首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single backscattering model was used to estimate total attenuation of coda waves (Qc) of local earthquakes recorded on eight seismological stations in the complex area of the western continental Croatia. We estimated Q0 and n, parameters of the frequency dependent coda-Q using the relation Qc = Q0fn. Lapse time dependence of these parameters was studied using a constant 30 s long time window that was slid along the coda of seismograms. Obtained Qc were distributed into classes according to their lapse time, tL. For tL = 20–50 s we estimated Q0 = 45–184 and n = 0.49–0.94, and for tL = 60–100 s we obtained Q0 = 119–316 and n = 0.37–0.82. There is a tendency of decrease of parameter n with increasing Q0, and vice versa. The rates of change of both Q0 and n seem to decrease for lapse times larger than 50–80 s, indicating an alteration in rock properties controlling coda attenuation at depths of about 100–160 km. A very good correlation was found between the frequency dependence parameter n and the Moho depths for lapse times of 50, 60 and 70 s.  相似文献   

2.
The Earth's free core nutation (FCN) is a retrograde eigenrnode which is attributed to the interaction between the solid mantle and the liquid core of the rotational elliptical Earth. This mode appears as an eigenmode of nearly diurnal free wobble (NDFW) in a terrestrial reference frame with a period of about one day (XU et al, 2001). Therefore, the NDFW will lead to an obvious resonance enhancement in the diurnal tidal gravity observations, especially those of the tidal waves with frequencies closed to its eigenfrequency such as P1, K1, ψ1 and Ф1. The FCN resonance parameters can be retrieved accurately by high-precision tidal gravity observations, especially those recorded with the superconducting gravimeters (SG). The Global Geodynamics Project (GGP) organized by IUGG took it as an important content for determining the FCN resonance parameters by using gravity data. However, the results are affected by many factors such as station location, background noise, the selection of the tide-generating potential tables, ocean tide models, data processing techniques and so on. In our study, the FCN parameters will be retrieved by using the SG observations at Wuhan, and the effects of the choices of various tide-generating potential tables, oceanic models and weight functions on the estimation of the FCN parameters will be discussed in detail,  相似文献   

3.
《Journal of Geodynamics》2010,49(3-5):247-252
Enceladus, one of Saturn's moons, shows significant volcanic activity identified by the Cassini spacecraft. The aim of the present study is to investigate – with the adaptation of mathematical tools used in geodynamics – the extent of tidal heating due to the mean motion resonance with Dione. For the purpose of calculations a two-layer model of Enceladus was used. The inner part of the model is a “rocky core” with a relative radius 0.55, while the outer part is composed of water ice. The results of model calculations show that the effective tidal heating is not uniformly distributed within Enceladus. It was found for the selected model of Enceladus, that the tidal heating is maximum within the depth interval (25–75) km. Due to the inhomogeneity within Enceladus, 85% of the tidal energy is generated in a volume that contains just 39% of its mass. In time intervals of 3.0 × 108 and 5.3 × 108 years the temperature increase in the relative depth range 0.70  r/aE  0.90 is approximately 270 and 370 K, respectively.  相似文献   

4.
《Advances in water resources》2005,28(10):1122-1132
During the last 25 years there has been a great interest in deriving aquifer characteristics from outflow data. This analysis has been mainly based of the drainage of a horizontal aquifer after sudden drawdown, using the Boussinesq approximation. Following the general approach of Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40], it was determined that for this geometry the aquifer behavior could be characterized by dQ/dt  Q3 for small t and by dQ/dt  Q3/2 for large t. It was remarked that dQ/dt  Q for large t is often observed. In practice, it is also difficult to determine if dQ/dt  Q3 for small t because this behavior can only be observed over a very short period.Here, we present a similar analysis of aquifer behavior based on the more fundamental Laplace solution for penetrated aquifers. It has been shown that also when the drain does not fully penetrate the aquifer, the solution still produces good results [Szilagyi, J. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions. Water Resour Res 2003;39(6)]. The Laplace solution quickly shows that dQ/dt  Q for t  ∞ and dQ/dt  Q for t  0, after sudden drawdown. This analysis reconfirms previous findings concerning long-time behavior. More importantly, the analysis shows that the exponent B in dQ/dt  QB does not have a fixed limited value for short times for the given geometry. Further analysis, however, shows that under certain conditions the relation dQ/dt  Q3 is retained for 0  t < 1. Detailed examination of the Laplace solution also shows under which types of recharge dynamics a well-identifiable transition takes place between short- and long-term behavior. As long as such a clear transition exists, the aquifer characterization method proposed earlier by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40] can be applied. It is shown that for a sharp pulse input, the Laplace solution gives similar results as presented by Brutsaert and Lopez [Brutsaert W, Lopez, JP. Basin-scale geohydrologic drought flow features of riparian aquifers in the southern Great Plains. Water Resour Res 1998;34(2):233–40]. For a smooth pulse, the transition becomes unclear. What is “smooth” and “sharp” depends on input and aquifer characteristics, whereby shallow aquifers give clearer transitions than deep aquifers for the same input. The analysis shows that when rain ceases suddenly after the aquifer has come into equilibrium with a steady rain input, a usable transition in the relation between dQ/dt and Q can be found as well. Researchers can use the present analysis to assess whether specific aquifers and recharge events can be used for the previously suggested characterization method.  相似文献   

