首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modern digital conductivity meters are readily portable, robust, cheap, and give precisely reproducible values of specific electrical conductivity (SpC, in µS cm?1). Here we investigate the accuracy of their estimates of the amounts of gypsum dissolved in waters collected in gypsum karst terrains, expressed as total hardness (TH) in mg L?1 of CaSO4·2H2O (GYP). Total dissolved solid concentrations (TDS) are also considered. Curves obtained with the program PHREEQC, for the dissolution of pure gypsum in water at 25 C, are compared with 574 comprehensive water chemical analyses selected from gypsum karst studies in Europe and the Americas. Principal common and foreign ions encountered are the BNC group (bicarbonates, nitrates, chlorides). It is found that GYP = 1·12·SpC + 62 where BNC < 33% (Cl? < 5%), with one standard error <5% for waters with SpC > 2400 µS cm?1; GYP = 0·74·SpC + 777 where BNC < 33% (5% ≤ Cl? < 15%), with one standard error <10% for waters with SpC > 3100 µS cm?1; GYP = 0·97·SpC ? 209 where BNC < 33% and Cl? ≥ 15%, with one standard error <10% for samples with SpC > 4300 µS cm?1. There are similar results for the more complex waters found in gypsum karsts where much carbonate rock or salt is also present, to the limit of BNC < 50% for what may reasonably be defined as ‘gypsum waters’. Values of R2 for linear correlations of different subsets of the water samples range from 0·69 to 0·96, the majority being >0·8. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high‐resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave). We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations. We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone than mixing of vadose and phreatic water. We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation because mixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
This paper considers the contributions of epigenic karst processes as a major element of the carbon cycle and a significant agent of landscape evolution. Geochemical models developed from monitoring data and water samples are used to estimate the variation and magnitude of dissolved inorganic carbon (DIC) flux in karst landscapes at several scales, from local to global. At the local scale, the Cumberland River watershed of southeast Kentucky, these geochemical models are also used to evaluate the potential role of sulfur in the production of DIC and to compute an estimated rate of landscape erosion. Geochemical modeling using ionic species and modeled discharge reveal a variable rate of DIC flux driven by large fluctuations in calcite saturation and discharge. Ratios of reaction products and principal component analyses (PCA) suggest that some bedrock dissolution may be driven by the oxidation of reduced sulfur derived from brines entrained into the karst aquifers. Over the 3730 km2 of carbonate exposure in the Cumberland River, 25.8–62.4 Gg/yr of carbon dioxide (CO2) is conveyed from the atmosphere through the dissolution of carbonate. At the global scale, this translates to 123–296 Tg/yr of CO2 delivered by karst processes into the aqueous system. The bedrock portion of DIC equates to a flux of 32.6 ± 2.6 m3 – 35.2 ± 2.8 m3 of bedrock during the period of study of which 29% was dolomite. This translates to a landscape erosion rate of 13.1–17.9 mm/ka in the 3.45–4.32 km2 of carbonate exposure in the studied watershed. Based upon 16+ km of cave survey data spanning a vertical range of 72 to 75 m above base level, this suggests that cave development in the watershed spans the Plio‐Pleistocene. Using the modeled erosion rates, the ages of cave levels, 4.03–5.71, 3.08–4.56, 1.57–2.43, 1.01–1.67, 0.45–0.91, and < 0.45 Ma, are in good agreement with regional studies of Plio‐Pleistocene landscape evolution in the Appalachian Lowland Plateaus. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
CO2 concentrations at depths of 15,30, and 50 cm were determined over a one-year period in six karst soils in the Malay peninsula. Evidence suggests that the highest single CO2 value (MAXCO2, per cent) recorded at each site/depth provides the best estimate of conditions during groundwater recharge events. Soil depth (cm) and bulk density (BDEN) are the best predictors of MAXCO2, with the equation loglo(MAXCO2) = 1·146 (BDEN) + 0·00698 (DEPTH) - 1·227 accounting for 86 per cent of the variation. This equation is used to model MAXCO2 at seven, more remote sites. Soil throughflow patterns and groundwater recharge points are estimated from slope pantometer and soil depth surveys in order to assess the CO2 concentration with which soil waters ultimately equilibrate before entering the limestone. Limestone weathering seems to be predominantly of the open system type, the overall mean MAXCO2 of 1·65 per cent corresponding with a weathering potential of 167 ppm CaCO3. Weathering potentials vary markedly, ranging from 62–82 ppm on rocky hilltops to more than 280 ppm on certain tower karst footslopes in Selangor and the Kinta Valley and on moderate hillslopes developed in impure limestones in the Boundary Range.  相似文献   

5.
