in surface hydrologic connectivity (SHC) patterns between forested Delmarva bay wetland complexes and perennial/intermittent streams at 23 sites over a full‐water year (2014–2015). Field data were used to develop metrics to predict SHC using hypothesized landscape drivers of connectivity duration and timing. Connection duration was most strongly related to the number and area of wetlands within wetland complexes as well as the channel width of the temporary stream connecting the wetland complex to a perennial/intermittent stream. Timing of SHC onset was related to the topographic wetness index and drainage density within the catchment. Stepwise regression modelling found that landscape metrics could be used to predict SHC duration as a function of wetland complex catchment area, wetland area, wetland number, and soil available water storage (adj‐R2 = 0.74, p < .0001). Results may be applicable to assessments of forested depressional wetlands elsewhere in the U.S. Mid‐Atlantic and Southeastern Coastal Plain, where climate, landscapes, and hydrological inputs and losses are expected to be similar to the study area.  相似文献   

10.
ABSTRACT

The major flood of 2014 in the two eastern, transboundary rivers, the Jhelum and Chenab in Punjab, Pakistan, was simulated using the two-dimensional rainfall–runoff model. The simulated hydrograph showed good agreement with the observed discharge at the model outlet and intervening barrages, with a Nash-Sutcliffe efficiency of 0.86 at the basin outlet. Further, simulated flood inundation extent showed good agreement with the MODIS imagery with a fit (%) of 0.87. For some affected areas that experienced short-duration flooding, local housing damage data confirmed the simulated results. Besides the rainfall–runoff and flood inundation modelling, parameter sensitivity analysis was undertaken to identify the influence of various river and floodplain parameters. The analysis showed that the river channel geometric parameters and the roughness coefficients exerted the primary influence over flood extent and peak flow.  相似文献   