5.
《Journal of Geodynamics》2010,49(3-5):253-259
We observe the Earth tidal fields at diurnal and semi-diurnal periods using Kinematic Precise Point Positioning (KPPP) GPS analysis. Our KPPP GPS solutions compare well with super-conducting gravimeter (SG) observations and a theoretical Earth tidal model, that includes both ocean tide loading model and body tides. We make a high resolution map of the observed Earth tidal response fields using the Japanese GEONET GPS network which consists of 1200 sites. We find that: (1) the average phase of GPS data lags 0.11 ± 0.04° from our theoretical Earth tidal model, (2) the average amplitude ratio between GPS and the theoretical Earth tidal model is 1.007 ± 0.003, (3) the amplitude in the Kyushu district is about 1.0–1.5 ± 0.3% larger than in the Hokkaido district, and (4) the amplitude at the Japan Sea side is about 0.5 ± 0.2% larger than that at the Pacific Ocean side. These results suggest that we may be able to place constraints on Earth structure using GPS-derived tidal information.  相似文献   

6.
Using data from two very large watersheds and five smaller, this paper explores the use of Bayesian methods for fitting rating curves. Posterior distribution of rating-curve parameters were calculated using Markov Chain Monte Carlo (MCMC) methods, and 95% credible intervals were calculated for predicted discharges, given stage. Expected discharge was related to stage using a link function. For the five smaller watersheds, the assumptions were (a) that the distribution of discharge Q, given stage h, is Normal, with variance proportional to h; (b) that a log link function relates μQ, the mean of Qh, to a function of stage, of the form μQ = β(h + α)λ. For the two large watersheds, however, a better fit was obtained by taking the distribution of Q to be log-Normal, and the link function as ln μQ = β0 + β1h. For the two large watersheds, priors for all three parameters were taken as uninformative; for the five smaller, the prior for parameter λ was taken as Normally distributed, N(2, 0.5). Acceptable ratings were obtained for all seven sites. It is argued that distributions of derived variables (such as annual maximum discharge) can be derived directly from (a) the posterior distribution of rating-curve parameters, and (b) the stage record, without recourse to additional assumptions. Estimates thus obtained for the T-year event will incorporate rating-curve uncertainty. It is argued that Bayesian methods are appropriate for rating-curve calculation because their inherent flexibility (a) allows the incorporation of prior information about the nature of a rating curve; (b) yields credible intervals for predicted discharges and quantities derived from them; (c) can be extended to allow for uncertainty in stage measurements.  相似文献   