Waters were sampled from 17 boreholes at Haut Glacier d'Arolla during the 1993 and 1994 ablation seasons. Three types of concentrated subglacial water were identified, based on the relative proportions of Ca2+, HCO3? and SO42? to Si. Type A waters are the most solute rich and have the lowest relative proportion of Si. They are believed to form in hydrologically inefficient areas of a distributed drainage system. Most solute is obtained from coupled sulphide oxidation and carbonate dissolution (SO–CD). It is possible that there is a subglacial source of O2, perhaps from gas bubbles released during regelation, because the high SO42? levels found (up to 1200 µeq/L) are greater than could be achieved if sulphides are oxidized by oxygen in saturated water at 0 °C (c.414 µeq/L). A more likely alternative is that sulphide is oxidized by Fe3+ in anoxic environments. If this is the case, exchange reactions involving FeIII and FeII from silicates are possible. These have the potential to generate relatively high concentrations of HCO3? with respect to SO42?. Formation of secondary weathering products, such as clays, may explain the low Si concentrations of Type A waters. Type B waters were the most frequently sampled subglacial water. They are believed to be representative of waters flowing in more efficient parts of a distributed drainage system. Residence time and reaction kinetics help determine the solute composition of these waters. The initial water–rock reactions are carbonate and silicate hydrolysis, and there is exchange of divalent cations from solution for monovalent cations held on surface exchange sites. Hydrolysis is followed by SO–CD. The SO42? concentrations usually are <414 µeq/L, although some range up to 580 µeq/L, which suggests that elements of the distributed drainage system may become anoxic. Type C waters were the most dilute, yet they were very turbid. Their chemical composition is characterized by low SO42? : HCO3? ratios and high pH. Type C waters were usually artefacts of the borehole chemical weathering environment. True Type C waters are believed to flow through sulphide‐poor basal debris, particularly in the channel marginal zone. The composition of bulk runoff was most similar to diluted Type B waters at high discharge, and was similar to a mixture of Type B and C waters at lower discharge. These observations suggest that some supraglacial meltwaters input to the bed are stored temporarily in the channel marginal zone during rising discharge and are released during declining flow. Little of the subglacial chemical weathering we infer is associated with the sequestration of atmospheric CO2. The progression of reactions is from carbonate and silicate hydrolysis, through sulphide oxidation by first oxygen and then FeIII, which drives further carbonate and silicate weathering. A crude estimate of the ratio of carbonate to silicate weathering following hydrolysis is 4 : 1. We speculate that microbial oxidation of organic carbon also may occur. Both sulphide oxidation and microbial oxidation of organic carbon are likely to drive the bed towards suboxic conditions. Hence, we believe that subglacial chemical weathering does not sequester significant quantities of atmospheric CO2 and that one of the key controls on the rate and magnitude of solute acquisition is microbial activity, which catalyses the reduction of FeIII and the oxidation of FeS2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
The precipitation of freshwater carbonates (tufa) along karstic rivers is enhanced by degassing of carbon dioxide (CO2) downstream of karstic springs. However, in most karstic springs CO2 degassing is not enough to force the precipitation of tufa sediments. Little is known about the role of dissolution of gypsum or dolomite in the hydrochemistry of these systems and how this affects the formation of tufa deposits. Here we present a monitoring study conducted over a year in Trabaque River (Spain). The river has typical karst hydrological dynamics with water sinking upstream and re‐emerging downstream of the canyon. Mixing of calcium–magnesium bicarbonate and calcium sulphate waters downstream of the sink enhances the dissolution of carbonates and potentially plays a positive role in the formation of tufa sediments. However, due to the common‐ion effect, dissolution of dolomite and/or gypsum causes precipitation of underground calcite cements as part of the incongruent dissolution of dolomite/dedolomitization process, which limits the precipitation of tufa sediments. Current precipitation of tufa is scant compared to previous Holocene tufa deposits, which likely precipitated from solutions with higher saturation indexes of calcite (SIcc values) than nowadays. Limited incongruent dissolution of dolomite/dedolomitization favours higher SIcc values. This circumstance occurs when waters with relatively high supersaturation of dolomite and low SO42? composition sink in the upper sector of the canyon. In such a scenario, the process of mixing waters enhances the exclusive dissolution of limestones, preventing the precipitation of calcite within the