首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An efficient component model has been developed that captures strength and stiffness deterioration of steel hollow structural section (HSS) columns. The proposed model consists of two fiber-based segments at a member's ends along with an elastic segment in between. The fibers exhibit nonlinear uniaxial stress–strain behavior, which is explicitly defined by uniaxial monotonic tensile and cyclic round coupon tests. The postbuckling behavior of an HSS column is traced through a proposed uniaxial effective stress–strain constitutive formulation, which includes a softening branch in compression and an energy-based deterioration rule to trace the influence of cyclic deterioration in the inelastic cyclic straining. These may be inferred by uniaxial stub-column tests. The component model captures the coupling between the column axial force and flexural demands. Consistent model parameters for a number of steel materials used in the steel construction in North America and Japan are proposed along with the associated model calibration process. The efficiency of the proposed model in predicting the hysteretic behavior of HSS columns is demonstrated by comparisons with physical steel column tests subjected to various loading histories, including representative ones of ratcheting prior to earthquake-induced collapse. The proposed model is implemented in an open-source finite element software for nonlinear response history analysis of frame structures. The effectiveness of the proposed model in simulating dynamic instability of steel frame buildings is demonstrated through nonlinear response simulations of a four-story steel frame building, which was tested at full-scale through collapse. Limitations as well as suggestions for future work are discussed.  相似文献   

2.
3.
The performance of different nonlinear modelling strategies to simulate the response of RC columns subjected to axial load combined with cyclic biaxial horizontal loading is compared. The models studied are classified into two categories according to the nonlinearity distribution assumed in the elements: lumped-plasticity and distributed inelasticity. For this study, results of tests on 24 columns subjected to cyclic uniaxial and biaxial lateral displacements were numerically reproduced. The analyses show that the global envelope response is satisfactorily represented with the three modelling strategies, but significant differences were found in the strength degradation for higher drift demands and energy dissipation.  相似文献   

4.
李国强  陈琛 《地震学刊》2011,(6):603-608
利用经实验验证过的ABAQUS有限元模型对轴力和弯矩共同作用下的约束钢柱进行了参数分析。以钢柱的屈曲温度和临界温度作为主要的评价指标,主要考虑了轴力荷载比、弯矩荷载比、轴向约束刚度比、转动约束刚度比、长细比和钢柱端部弯矩比等参数的影响,并且对不同参数之间的耦合性进行了分析。参数分析结果表明,轴向约束刚度的增大将会明显降低约束钢柱的屈曲温度,但是对其临界温度的影响相对较小;端部弯矩比对钢柱的临界温度影响很小;当钢柱的轴力荷载比和弯矩荷载比较小、轴向约束刚度比和长细比较大时,考虑屈曲后性能可以显著提高钢柱的抗火能力。  相似文献   

5.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Recent major earthquakes around the world have evidenced that research in earthquake engineering must be directed to the vulnerability assessment of existing constructions lacking appropriate seismic resisting characteristics. Their retrofit or replacement should be made in order to reduce vulnerability, and consequent risk, to currently accepted levels. In this work, the efficiency of ductile steel eccentrically-braced systems in the seismic retrofitting of existing reinforced concrete (RC) buildings is studied. The retrofit technique studied consists in a bracing system with an energy dissipation device, designed to dissipate energy by shear deformation. The numerical model was calibrated with cyclic test results on a full-scale structure. The models used for the RC frame and masonry represent their real behavior and influence in the global structural response. The steel bracing system was modeled with strut rigid elements. The model for the energy dissipater device reproduces rigorously the behavior of the shear-link observed in the cyclic tests, namely in terms of shear, drift and energy dissipation. With the calibrated numerical model, a series of non-linear dynamic analyses were performed, for different earthquake input motions, intending to study: the influence of the retrofitting system in the response of bare and infilled structures; the influence of the location and strength of the retrofitting system.  相似文献   