11.
This paper investigates the origin and geomorphic evolution of Stillerust Vlei, a 189 ha wetland located approximately 150 km northwest of Durban in the temperate submontane foothills of the KwaZulu‐Natal Drakensberg Mountains. The investigation confirms the findings of previous research on the arid to semi‐arid South African interior, which established that many floodplain wetlands in eastern South Africa are located upstream of resistant rock barriers (dolerite intrusions) that cross river courses and form stable local base levels. Upstream of these barriers, rivers laterally plane less resistant Karoo sedimentary rocks (sandstones, mudstones), creating broad, low gradient valleys conducive to the formation of floodplain wetlands. In addition, the study examines how local levee and alluvial ridge accretion on the floodplain of Stillerust Vlei has impounded a small tributary valley, and drawing on observations of similar wetlands in the region, the paper explains the origin and geomorphic evolution of wetlands in floodplain‐abutting valleys, and associated streams that commonly become discontinuous toward their confluence with the trunk (floodplain) river. Controls on the origin and geomorphic evolution of Stillerust Vlei are placed within the context of slope‐channel decoupling and (dis)connectivity in sediment delivery, illustrating that wetlands are environments of deposition. As a result of dynamic trunk‐tributary relations, Stillerust Vlei holds a diversity of geomorphic features, and thus provides potential habitat for a diversity of biota. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
V. Tayefi  S. N. Lane  R. J. Hardy  D. Yu 《水文研究》2007,21(23):3190-3202
A much understudied aspect of flood inundation is examined, i.e. upland environments with topographically complex floodplains. Although the presence of high‐resolution topographic data (e.g. lidar) has improved the quality of river flood inundation predictions, the optimum dimensionality of hydraulic models for this purpose has yet to be fully evaluated for situations of both topographic and topological (i.e. the connectivity of floodplain features) complexity. In this paper, we present the comparison of three treatments of upland flood inundation using: (a) a one‐dimensional (1D) model (HEC‐RAS v. 3·1·2) with the domain defined as series of extended cross‐sections; (b) the same 1D model, but with the floodplain defined by a series of storage cells, hydraulically connected to the main river channel and other storage cells on the floodplain according to floodplain topological characteristics; (c) a two‐dimensional (2D) diffusion wave treatment, again with explicit representation of floodplain structural features. The necessary topographic and topological data were derived using lidar and Ordnance Survey Landline data. The three models were tested on a 6 km upland reach of the River Wharfe, UK. The models were assessed by comparison with measured inundation extent. The results showed that both the extended cross‐section and the storage cell 1D modes were conceptually problematic. They also resulted in poorer model predictions, requiring incorrect parameterization of the main river to floodplain flux in order to approach anything like the level of agreement observed when the 2D diffusion wave treatment was assessed. We conclude that a coupled 1D–2D treatment is likely to provide the best modelling approach, with currently available technology, for complex floodplain configurations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Remotely sensed land cover was used to generate spatially‐distributed friction coefficients for use in a two‐dimensional model of flood inundation. Such models are at the forefront of research into the prediction of river flooding. Standard practice, however, is to use single (static) friction coefficients on both the channel and floodplain, which are varied in a calibration procedure to provide a “best fit” to a known inundation extent. Spatially‐distributed friction provides a physically grounded estimate of friction that does not require fitting to a known inundation extent, but which can be fitted if desired. Remote sensing offers the opportunity to map these friction coefficients relatively straightforwardly and for low cost. Inundation was predicted using the LISFLOOD‐FP model for a reach on the River Nene, UK. Friction coefficients were produced from land cover predicted from Landsat TM imagery using both ML and fuzzy c‐means classifiction. The elevetion data used were from combined contour and differential global positioning system (GPS) elevation data. Predicted inundation using spatially‐distributed and static friction were compared. Spatially‐distributed friction had the greatest effect on the timing of flood inundation, but a small effect on predicted inundation extent. The results indicate that spatially‐distributed friction should be considered where the timing of initial flooding (e.g. for early warning) is important. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Flood hazard and risk assessment was conducted to identify the priority areas in the southwest region of Bangladesh for flood mitigation. Simulation of flood flow through the Gorai and Arial Khan river system and its floodplains was done by using a hydrodynamic model. After model calibration and verification, the model was used to simulate the flood flow of 100‐year return period for a duration of four months. The maximum flooding depths at different locations in the rivers and floodplains were determined. The process in determining long flooding durations at every grid point in the hydrodynamic model is laborious and time‐consuming. Therefore the flood durations were determined by using satellite images of the observed flood in 1988, which has a return period close to 100 years. Flood hazard assessment was done considering flooding depth and duration. By dividing the study area into smaller land units for hazard assessment, the hazard index and the hazard factor for each land unit for depth and duration of flooding were determined. From the hazard factors of the land units, a flood hazard map, which indicates the locations of different categories of hazard zones, was developed. It was found that 54% of the study area was in the medium hazard zone, 26% in the higher hazard zone and 20% in the lower hazard zone. Due to lack of sufficient flood damage data, flood damage vulnerability is simply considered proportional to population density. The flood risk factor of each land unit was determined as the product of the flood hazard factor and the vulnerability factor. Knowing the flood risk factors for the land units, a flood risk map was developed based on the risk factors. These maps are very useful for the inhabitants and floodplain management authorities to minimize flood damage and loss of human lives. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Hydrological monitoring in complex, dynamic northern floodplain landscapes is challenging, but increasingly important as a consequence of multiple stressors. The Peace-Athabasca Delta in northern Alberta, Canada, is a Ramsar Wetland of International Importance reliant on episodic river ice-jam flood events to recharge abundant perched lakes and wetlands. Improved and systematic monitoring of landscape-scale hydrological connectivity among freshwater ecosystems (rivers, channels, wetlands, and lakes) is needed to guide stewardship decisions in the face of climate change and upstream industrial development. Here, we use water isotope compositions, supplemented by measurements of specific conductivity and field observations, from 68 lakes and 9 river sites in May 2018 to delineate the extent and magnitude of spring ice-jam induced flooding along the Peace and Athabasca rivers. Lake-specific estimates of input water isotope composition (δI) were modelled after accounting for influence of evaporative isotopic enrichment. Then, using the distinct isotopic signature of input water sources, we develop a set of binary mixing models and estimate the proportion of input to flooded lakes attributable to river floodwater and precipitation (snow or rain). This approach allowed identification of areas and magnitude of flooding that were not captured by other methods, including direct observations from flyovers, and to demarcate flow pathways in the delta. We demonstrate water isotope tracers as an efficient and effective monitoring tool for delineating spatial extent and magnitude of an important hydrological process and elucidating connectivity in the Peace-Athabasca Delta, an approach that can be readily adopted at other floodplain landscapes.  相似文献   

17.
《水文科学杂志》2012,57(1):33-56
ABSTRACT

Riparian depressional wetlands (haors) in the Upper Meghna River Basin of Bangladesh are invaluable agricultural resources. They are completely flooded between June and November and planted with Boro rice when floodwater recedes in December. However, early harvest period (April/May) floods frequently damage ripening rice. A calibrated/validated Soil and Water Assessment Tool for riparian wetland (SWATrw) model is perturbed with bias free (using an improved quantile mapping approach) climate projections from 17 general circulation models (GCMs) for the period 2031–2050. Projected mean annual rainfall increases (200–500 mm or 7–10%). However, during the harvest period lower rainfall (21–75%) and higher evapotranspiration (1–8%) reduces river discharge (5–18%) and wetland inundation (inundation fraction declines of 0.005–0.14). Flooding risk for Boro rice consequently declines (rationalized flood risk reductions of 0.02–0.12). However, the loss of cultivable land (15.3%) to increases in permanent haor inundation represents a major threat to regional food security.  相似文献   