aquifer and favouring the increase of SIcc values downstream of the springs. Such conditions were recorded during periods of high water level of the aquifers and during floods. This research shows that the common‐ion effect caused by the dissolution of gypsum and/or dolomite rocks can limit [or favour] the precipitation of tufa sediments depending on the occurrence [or not] of incongruent dissolution of dolomite/dedolomitization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Weathering features are described from an arid coastal area in northern Morocco which are indicative of invasive chasmolithic and endolithic microbial communities. Active weathering of marine terraces and karst development is associated with endolithic and epilithic algae responsible for boring, disintegration of matrix and mineral fabrics, solution and biomineralization that undermines the marine carbonate platform. Evidence of a range of biological weathering agents remains preserved, speci?cally calci?ed ?laments and sporangial material. An abundance of ?laments and spores representative of a consortium of algae, fungi, cyanobacteria and lichens is associated with the most denuded outcrops. The array of microbes contributes to the formation of the stromatolites to depths of 0·5 m within the limestone substrate. The preservation of stromatolites is supported by calci?cation of spores and ?laments, with trapping and binding of carbonate held in suspension by vadose waters. The pervasive weathering on this sector of coastline has important practical implications for coastal planning and development authorities in Morocco. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Deep water circulation, residence time, and chemistry in a karst complex   总被引:4,自引:0,他引:4  
We investigated the hydrochemistry of a complex karst hydrosystem made of two carbonate units along a coastal lagoon. Ground water emerges on the lagoon floor from a submarine spring. In addition, thermal waters circulate through the limestone and mix with karst water near the lagoon shore. A distinction between the water from the two carbonate units is related to marine influences and human activities. In one of the massifs, the data show an incongruent dissolution of dolomite with time. In the other system, a slight contamination by saline fluids from the thermal reservoir has led to high calcium and magnesium concentrations. 36Cl, 14C, and 3H data constrain the residence time of the water, and allow for the distinguishing of four circulation types: (1) shallow surface circulation (primarily above sea level) in the karstic units with short residence times (<20 years); (2) shallow subsurface circulation (approximately 0 to -50 m) below the karstic units with residence time in the order of 50 years; (3) deep circulation at depth of 700 to 1500 m in the Jurassic limestones below thick sedimentary cover, with residence time of several thousand years for a part of the water; and (4) deep circulation at a depth of approximately 2500 m, which represents the thermal reservoir in the Jurassic units with residence time of approximately 100,000 years. An interpretative hydrogeological framework is based on the constraints of the geochemical analyses of the deep thermal system, and by water flow from the surface to the deep parts of the carbonate formations.  相似文献   

9.
Particulates amounting to 0.1–2.0 g efficiently collected from large volumes of Atlantic and Pacific surface waters have been analyzed for carbonate, opal, quartz and several natural and man-made radioisotopes.The concentrations of particles range between 10 and 600 μg/kg. In the equatorial regions particle concentrations are low and similar in both the oceans. At higher latitudes (>30°N or S), the Atlantic waters, however, have higher concentrations of particles compared to those in the Pacific. The latitudinal distribution exhibits a north-south symmetry with higher concentrations in the 30°–60° belt. Based on the particulate abundance for CaCO3 and opal and their sedimentation, we have estimated their production and in-situ integrated dissolution rates for a few regions.Radioisotopes having different source functions, namely14C and239Pu injected due to nuclear weapon tests,234Th,230Th and228Th produced in-situ in seawater,232Th which derives primarily from land,210Pb introduced via wet precipitations and226Ra introduced through diffusion from deep-sea sediments have been measured in the particulates. The relative enrichment factors for these nuclides in particles vary as Th ? Pu > Pb > Ra. The atmospheric bomb fallout pattern is discernible in the surface particulates; the239Pu concentration increases with latitude in both the hemispheres; however, the values are about a factor of two lower in the southern hemisphere.The distribution pattern of radioisotopes is found to be complex, even for234Th whose source function in the oceans is uniform. In view of the differences in the source functions it becomes possible to delineate the principal geochemical/geophysical processes which determine the concentrations of these nuclides in surface waters.  相似文献   

10.