7.
《Continental Shelf Research》1999,19(15-16):1905-1932
The M2 tidal component of the flow in the Dover Straits is reconstructed using a natural combination of two independent data sources: HF Ocean Surface Current Radar (HF OSCR) system and coastal tidal measurements. The method used is the variational data assimilation technique into a quasi-linearized finite element tidal model. The model uses triangular elements with horizontal resolution varying from 800 to 1200 m. It is controlled by the boundary conditions at open boundaries, which are adjusted to fit the available data in an optimal way. A “weak” formulation of the dynamical constraints is used. The interpolation scheme allows small (0.01%) deviations from the exact dynamics specified by the model. The optimal state of M2 parameters (sea surface elevation and depth-averaged velocities) is used to map both the M2 tidal flux through the strait and the M2 energy flux. The respective values obtained are the tidal flux amplitude 1.18±0.09×106 m3 s−1, the net residual transport (Stoke's drift) 40±3×103 m3 s−1, and the net energy flux 1.19±0.09×1010 W. These figures within the statistically estimated error band are in the close agreement with those obtained by Prandle et al., 1993. A rigorous error analysis is performed using an explicit inversion of the Hessian matrix, associated with the assimilation scheme. As a result, error charts for M2 velocities and sea surface elevation are obtained. It is shown that OSCR data combined with coastal level measurements and constrained by dynamics is able to provide quite accurate velocity estimates whose errors vary within the range of 0.05–0.45 m s−1 depending upon the location. Error maps also enable us to determine areas requiring better coverage by data, thus forming a basis of optimization approach to the design of the HFR measurements. The use of variational assimilation technique in providing integrated interpolation patterns from various sources of data demonstrates its capabilities in relation to future oceanographic monitoring systems of shelf circulation.  相似文献   

8.
We have studied the ability of the GRACE gravimetry mission and Jason-1 altimetry to resolve ice and glacier induced contributions to sea level rise, by means of a fingerprint method. Here, the signals from ice sheet and land glacier changes, steric changes, glacial isostatic adjustment and terrestrial hydrology are assumed to have fixed spatial patterns. In a joint inversion using GRACE and Jason-1 data the unknown temporal components can then be estimated by least-squares. In total, we estimate temporal components for up to ∼ 80 individual patterns. From a propagation of the full error-covariance from GRACE and a diagonal error-covariance from Jason-1 altimetry we find that: (1) GRACE almost entirely explains the mass related parameters in the joint inversion, (2) an inversion using only Jason-1 data has a marginal ability to estimate the mass related parameters, while the steric parameters have much better formal accuracy. In terms of mean sea level rise the steric patterns have a maximum formal accuracy of 0.01 mm for an 11 week running mean. In general, strong negative error correlations (ρ <  0.9) exists between the high and low elevation parts of the ice sheet drainage basins, when those are estimated independently. The largest formal errors found are in the order of 40 Gton for small high elevation subbasins in the southern Greenland ice sheet, which are difficult to separate. In a simplified joint inversion, merging high and low elevation basins, we have investigated the ability of the GRACE and Jason-1 data to separate the geocenter motion into a present-day contribution and a contribution from glacial isostatic adjustment (GIA). We find that the GIA related signal is larger than the present-day component with a maximum of −0.71 mm/year in the Z direction. Total geocenter motion rates are found to be −0.28, 0.43, −1.08 mm/year for the X, Y and Z components, respectively. The inversion results have been propagated to the Jason-1 along-track measurements. Over the time period considered, we see that a large part of the variability in the Pacific, Atlantic and Indian ocean can be explained by our inversion results. The applied inversion method therefore seems a feasible way to separate steric from mass induced sea level changes. At the same time, the joint inversion would benefit from more advanced parameterizations, which may aid in fitting remaining signal from altimetry.  相似文献   

9.
The spectral attenuation of solar irradiation was measured during summer in two types of coastal waters in southern Chile, a north Patagonian fjord (Seno Reloncaví) and open coast (Valdivia). In order to relate the light availability with the light requirements of upper subtidal seaweeds, the saturating irradiance for photosynthesis (Ek) from PI curves was measured. In addition the UV risk was assessed. Based on the z1% of PAR, the lower limit of the euphotic zone in the studied systems averaged 21 m (Kd 0.24 m?1) in Seno Reloncaví and 18 m (Kd 0.27 m?1) in the coast of Valdivia. Photosynthesis of the studied seaweeds was saturated at markedly lower irradiances than found in their natural depths at the time of the study. Solar radiation penetrating into these depths at both locations largely supports the light requirements for the photosynthesis of subtidal species: 50–160 μmol m?2 s?1 for seaweeds from Seno Reloncaví (7 m tidal range) and 20–115 μmol m?2 s?1 for Valdivia assemblages (2 m tidal range). Optimal light conditions to saturate photosynthesis (Ek) were present at 10–16 m water depth. The attenuation of solar irradiation did not vary significantly between the fjord and coastal sites of this study. However, the underwater light climates to which seaweeds are exposed in these sites vary significantly because of the stronger influence of tidal range affecting the fjord system as compared with the open coastal site. The patterns of UV-B penetration in these water bodies suggest that seaweeds living in upper littoral zones such as the intertidal and shallow subtidal (<3 m) may be at risk.  相似文献   

