首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

2.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

3.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

4.
From a synthesis of data on volcanic evolution,movement of the lithosphere,and mantle velocities in the Baikal-Mongolian region,we propose a comprehensive model for deep dynamics of Asia that assumes an important role of the Gobi,Baikal,and North Transbaikal transition-layer melting anomalies.This layer was distorted by lower-mantle fluxes at the beginning of the latest geodynamic stage(i.e.in the early late Cretaceous) due to avalanches of slab material that were stagnated beneath the closed fragments of the Solonker,Ural-Mongolian paleoceans and Mongol-Okhotsk Gulf of Paleo-Pacific.At the latest geodynamic stage,Asia was involved in east-southeast movement,and the Pacific plate moved in the opposite direction with subduction under Asia.The weakened upper mantle region of the Gobi melting anomaly provided a counterflow connected with rollback in the Japan Sea area.These dynamics resulted in the formation of the Honshu-Korea flexure of the Pacific slab.A similar weakened upper mantle region of the North Transbaikal melting anomaly was associated with the formation of the Hokkaido-Amur flexure of the Pacific slab,formed due to progressive pull-down of the slab material into the transition layer in the direction of the Pacific plate and Asia convergence.The early—middle Miocene structural reorganization of the mantle processes in Asia resulted in the development of upper mantle low-velocity domains associated with the development of rifts and orogens.We propose that extension at the Baikal Rift was caused by deviator flowing mantle material,initiated under the moving lithosphere in the Baikal melting anomaly.Contraction at the Hangay orogen was created by facilitation of the tectonic stress transfer from the Indo-Asian interaction zone due to the low-viscosity mantle in the Gobi melting anomaly.  相似文献   

5.
Jianshe Lei  Dapeng Zhao 《Tectonophysics》2005,397(3-4):281-295
We present the first seismic image of the upper mantle beneath the active intraplate Changbai volcano in Northeast Asia determined by teleseismic travel time tomography. The data are measured at a new seismic network consisting of 19 portable stations and 3 permanent stations. Our results show a columnar low-velocity anomaly extending to 400-km depth with a P-wave velocity reduction of up to 3%. High velocity anomalies are visible in the mantle transition zone, and deep-focus earthquakes occur at depths of 500–600 km under the region, suggesting that the subducting Pacific slab is stagnant in the transition zone, as imaged clearly by global tomography. These results suggest that the intraplate Changbai volcano is not a hotspot like Hawaii but a kind of back-arc volcano related to the deep subduction and stagnancy of the Pacific slab under Northeast Asia.  相似文献   

6.
We determined high-resolution three-dimensional P- and S-wave velocity (Vp, Vs) structures beneath Kyushu in Southwest Japan using 177,500 P and 174,025 S wave arrival times from 8515 local earthquakes. A Poisson's ratio structure was derived from the obtained Vp and Vs values. Our results show that significant low-Vp, low-Vs and high Poisson's ratio zones are extensively distributed along the volcanic front in the uppermost mantle, which extend and dip toward the back-arc side in the mantle wedge. In the crust, low-Vp, low-Vs and high Poisson's ratio anomalies exist beneath the active volcanoes. The subducting Philippine Sea slab is clearly imaged as a high-Vp, high-Vs and low Poisson's ratio zone from the Nankai Trough to the back-arc. A thin low-velocity zone is detected above the subducting Philippine Sea slab in the mantle wedge, and earthquakes in the upper mantle are distributed along the transition zone between this thin low-velocity zone and the high-velocity Philippine Sea slab, which may imply that oceanic crust exists on the top of the slab and the forearc mantle wedge is serpentinized due to the slab dehydration. The seismic velocity of the subducting oceanic crust with basaltic or gabbroic composition is lower than that of the mantle according to the previous studies. The serpentinization process could also dramatically reduce the seismic velocity in the forearc mantle wedge.  相似文献   

7.
The lithosphere is the cold conductive boundary layer formed by cooling of the oceanic crust and upper mantle as it is convected away from oceanic ridges. Although its rheological properties vary continuously with depth, the lithosphere is conveniently divided into an upper elastic layer and a lower plastic layer, the latter overlying a zone of viscous flow. Chemically the lithosphere is vertically zoned with its uppermost part formed by variously hydrated oceanic crust; at M this overlies highly depleted dunite or harzburgite passing downwards over 50 km or so into garnet lherzolite. The vertical variation in density, and thus the gravitational stability of the lithosphere, is controlled by interplay of compositional variation and temperature distribution.As it enters an oceanic trench the lithosphere flexures elastically and plunges downwards at an average inclination close to 45°. During its descent it undergoes dissipative heating at its upper surface. Initially this heating drives a series of prograde metamorphic reactions in the oceanic crust ; because these are largely endothermic, the descending lithosphere heats less rapidly than previously expected, an effect which may be enhanced by percolation of the water of dehydration.Although it is commonly assumed that dehydration water is released upwards, it is not clear that this is true in the presence of the strong negative temperature gradients at the top of the slab, and water may initially be driven downwards into the slab to be released later at much greater depth. The magmatic activity which is associated with the partial melting of the uppermost part of the slab and with partial fusion of diapiric masses in the mantle above it, is critically dependent on the behaviour of the water carried down by the subduction process.The slab itself undergoes a series of phase changes during its descent some of which make a major contribution to the body force during subduction. By the time it reaches 700 km the slab has undergone significant thermal erosion, but the major compositional inhomogeneities within it are retained by the mantle into which it merges.  相似文献   