7.
Steel caging technique is commonly used for the seismic strengthening of reinforced concrete (RC) columns of rectangular cross‐section. The steel cage consists of angle sections placed at corners and held together by battens at intervals along the height. In the present study, a rational design method is developed to proportion the steel cage considering its confinement effect on the column concrete. An experimental study was carried out to verify the effectiveness of the proposed design method and detailing of steel cage battens within potential plastic hinge regions. One ordinary RC column and two strengthened columns were investigated experimentally under constant axial compressive load and gradually increasing reversed cyclic lateral displacements. Both strengthened columns showed excellent behavior in terms of flexural strength, lateral stiffness, energy dissipation and ductility due to the external confinement of the column concrete. The proposed model for confinement effect due to steel cage reasonably predicted moment capacities of the strengthened sections, which matched with the observed experimental values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
蜂窝状钢骨混凝土L形柱抗震性能的试验研究   总被引:2,自引:0,他引:2  
为了考察轴压比对蜂窝状钢骨混凝土L形柱抗震性能的影响,本文进行了3根不同轴压比的蜂窝状钢骨混凝土L形柱的低周往复水平荷载试验,研究了该L形柱的破坏形态、滞回特性、延性、黏滞阻尼系数等抗震性能.研究表明:蜂窝状钢骨能增强钢骨与混凝土间的黏结能力,提高其协同工作与整体受力性能.蜂窝状钢骨的存在,延缓了L形柱的刚度退化,提高了延性,增强了结构的耗能能力及抗震性能.轴压比对该新型构件的破坏形态及抗震性能影响明显.随着轴压比的增大,构件的破坏形态由类似于剪切破坏向轴压破坏形态转变.轴压比越大,构件的极限承载力越大,但延性与黏滞阻尼系数越小,耗能能力越低,抗震性能越差.研究还发现,该新型构件的正、反方向承载力及延性有所差别.  相似文献   

9.
为探讨高强钢筋增强UHPC-NC组合柱抗震性能,基于大型有限元程序ABAQUS,结合UHPC、NC和高强钢筋材料本构关系,校准损伤塑性模型中相关参数,建立高强钢筋增强UHPC-NC组合柱抗震有限元模型。通过与3个NC柱和3个UHPC柱拟静力试验结果对比,验证分析模型的有效性。在此基础上,进一步探讨轴压比、纵筋直径、纵筋强度、箍筋间距和UHPC高度等敏感参数对高强钢筋增强UHPC-NC组合柱抗震性能的影响。结果表明,高强钢筋增强UHPC-NC组合柱位移延性系数随轴压比、纵筋直径和箍筋间距的增大而降低,随纵筋强度和UHPC高度的增加表现出先增大后逐渐平缓的趋势,合适的UHPC替换高度能充分发挥高强钢筋和UHPC材料特性并取得良好的经济性。  相似文献   

10.
It is well known that axial force – bending moment interaction (N–M interaction) affects to a large extent the cyclic inelastic behaviour of structural elements, especially columns in framed structures, with reduction in bending capacity and loss of available ductility. A few studies have also shown that significant inelastic axial shortening affects the response of column elements subjected to medium–high levels of axial loads and cyclic bending. This paper is primarily aimed at evaluating the effects of column N–M interaction on the inelastic seismic response of steel frames. By considering the contemporaneous action of vertical loads, due to gravity, and of horizontal seismic excitation, it is shown that the progressive axial shortening of adjacent columns may differ substantially, thus inducing significant relative settlements at the ends of the connecting beams and, then, remarkable amplifications in beam plastic rotations. An evaluation of additional beam plastic rotations induced by column N–M interaction is carried out for real structures by investigating the inelastic response of steel frames designed according to European standards under horizontal and vertical earthquake excitations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
通过对日本抗震设计规范中有关钢筋混凝土框架柱受剪承载力代表性公式的研究,凸现了由经验公式到基于桁架一拱模型建立的发展趋势。对各公式中所包括的影响框架柱受剪承载力的主要因素(如剪跨比、轴压比、配箍率、混凝土强度、纵筋率等)进行了深入讨论,并采用框架柱受剪承载力试验数据考察了各个公式的有效性。  相似文献   

12.
上海浦东国际机场T2航站楼弹塑性时程分析   总被引:1,自引:0,他引:1  
上海浦东机场T2航站楼结构为复杂大跨混合结构,本文采用NosaCAD2005有限元程序建立结构分析模型,模型主要由非线性杆单元组成,包括梁、柱和二力杆单元,梁、柱采用三段变刚度杆模型,以受弯为主的梁单元截面弯矩-曲率关系采用二折线和三折线模型,柱和二力杆截面采用纤维模型。通过多遇和罕遇烈度下的弹塑性时程分析,研究了该结构的变形、内力、破坏情况的发展历程。计算结果表明,该结构可以满足"小震不坏,大震不倒"的设防要求。  相似文献   