18.
Dissolved organic matter (DOM) is integral to fluvial biogeochemical functions, and wetlands are broadly recognized as substantial sources of aromatic DOM to fluvial networks. Yet how land use change alters biogeochemical connectivity of upland wetlands to streams remains unclear. We studied depressional geographically isolated wetlands on the Delmarva Peninsula (USA) that are seasonally connected to downstream perennial waters via temporary channels. Composition and quantity of DOM from 4 forested, 4 agricultural, and 4 restored wetlands were assessed. Twenty perennial streams with watersheds containing wetlands were also sampled for DOM during times when surface connections were present versus absent. Perennial watersheds had varying amounts of forested wetland (0.4–82%) and agricultural (1–89%) cover. DOM was analysed with ultraviolet–visible spectroscopy, fluorescence spectroscopy, dissolved organic carbon (DOC) concentration, and bioassays. Forested wetlands exported more DOM that was more aromatic‐rich compared with agricultural and restored wetlands. DOM from the latter two could not be distinguished suggesting limited recovery of restored wetlands; DOM from both was more protein‐like than forested wetland DOM. Perennial streams with the highest wetland watershed cover had the highest DOC levels during all seasons; however, in fall and winter when temporary streams connect forested wetlands to perennial channels, perennial DOC concentrations peaked, and composition was linked to forested wetlands. In summer, when temporary stream connections were dry, perennial DOC concentrations were the lowest and protein‐like DOM levels the highest. Overall, DOC levels in perennial streams were linked to total wetland land cover, but the timing of peak fluxes of DOM was driven by wetland connectivity to perennial streams. Bioassays showed that DOM linked to wetlands was less available for microbial use than protein‐like DOM linked to agricultural land use. Together, this evidence indicates that geographically isolated wetlands have a significant impact on downstream water quality and ecosystem function mediated by temporary stream surface connections.  相似文献   

19.
For 2 years, water flow‐patterns in the Garonne floodplain of south‐western France were studied in the field and through hydrodynamic modelling (MARTHE Hydrodynamic Software developed by BRGM). Water flow‐paths and the transport of dissolved elements between river and aquifer have been investigated and modelled. In order to quantify the buffer function of the alluvial floodplain, we focused our work on the effect of a major flood on the water flow‐direction, and on nitrate transport. Thus, we showed that the effect of a large flood in the river was rapidly lost with increasing distance from the river. During the observation period, a hydrologically active strip only 300 m wide on either side of the riverbed played a buffering role in absorbing the flood crest. It was also found that meanders favour the exchange between river and alluvial aquifer, shown by the creation of bypasses between the upstream and downstream parts of meanders. This, in turn, contributes to a dilution of nitrates in the phreatic aquifer, which here has higher nitrate content than the surface water; such dilution may result in an overestimation of the denitrification process in the wooded riverbanks. The coupling of chemical measurements—especially of chlorides and nitrate—with modelling of the dissolved‐element transport allows us to establish the water balance for the riparian wetland, and to separate the effect of dilution and denitrification on nitrate concentration. This indicated the existence of areas in the riparian wetlands where denitrification is particularly strong, leading to reductions in nitrate concentrations of 10 to 30 mg/l NO3? during the flood. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
针对当前城市化所引起水系衰减、河流连通受阻以及由此所引起洪涝与水环境的问题,以秦淮河中、下游为例,选取1979和2006年两期流域遥感影像,分析了城市化影响下的下垫面变化特征;选取1980s和2009年的地形图对河流水系进行提取,借鉴景观生态学中河流廊道空间结构分析方法,通过不同时期水系分级,探讨了城市化对水系结构及其连通性的影响.结果表明:(1)城市化使得2006年城镇用地面积相比1979年增加84.54 km2,增加了9倍多,大量林草地、耕地以及水域转变成城镇用地;(2)河流长度在过去的30年里减少了41%,河道主干化趋势明显;河流发育呈现由多元到单一、由复杂到简单的趋势;(3)连通性参数连接率、实际结合度分别由原来的1.28、0.43下降到0.79、0.26,河流的连通性呈下降趋势.该研究将为城市化地区河流水系保护提供支持与参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号