8.
A type of continental-oceanic transition zone, referred to as the Columbian transition zone, is distinguished from two other commonly known types of these zones. The subsidence of the Earth's crust, typical of all transition zones, is shown to be connected (by geophysical properties) to the transformation of continental crust into intermediate crust and later into oceanic. The most likely mechanisms of such changes are the basification of continental crust, its foundering, block by block, into the heated upper mantle, and its substitution by new oceanic crust. The evolution of transition zones of the Pacific type is largely influenced by deep faults, which reach down to the level of undepleted mantle. From this level, the volatile products rise to the surface which results in the formation of calc-alkali magmas on island arcs. The Benioff zones are deep faults, whose inclinations are dependent on the density contrasts in the upper mantle on either side of the Benioff zones. The denser mantle flows beneath the mantle of lower density. This phenomenon is depicted by plate tectonics as subduction.On the whole, the evolution of transition zones gives rise to the growth of the oceans at the expense of the continents, though oceanic crust becomes thicker by addition of volcanogenic layers composed of andesite, in the transition zones (type two) of the Pacific type at island arcs.  相似文献   

9.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

10.
Seismic observations have shown structural variation near the base of the mantle transition zone(MTZ)where subducted cold slabs,as visualized with high seismic speed anomalies(HSSAs),flatten to form stagnant slabs or sink further into the lower mantle.The different slab behaviors were also accompanied by variation of the "660 km" discontinuity depths and low viscosity layers(LVLs) beneath the MTZ that are suggested by geoid inversion studies.We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics.A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ.We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ.The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20-30 My from the start of the plate subduction.The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model.Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals,dehydration should occur at the phase transformation depth,~660 km.The variation of the discontinuity depths and highly localized low seismic speed anomaly(LSSA) zones observed from seismic P waveforms in a relatively high frequency band(~1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary.The LSSAs which correspond to dehydration induced fluids are likely to be very local,given very small hydrogen(H~+) diffusivity associated with subducted slabs.The image of such local LSSA zones embedded in HSSAs may not be necessarily captured in tomography studies.The high electrical conductivity in the MTZ beneath the northwestern Pacific subduction zone does not necessarily require a broad range of high water content homogeneously.  相似文献   

11.
俯冲带作为板块构造最为重要的标志之一,是地球最大的物质循环系统,被称为“俯冲工厂”.俯冲作用是驱动和维持板块运动的重要动力引擎.一个完整的俯冲带发育海沟、增生楔、弧前盆地、岩浆弧、弧后盆地(或弧背前陆盆地)等基本构造单元.在一些特殊情况下(如洋脊俯冲、年轻洋壳俯冲、海山俯冲),则可形成一些特殊的俯冲带结构(如平板俯冲、俯冲侵蚀),导致岩浆弧、增生楔、弧前盆地等不发育甚至缺失.俯冲大洋板片可滞留于或穿越地幔过渡带进入下地幔甚至到达核幔边界,把地壳物质带入到地球深部,并通过地幔柱活动上升到浅部.俯冲带是构造活动强烈的区域,存在走滑、挤压、伸展等变形及其构造叠加.俯冲带海沟可向大洋或大陆方向迁移,岛弧及增生楔等也随之发生迁移,使俯冲带上盘发生周期性挤压和伸展,形成复杂的古地理格局.微陆块、岛弧、海山/洋底高原等地质体在俯冲带发生增生时,可阻塞先存的俯冲带,造成俯冲带跃迁或俯冲极性反转,在其外侧形成新的俯冲带.俯冲带深部精细结构、俯冲起始如何发生、板块俯冲与地幔柱的深部关联机制等是当前俯冲带研究中值得关注的前沿问题.开展俯冲带地球物理深部探测、古缝合带与现今俯冲带对比研究、俯冲带动力学数值模拟...  相似文献   