The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil conditions in karst regions affect the aboveground vegetation. Based on survey results of the rocks, soils and vegetation in the dolomite and limestone distribution areas in the karst area of central Guizhou, it was found that woody plant cover increases linearly with the number of cracks with a width of more than 1 mm, while the cover of herbaceous plants shows the opposite trend(p0.01). The dolomite distribution area is characterized by undeveloped crevices, and the thickness of the soil layer is generally less than 20 cm, which is suitable for the distribution of herbaceous plants with shallow roots. Due to the development of crevices in the limestone distribution area, the soil is deeply distributed through the crevices for the deep roots of trees, which leads to a diversified species composition and a complicated structure in the aboveground vegetation. Based on moderate resolution imaging spectroradiometer(MODIS) remote sensing data from 2001 to 2010, the normalized differentiated vegetation index(NDVI) and annual net primary productivity(NPP) results for each phase of a 16-day interval further indicate that the NDVI of the limestone distribution area is significantly higher than that in the dolomite distribution area, but the average annual NPP is the opposite. The results of this paper indicate that in karst CZs, the lithology determines the structure and distribution of the soil, which further determines the cover of woody and herbaceous plants in the aboveground vegetation. Although the amount of soil in the limestone area may be less than that in the dolomite area, the developed crevice structure is more suitable for the growth of trees with deep roots, and the vegetation activity is strong. At present, the treatment of rocky desertification in karst regions needs to fully consider the rock-soilvegetation-air interactions in karst CZs and propose vegetation restoration measures suitable for different lithologies.  相似文献   

11.
The geochemical, mineralogical and lithological composition of modern stream bed material is examined in order to characterize sources and evaluate downstream mixing of sediments in the upper Fraser River drainage basin, British Columbia. The <63 µm fraction is emphasized for its relative mobility and ease of analysis using instrumental neutron activation. Overall, the composition of the stream sediments closely re?ects bedrock distribution. Samples dominated by limestone and dolostone, calcite and dolomite, and related elements (Ca, Mg, Sr etc.) correspond to Lower and Middle Cambrian carbonate bedrock largely con?ned to the Moose River sub‐basin. Clastic and non‐quartzite metamorphic lithologies, primary and secondary aluminosilicate minerals and related elements (Al, Cs, Rb etc.) are largely derived from Miette Group bedrock and associated with the uppermost Fraser River sub‐basin. Except in the case of the Moose River/Fraser River junction, the determination of proportional tributary contributions is complicated by variable or delayed mixing, localized ?oodplain or valley side sources, and limited contrast between source areas. At present the Moose River sub‐basin contributes a greater proportion of the total and ?ne‐grained sediment loads of the combined Fraser River than would be expected from drainage basin area alone. The imbalance is related to greater relief, precipitation and runoff in the Moose River sub‐basin; however, the spatial association of carbonate‐rich stream sediments, ice cover and carbonate bedrock exposure indicates that glaciers play a particularly important roll in generating ?ne‐grained ?uvial sediment. Since differences in glacier cover and glacier potential in the two major sub‐basins are likely to be persistent, and since relative sediment yields from the sub‐basins can be determined from sediment composition, a potential indicator of glacier variation and climate change during the Holocene is therein available. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Aggtelek National Park, Hungary, is a limestone karst upland characterized by karren, dolines and river caves. For a period of two years, climatic and carbonate dissolution variables were monitored at four depths in a 7·5 m shaft through the soil fill in the floor of a typical large (150 m diameter) doline. Results are compared to other monitoring stations in the shallow soils on side slopes. Runoff and groundwater flow are focused into the base of the doline soil fill, where moisture is maintained at 70–90 per cent field capacity and temperatures permit year-round production of soil CO2. The capacity to dissolve calcite (limestone) ranges from c. 3 g m−2 per year beneath thin soils on the driest slopes to 17–30 g m−2 per year in the top 1–2 m of doline fill and at its base 5–7 m below. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The artificial sweetener acesulfame (ACE) is a potentially useful tracer of waste water contamination in groundwater. In this study, ACE concentrations were measured in waste water and impacted groundwater at 12 septic system sites in Ontario, Canada. All samples of septic tank effluent (n = 37) had ACE >6 µg/L, all samples of groundwater from the proximal plume zones (n = 93) had ACE >1 µg/L and, almost all samples from the distal plume zones had ACE >2 µg/L. Mean mass ratios of total inorganic nitrogen/ACE at the 12 sites ranged from 680 to 3500 for the tank and proximal plume samples. At five sites, decreasing ratio values in the distal zones indicated nitrogen attenuation. These ratios were applied to three aquifers in Canada that are nitrate‐stressed and an urban stream where septic systems are present nearby to estimate the amount of waste water nitrate contamination. At the three aquifer locations that are agricultural, low ACE values (<0.02‐0.15 µg/L) indicated that waste water contributed <15% of the nitrate in most samples. In groundwater discharging to the urban stream, much higher ACE values (0.2‐11 µg/L) indicated that waste water was the likely source of >50% of the nitrate in most samples. This study confirms that ACE is a powerful tracer and demonstrates its use as a diagnostic tool for establishing whether waste water is a significant contributor to groundwater contamination or not.  相似文献   

15.