10.
Weekly surface loading variations are estimated from a joint least squares inversion of load-induced GPS site displacements, GRACE gravimetry and simulated ocean bottom pressure (OBP) from the finite element sea-ice ocean model (FESOM).In this study, we directly use normal equations derived from reprocessed GPS observations, where station and satellite positions are estimated simultaneously. The OBP weight of the model in the inversion is based on a new error model, obtained from 2 FESOM runs forced with different atmospheric data sets.Our findings indicate that the geocenter motion derived from the inversion is smooth, with non-seasonal RMS values of 1.4, 0.9 and 1.9 mm for the X, Y and Z directions, respectively. The absolute magnitude of the seasonal geocenter motion varies annually between 2 and 4.5 mm. Important hydrological regions such as the Amazon, Australia, South-East Asia and Europe are mostly affected by the geocenter motion, with magnitudes of up to 2 cm, when expressed in equivalent water height.The chosen solar radiation pressure model, used in the GPS processing, has only a marginal effect on the joint inversion results. Using the empirical CODE model slightly increases the annual amplitude of the Z component of the geocenter by 0.8 mm. However, in case of a GPS-only inversion, notable larger differences are found for the annual amplitude and phase estimates when applying the older physical ROCK models. Regardless of the used radiation pressure model the GPS network still exhibits maximum radial expansions in the order of 3 mm (0.45 ppb in terms of scale), which are most likely caused by remaining GPS technique errors.In an additional experiment, we have used the joint inversion solution as a background loading model in the GPS normal equations. The reduced time series, compared to those without a priori loading model, show a consistent decrease in RMS. In terms of the annual height component, 151 of the 189 stations show a reduction of at least 10% in seasonal amplitude.On the ocean floor, we find a positive overall correlation (0.51) of the inversion solution with time series from globally distributed independent bottom pressure recorders.Even after removing a seasonal fit we still find a correlation of 0.45. Furthermore, the geocenter motion has a significant effect on ocean bottom pressure as neglecting it causes the correlation to drop to 0.42.  相似文献   

11.
High-frequency (≥ 2 Hz) Multi-channel Analysis of Love Waves (MALW) provides a practical way to determine velocity of horizontally polarized shear (SH) waves for a layered earth model up to 30 m below the ground surface in many geological settings. The information used in the MALW method is phase of Love waves. Information on amplitude of Love waves is not utilized in the MALW method. In this paper we present a method that uses information on amplitude of high-frequency Love waves to estimate quality factors (Qs) of near-surface materials. Unlike Rayleigh waves, attenuation coefficients (amplitude) of Love waves are independent of quality factors for P waves and are function of quality factors of Love waves. In theory, a fewer parameters make the inversion of attenuation coefficients of Love waves more stable and reduce the degree of nonuniqueness. We discussed sensitivity of an inversion system based on a linear relationship between attenuation coefficients and dissipation factors (1/Qs). The sensitivity analysis suggested that damping and constraints to an inversion system are necessary to obtain a smooth and meaningful quality factor model when no other information is available. We used synthetic and real-world data to demonstrate feasibility of inversion of attenuation coefficients of high-frequency Love-wave data acquired with the MALW method for quality factors with a linear, damped and constrained system.  相似文献   

12.
A distributed physically-based model describing coupled surface–subsurface flows is applied to an instrumented catchment to investigate the links between runoff generation processes and the dynamics of saturated areas. The spatial characterization of the system is obtained through geophysical measurements and in situ observations. The model is able to reproduce the dynamics of the system through the calibration of only few parameters with a clear physical interpretation, providing a solid basis for our numerical investigations. Such investigations demonstrate the important control exerted by surface topography on the time evolution of saturated area patterns, mainly mediated by topographic curvature, that dictates both the dominant streamflow generation process at the local scale and the connection-disconnection dynamics of saturated areas. The relation between hillslope water storage and streamflow, Q = f(V), is shown to be highly hysteretical and dependent on the mean saturation of the catchment: higher degrees of saturation tend to yield one-to-one relationships between streamflow and water storage. On the contrary, streamflow-water storage relations are importantly affected by the specific configuration of saturated areas connected to the outlet when the system is far from complete saturation. This observation contradicts common assumptions of a one-to-one relationship Q = f(V) often used to justify widely observed power-law Q vs. dQ/dt recession curves. Furthermore, even when Q = f(V) becomes unique at high degrees of saturation, no power-law form emerged in our runs, speculatively because of the small size of the catchment formed by a single incision and the corresponding hillslope.  相似文献   