12.
中国大陆构造及动力学若干问题的认识   总被引:17,自引:2,他引:15  
中国(东亚)大陆受特提斯、古亚洲和太平洋构造体系的制约,具有复杂的地体构架和特殊的岩石圈结构。本文从地学前沿——大陆动力学的视野出发,围绕中国大陆构造及动力学四个方面的研究,总结已有的进展并提出新的思考:①中国大陆板块下的构造和整个地幔运动的构架:地震层析资料揭示西太平洋板片向西俯冲到东亚大陆之下,其倾角逐渐减小,最后近水平地插进400~600km深度的地幔过渡带中,成为箕状几何形态的超深俯冲板片。印度岩石圈板片超深俯冲至青藏高原之下~800km的深度,在喜马拉雅西构造结部位发生双向不对称深俯冲,印度岩石圈板片向东俯冲至东构造结东侧之下300~500km的深度。②中国大陆变质基底的再活化:中国大陆的大部分陆块未受显生宙以来构造、变质和岩浆事件的改造与激活,在冈瓦纳大陆北缘的印度陆块和阿拉伯陆块北缘还发育有形成于泛非期(530~470Ma)的造山带,其影响范围至高喜马拉雅、拉萨地体和三江地区。新生代的变质活化普遍出现在喜马拉雅、南迦巴瓦、拉萨地体和三江-缅甸地区,最新的变质年龄仅2~1Ma(南迦巴瓦)。③中国主要高压-超高压变质带的大地构造背景及深俯冲-折返机制:中国及邻区含榴辉岩的高压-超高压(HP/UHP)变质带有洋壳(深)俯冲和陆壳(深)俯冲之分。青藏高原中,大部分洋壳俯冲形成的高压/超高压变质带与原-古特提斯洋盆中诸多微陆块之间的小洋盆的汇聚碰撞有关,陆壳深俯冲作用有两种机制,它们分别是大陆块之间剪式碰撞和撕裂式岩石圈舌形板片的深俯冲。④中国大陆造山带的深部物质可经3类机制挤出,即深部地壳物质"牙膏式"挤出、侧向挤出和"挤压转换式"挤出。  相似文献   

13.
In this article, we review the significant recent results of geophysical studies and discuss their implications on seismotectonics, magmatism, and mantle dynamics in East Asia. High-resolution geophysical imaging revealed structural heterogeneities in the source areas of large crustal earthquakes, which may reflect magma and fluids that affected the rupture nucleation of large earthquakes. In subduction zone regions, the crustal fluids originate from the dehydration of the subducting slab. Magmatism in arc and back-arc areas is caused by the corner flow in the mantle wedge and dehydration of the subducting slab. The intraplate magmatism has different origins. The continental volcanoes in Northeast Asia (such as Changbai and Wudalianchi) seem to be caused by the corner flow in the big mantle wedge (BMW) above the stagnant slab in the mantle transition zone and the deep dehydration of the stagnant slab as well. The Tengchong volcano in Southwest China is possibly caused by a similar process in BMW above the subducting Burma microplate (or Indian plate). The Hainan volcano in southernmost China seems to be a hotspot fed by a lower-mantle plume associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The occurrence of deep earthquakes under the Japan Sea and the East Asia margin may be related to a metastable olivine wedge in the subducting Pacific slab. The stagnant slab finally collapses down to the bottom of the mantle, which may trigger upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and cause the slab–plume interactions. Some of these issues, such as the origin of intraplate magmatism, are still controversial, and so further detailed studies are needed from now.  相似文献   

14.
We present seismic images of the mantle beneath East Russia and adjacent regions and discuss geodynamic implications. Our mantle tomography shows that the subducting Pacific slab becomes stagnant in the mantle transition zone under Western Alaska, Bering Sea, Sea of Okhotsk, Japan Sea, and Northeast Asia. Many intraplate volcanoes exist in these areas, which are located above the low-velocity zones in the upper mantle above the stagnant slab, suggesting that the intraplate volcanoes are related to the dynamic processes in the big mantle wedge above the stagnant slab and the deep slab dehydration. Teleseismic tomography revealed a low-velocity zone extending down to 660 km depth beneath the Baikal rift zone, which may represent a mantle plume. The bottom depths of the Wadati–Benioff deep seismic zone and the Pacific slab itself become shallower toward the north under Kamchatka Peninsula, and the slab disappears under the northernmost Kamchatka. The slab loss is considered to be caused by the friction between the slab and the surrounding asthenosphere as the Pacific plate rotated clockwise at about 30 Ma ago, and then the slab loss was enlarged by the slab-edge pinch-off by the hot asthenospheric flow and the presence of Meiji seamounts.  相似文献   