Time patterns of karst denudation in northwest Georgia (U.S.A.) were investigated at three spring sites for 12 months and at five stream sites for 10 years. Rainfall was evenly distributed and showed no significant seasonality. At the springs, as well as the streams, water hardness was largely controlled by discharge. At the springs, soil pCO2 and water pH were strongly correlated (r + -0·69 to -0·83). Solute transport in spring waters was highly seasonal, with two conduit flow springs removing more limestone in the winter, and the diffuse flow spring removing more during the growing season. At the stream sites, most denudation occurred during the winter and spring seasons, and least during the summer. Fourier analysis showed that variations in denudation occur on deterministic (long-wave) as well as stochastic (shortwave) time scales. As contributing variables, discharge varied in short-wave and long-wave cycles, whereas soil pCO2 showed only a long-wave cycle. The 12 month deterministic cycles were the most important, with changes in discharge taking precedence over soil pCO2. Time series regression explains up to 69 per cent of changes in denudation through rain and soil pCO2. Time cycles in available water are the key controlling factor of denudation, and amounts of available soil CO2 may not be as important in the temporal patterns of karst downwearing as has been believed previously.  相似文献   

16.
In this paper, by using concentration and carbon stable isotope the CO2 sources of soil profiles developed on limestone, dolostone and claystone basements in Central Guizhou, China are comparatively studied. The results show that CO2 concentration of soil profiles developed on different basements is different, having the following sequence: limestone ; dolostone;claystone. Below the soil depth of 20 cm from the surface the δ13 value of CO2 in soil profile developed on limestone ranges from -12.811%. - -13.492%.(PDB), that in soil profile developed on dolostone varys from -13.212%. - -14.271%.(PDB) and that in soil profile developed on claystone is about-20.234%. - -21.485%.(PDB). Taking the carbon isotope of soil organic matter and carbonate rock as two isotopic endmembers, the proportion of soil CO2 generated by dissolution of carbonate rock is calculated, about 21%–25% for soil profile developed on limestone basement, 19%–21% for soil profile developed on dolostone basement. There is almost no influx of CO2 generated by the dissolution of carbonate rock in soil profile developed on claystone basement.  相似文献   

17.
High‐resolution measurements of rainfall, water level, pH, conductivity, temperature and carbonate chemistry parameters of groundwater at two adjacent locations within the peak cluster karst of the Guilin Karst Experimental Site in Guangxi Province, China, were made with different types of multiparameter sonde. The data were stored using data loggers recording with 2 min or 15 min resolution. Waters from a large, perennial spring represent the exit for the aquifer's conduit flow, and a nearby well measures water in the conduit‐adjacent, fractured media. During flood pulses, the pH of the conduit flow water rises as the conductivity falls. In contrast, and at the same time, the pH of groundwater in the fractures drops, as conductivity rises. As Ca2+ and HCO3? were the dominant (>90%) ions, we developed linear relationships (both r2 > 0·91) between conductivity and those ions, respectively, and in turn calculated variations in the calcite saturation index (SIC) and CO2 partial pressure (P) of water during flood pulses. Results indicate that the P of fracture water during flood periods is higher than that at lower flows, and its SIC is lower. Simultaneously, P of conduit water during the flood period is lower than that at lower flows, and its SIC also is lower. From these results we conclude that at least two key processes are controlling hydrochemical variations during flood periods: (i) dilution by precipitation and (ii) water–rock–gas interactions. To explain hydrochemical variations in the fracture water, the water–rock–gas interactions may be more important. For example, during flood periods, soil gas with high CO2 concentrations dissolves in water and enters the fracture system, the water, which in turn has become more highly undersaturated, dissolves more limestone, and the conductivity increases. Dilution of rainfall is more important in controlling hydrochemical variations of conduit water, because rainfall with higher pH (in this area apparently owing to interaction with limestone dust in the lower atmosphere) and low conductivity travels through the conduit system rapidly. These results illustrate that to understand the hydrochemical variations in karst systems, considering only water–rock interactions is not sufficient, and the variable effects of CO2 on the system should be evaluated. Consideration of water–rock–gas interactions is thus a must in understanding variations in karst hydrochemistry. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
The iodide contents in 389 ground-water-tapping plants of the county are compared with the geological character of the aquifer, the carbonate and non-carbonate hardness and the nitrate and chloride contents of the waters. 54% of the plants have I-concentrations of 3 … 7 μg/l. In the air-covered ground-water (hardness quotient<2.8) 2 … 50 μg/l I are found, whereas in the confined ground-water (hardness quotient >2.8) 2 … 50 μg/l I are contained. In general, the I-content increases with the carbonate hardness, a connection with till existing. Therefore, ground-waters of the Miocene have relatively low salt- and I-contents. Geogenic salt influences in the form of NaCl increase the I-contents to 50 … 100 μg/l. Anthropogenic influences in the residential area and due to waste increase the Cl?- and I?-concentrations. There were not detected any dependences between the I- and NO3-contents.  相似文献   

19.