13.
Two accurately calibrated superconducting gravimeters (SGs) provide high quality tidal gravity records in three central European stations: C025 in Vienna and at Conrad observatory (A) and OSG050 in Pecný (CZ). To correct the tidal gravity factors from ocean loading effects we compared the load vectors from different ocean tides models (OTMs) computed with different software: OLFG/OLMP by the Free Ocean Tides Loading Provider (FLP), ICET and NLOADF. Even with the recent OTMs the mass conservation is critical but the methods used to correct the mass imbalance agree within 0.1 nm/s2. Although the different software agrees, FLP probably provides more accurate computations as this software has been optimised. For our final computation we used the mean load vector computed by FLP for 8 OTMs (CSR4, NAO99, GOT00, TPX07, FES04, DTU10, EOT11a and HAMTIDE). The corrected tidal factors of the 3 stations agree better than 0.04% in amplitude and 0.02° in phase. Considering the weighted mean of the three stations we get for O1 δc = 1.1535 ± 0.0001, for K1 δc = 1.1352 ± 0.0003 and for M2 δc = 1.1621 ± 0.0003. These values confirm previous ones obtained with 16 European stations. The theoretical body tides model DDW99/NH provides the best agreement for M2 (1.1620) and MATH01/NH for O1 (1.1540) and K1 (1.1350). The largest discrepancy is for O1 (0.05%). The corrected phase αc does not differ significantly from zero except for K1 and S2. The calibrations of the two SG's are consistent within 0.025% and agree with Strasbourg results within 0.05%.  相似文献   

14.
Surface soil moisture is a critical parameter for understanding the energy flux at the land atmosphere boundary. Weather modeling, climate prediction, and remote sensing validation are some of the applications for surface soil moisture information. The most common in situ measurement for these purposes are sensors that are installed at depths of approximately 5 cm. There are however, sensor technologies and network designs that do not provide an estimate at this depth. If soil moisture estimates at deeper depths could be extrapolated to the near surface, in situ networks providing estimates at other depths would see their values enhanced. Soil moisture sensors from the U.S. Climate Reference Network (USCRN) were used to generate models of 5 cm soil moisture, with 10 cm soil moisture measurements and antecedent precipitation as inputs, via machine learning techniques. Validation was conducted with the available, in situ, 5 cm resources. It was shown that a 5 cm estimate, which was extrapolated from a 10 cm sensor and antecedent local precipitation, produced a root-mean-squared-error (RMSE) of 0.0215 m3/m3. Next, these machine-learning-generated 5 cm estimates were also compared to AMSR-E estimates at these locations. These results were then compared with the performance of the actual in situ readings against the AMSR-E data. The machine learning estimates at 5 cm produced an RMSE of approximately 0.03 m3/m3 when an optimized gain and offset were applied. This is necessary considering the performance of AMSR-E in locations characterized by high vegetation water contents, which are present across North Carolina. Lastly, the application of this extrapolation technique is applied to the ECONet in North Carolina, which provides a 10 cm depth measurement as its shallowest soil moisture estimate. A raw RMSE of 0.028 m3/m3 was achieved, and with a linear gain and offset applied at each ECONet site, an RMSE of 0.013 m3/m3 was possible.  相似文献   

15.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

16.
A dielectric model for thawed and frozen Arctic organic-rich soil (50% organic matter) has been developed. The model is based on soil dielectric measurements that were collected over ranges of gravimetric moisture from 0.03 to 0.55 g/g, dry soil density from 0.72 to 0.87 g/cm3, and temperature from 25 to −30 °C (cooling run) in the frequency range of 0.05–15 GHz. The refractive mixing dielectric model was applied with the Debye multi-relaxation equations to fit the measurements of the soil’s complex dielectric constant as a function of soil moisture and wave frequency. The spectroscopic parameters of the dielectric relaxations for the bound, transient bound, and unbound soil water components were derived and were complimented by the thermodynamic parameters to obtain a complete set of parameters for the proposed temperature-dependent multi-relaxation spectroscopic dielectric model for moist soils. To calculate the complex dielectric constant of the soil, the following input variables must be assigned: (1) density of dry soil, (2) gravimetric moisture, (3) wave frequency, and (4) temperature. The error of the dielectric model was evaluated and yielded RMSEε values of 0.348 and 0.188 for the soil dielectric constant and the loss factor, respectively. These values are on the order of the dielectric measurement error itself. The proposed dielectric model can be applied in active and passive microwave remote sensing techniques to develop algorithms for retrieving the soil moisture and the freeze/thaw state of organic-rich topsoil in the Arctic regions.  相似文献   