15.
The magnetotelluric (MT) method was used to image the crust and upper mantle beneath the Delamerian and Lachlan orogens in western Victoria, Australia. During the Cambrian time period, this region changed from being the extended passive margin of Proterozoic Australia into an Andean-style convergent margin that progressively began to accrete younger oceanic terranes. Several broadband MT transects, which were collected in stages along coincident deep (full crust imaging) seismic reflection lines, have now been combined to create a continuous 500 km east–west transect over the Delamerian–Lachlan transition region in the Stawell Zone. We present the electrical resistivity structure of the lithosphere using both 3D and 2D inversion methods. Additionally, 1D inversions of long-period AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) MT data on a 55 km regionally spaced grid were used to provide starting constraints for the 3D inversion of the 2D profile. The Delamerian to Lachlan Orogen transition region coincides with the Mortlake Discontinuity, which marks an isotopic discontinuity in Cenozoic basalts, with higher strontium isotope enrichment ratios in the Lachlan Orogen relative to the Delamerian Orogen. Phase tensor ellipses of the MT data reveal a distinct change in electrical resistivity structure near the location of the Mortlake Discontinuity, and results of 3D and 2D inversions along the MT profile image a more conductive lower crust and upper mantle beneath the Lachlan Orogen than the Delamerian Orogen. Increased conductivity is commonly ascribed to mantle enrichment and thus supports the notion that the isotope enrichment of the Cenozoic basalts at least partially reflects an enriched mantle source rather than crustal contamination. Fault slivers of the lower crust from the more conductive Lachlan region expose Cambrian boninites and island arc andesites indicative of subduction, a process that can enrich the mantle isotopically, and also electrically, by introducing carbon (graphite) and water (hydrogen).  相似文献   

16.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

17.
The East Asian continental margin is underlain by stagnant slabs resulting from subduction of the Pacific plate from the east and the Philippine Sea plate from the south. We classify the upper mantle in this region into three major domains: (a) metasomatic–metamorphic factory (MMF), subduction zone magma factory (SZMF), and the ‘big mantle wedge’ (BMW). Whereas the convection pattern is anticlockwise in the MMF domain, it is predominantly clockwise in the SZMF and BMW, along a cross section from the south. Here we define the MMF as a small wedge corner which is driven by the subducting Pacific plate and dominated by H2O-rich fluids derived by dehydration reactions, and enriched in large ion lithophile elements (LILE) which cause the metasomatism. The SZMF is a zone intermediate between MMF and BMW domains and constitutes the main region of continental crust production by partial melting through wedge counter-corner flow. Large hydrous plume generated at about 200 km depth causes extensive reduction in viscosity and the smaller scale hydrous plumes between 60 km and 200 km also bring about an overall reduction in the viscosity of SZMF. More fertile and high temperature peridotites are supplied from the entrance to this domain. The domain extends obliquely to the volcanic front and then swings back to the deep mantle together with the subducting slab. The BMW occupies the major portion of upper mantle in the western Pacific and convects largely with a clockwise sense removing the eastern trench oceanward. Sporadic formation of hydrous plume at the depth of around 410 km and the curtain flow adjacent to the trench cause back arc spreading. We envisage that the heat source in BMW could be the accumulated TTG (tonalite–trondhjemite–granodiorite) crust on the bottom of the mantle transition zone. The ongoing process of transportation of granitic crust into the mantle transition zone is evident from the deep subduction of five intra-oceanic arcs on the subducting Philippine Sea plate from the south, in addition to the sediment trapped subduction by the Pacific plate and Philippine Sea plate. The dynamics of MMF, SZMF and BMW domains are controlled by the angle of subduction; a wide zone of MMF in SW Japan is caused by shallow angle subduction of the Philippine Sea plate and the markedly small MMF domain in the Mariana trench is due to the high angle subduction of Pacific plate. The domains in NE Japan and Kyushu region are intermediate between these two. During the Tertiary, a series of marginal basins were formed because of the nearly 2000 km northward shift of the subduction zone along the southern margin of Tethyan Asia, which may be related to the collision of India with Asia and the indentation. The volume of upper mantle under Asia was reduced extensively on the southern margin with a resultant oceanward trench retreat along the eastern margin of Asia, leading to the formation of a series of marginal basins. The western Pacific domain in general is characterized by double-sided subduction; from the east by the oldest Pacific plate and from the south by the oldest Indo-Australian plate. The old plates are hence hydrated extensively even in their central domains and therefore of low temperature. The cracks have allowed the transport of water into the deeper portions of the slab and these domains supply hydrous fluids even to the bottom of the upper mantle. Thus, a fluid dominated upper mantle in the western Pacific drives a number of microplates and promote the plate boundary processes.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987110000034   总被引:5,自引:1,他引:4  
<正>We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China.Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge,whereas the intraplate magmatism in China has different origins.The active volcanoes in Northeast China(such as the Changbai and Wuda-lianchi) are caused by hot upwelling in the big mantle wedge(BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well.The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate(or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle.The stagnant slab finally collapses down to the bottom of the mantle,which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab—plume interactions.  相似文献   

19.
We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and eastward subduction of Burma microplate.  相似文献   

20.
The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative PT paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5–3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10–20 Myr (after 400–600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the PT paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号