Field measurements of wave ripples and megaripples were made with a Sand Ripple Profiler in the surf and shoaling zones of a sandy macrotidal dissipative beach at Perranporth, UK in depths 1–6 m and significant wave heights up to 2.2 m. A frequency domain partitioning approach allowed quantification of height (η), length (λ) and migration rate of ripples and megaripples. Wave ripples with heights up to 2 cm and wavelengths ~20 cm developed in low orbital velocity conditions (u m?<?0.65 m/s) with mobility number ψ?<?25. Wave ripple heights decreased with increasing orbital velocity and were flattened when mean currents were >0.1 m/s. Wave ripples were superimposed on top of megaripples (η?=?10 cm, λ?=?1 m) and contributed up to 35 % of the total bed roughness. Large megaripples with heights up to 30 cm and lengths 1–1.8 m developed when the orbital velocity was 0.5–0.8 m/s, corresponding to mobility numbers 25–50. Megaripple heights and wavelengths increased with orbital velocity but reduced when mean current strengths were >0.15 m/s. Wave ripple and megaripple migrations were generally onshore directed in the shoaling and surf zones. Onshore ripple migration rates increased with onshore-directed (+ve) incident wave skewness. The onshore migration rate reduced as offshore-directed mean flows (undertow) increased in strength and reached zero when the offshore-directed mean flow was >0.15 m/s. The migration pattern was therefore linked to cross-shore position relative to the surf zone, controlled by competition between onshore-directed velocity skewness and offshore-directed mean flow.  相似文献   

20.
Microorganisms are a ubiquitous feature of most hard substrata on Earth and their role in the geomorphological alteration of rock and stone is widely recognized. The role of microorganisms in the modification of engineering materials introduced into the intertidal zone through the construction of hard coastal defences is less well understood. Here we use scanning electron microscopy (SEM) to examine microbial colonization and micro‐scale geomorphological features on experimental blocks of limestone, granite and marine concrete after eight months' exposure in the intertidal zone in Cornwall, UK. Significant differences in the occurrence of microbial growth features, and micro‐scale weathering and erosion features were observed between material types (ANOVA p < 0·000). Exposed limestone blocks were characterized by euendolithic borehole erosion (99% occurrence) within the upper 34·0 ± 12·3 µm of the surface. Beneath the zone of boring, inorganic weathering (chemical dissolution and salt action) had occurred to a depth of 125·0 ± 39·0 µm. Boring at the surface of concrete was less common (27% occurrence), while bio‐chemical crusting was abundant (94% occurrence, mean thickness 45·1 ± 27·7 µm). Crusts consisted of biological cells, salts and other chemical precipitates. Evidence of cryptoendolithic growth was also observed in limestone and concrete, beneath the upper zone of weathering. On granite, biological activity was restricted to thin epilithic films (<10 µm thickness) with some limited evidence of mechanical breakdown. Results presented here demonstrate the influence of substratum lithology, hardness and texture on the nature of early micro‐scale colonization, and the susceptibility of different engineering materials to organic weathering and erosion processes in the intertidal zone. The implications of differences in initial biogeomorphic responses of materials for long‐term rock weathering, ecology and engineering durability are discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号