17.
The spatial pattern and seasonal variation of denitrification were investigated during 2010–2011 in the Jiulong River Estuary (JRE) in southeast China. Dissolved N2 was directly measured by changes in the N2:Ar ratio. The results showed that excess dissolved N2 ranged from ?9.9 to 76.4 μmol L?1. Tidal mixing leads to a seaward decline of dissolved gaseous concentrations and water–air fluxes along the river-estuary gradient. Denitrification at freshwater sites varied between seasons, associated with changes in N input and water temperature. The denitrification process was controlled by the nitrate level at freshwater sites, and the excess dissolved N2 observed at the tidal zone largely originated from upstream water transport. Compared to other estuaries, JRE has a relative low gaseous removal efficiency (Ed = 12% of [DIN]; annual N removal = 24% of DIN load), a fact ascribed to strong tidal mixing, coarse-textured sediment with shallow depth before bedrock and high riverine DIN input.  相似文献   

18.
We present a catalog of moment tensor (MT) solutions and moment magnitudes, Mw, for 119 shallow (h  40 km) earthquakes in Greece and its surrounding lands (34°N–42°N, 19°E–30°E) for the years 2006 and 2007, computed with the 1D Time-Domain Moment Tensor inversion method (TDMT_INV code of Dreger, 2003). Magnitudes range from 3.2  Mw  5.7. Green's functions (GF) have been pre-computed to build a library, for a number of velocity profiles applicable to the broader Aegean Sea region, to be used in the inversion of observed broad band waveforms (10–50 s). All MT solutions are the outcome of a long series of tests of different reported source locations and hypocenter depths. Quality factors have been assigned to each MT solution based on the number of stations used in the inversion and the goodness of fit between observed and synthetic waveforms. In general, the focal mechanisms are compatible with previous knowledge on the seismotectonics of the Aegean area. The new data provide evidence for strike-slip faulting along NW–SE trending structures at the lower part of Axios basin, close to the heavily industrialized, and presently subsiding, region of the city of Thessaloniki. Normal faulting along E–W trending planes is observed at the Strimon basin, and in Orfanou Gulf in northern Greece. A sequence of events in the east Aegean Sea close to the coastline with western Anatolia sheds light on an active structure bounding the north coastline of Psara–Chios Islands about 20–25 km in length exhibiting right lateral strike-slip faulting.  相似文献   

19.
《Marine pollution bulletin》2012,64(5-12):385-395
The influence of different environmental stresses, including salinity (5–35‰), tidal cycle (6/6, 12/12 and 24/24 h of high/low tidal regimes) and nutrient addition (1–6 times background nitrogen and phosphorus content) on Bruguiera gymnorrhiza and Aegiceras corniculatum grown in sediment contaminated with spent lubricating oil (7.5 L m−2) were investigated. The oil-treated 1-year-old mangrove seedlings subject to low (5‰) and high (35‰) salinity had significantly more reduction in growth, more release of superoxide radical (O2) and higher activity of superoxide dismutase (SOD) than those subject to moderate salinity (15‰). Extended flooding (24/24 h of high/low tidal regime) enhanced O2 release and malondialdehyde (MDA) content in both oil-treated species but had little negative effects on biomass production (P > 0.05) except the stem of A. corniculatum (P = 0.012). The addition of nutrients had no beneficial or even posed harmful effects on the growth and cellular responses of the oil-treated seedlings.  相似文献   

20.
《Marine pollution bulletin》2009,58(6-12):403-408
Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Qmax) of the marine sediments ranges from 53 to 79 mg g−1, which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H2O2 oxidation, and the Qmax then decreases to a range between 13 and 22 mg g−1. The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号