13.
Dynamic instability of single storey frames having thin-walled columns has been investigated. The lateral loads sustained by the frame are dynamic in character, while the axial loads are deemed to be quasi-statically applied. The analytical model employed by the authors has the capability of modelling the combined action of the two ‘companion’ local modes whose amplitudes are variable along the length of the column and any type of end conditions of the members. For given levels of axial loads sustained by the columns, the magnitudes of lateral loads causing instability can be significantly smaller than those corresponding to static buckling, provided the dynamic load is of sufficient duration. There exists, however, a threshold value of axial force carried by the columns, below which there is no elastic instability—static or dynamic. For columns with overall critical loads several times greater than the local critical load, there is no danger of elastic instability, but the deflections under dynamic lateral loads of less than 1 per cent of the axial load may reach such huge values that there is a serious danger of localized plastic collapse. It is also shown that moment frames having thin-walled columns such as those fabricated out of cold formed steel are extremely vulnerable to moderate seismic excitations.  相似文献   

14.
The cyclic behaviour of plastic hinges is an essential component in tracking the behaviour of RC frames to failure, not only for monotonically increasing force/pressure loads such as under extreme wind loads but also for dynamic displacement-driven loads such as under earthquake ground motions. To describe member deformations at ultimate loading, traditional moment–curvature techniques have required the use of an empirical hinge length to predict rotations, and despite much research a definitive generic expression for this empirical hinge length is yet to be defined. To overcome this problem, a discrete rotation approach, which directly quantifies the rotation between crack faces using mechanics, has been developed for beams and been shown to be accurate under monotonic loading. In this paper, the discrete rotation approach for monotonic loads is extended to cope with cyclic loads for dynamic analyses, and this has led to the development of a new partial interaction numerical simulation capable of allowing for reversals of slip of the reinforcing bars. This numerical tool should be very useful for the nonlinear analysis of reinforced concrete beams and reinforced concrete columns with small axial loads under severe dynamic loads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
This paper aims to study the cyclic inelastic behaviour of stiffened steel box columns failed by local and overall interaction instability under a constant compressive axial force and cyclic lateral loading. Such columns find broad application in steel bridge piers. The columns are of box sections with longitudinal stiffeners. In the analysis, a modified two‐surface plasticity model developed at Nagoya University is employed to model material non‐linearity. For comparison, analyses using classical isotropic‐ and kinematic‐hardening models are also carried out. Hysteretic curves and buckling modes obtained from analysis using the two‐surface model and classical models are compared with experimental results. Moreover, the progression of deformation from occurrence of local buckling to structural failure is discussed in detail. The comparisons show that the use of an accurate plasticity model is quite important in the prediction of both the cyclic inelastic behaviour and failure characteristic of steel box columns failed by coupled local and overall instability. It is found that the modified two‐surface model is a satisfactory model in predicting the cyclic hysteretic behaviour of both the thin‐ and thick‐walled steel box columns. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new practical modeling approach, based on the beam-on-a-nonlinear Winkler foundation (BNWF) model, to simulate the 3D rocking, vertical and horizontal responses of shallow foundations using structural elements that are readily available in the element library of commercially available structural analysis programs. An assemblage of a moment-rotation hinge, shear hinge connected in series with an elastic frame member attached to the bottom end of ground story columns was proposed to model the response of the footing under combined action of vertical, horizontal and moment loading. To couple the responses of these hinges, two bounding surfaces equations were introduced and derived mathematically: a surface that defines the interaction between the rocking and vertical capacities of the footing along its width and length; and a surface that defines the interaction between the horizontal capacities of the footing along its width and length. Simple calculation steps to evaluate the geometric and mechanical properties of the proposed assemblage of structural elements are provided. The proposed modeling approach was verified using experimental results from large scale model foundations subjected to cyclic loading. Based on this study, it was found that the proposed assemblage can be reliably used in modeling the rocking and horizontal responses of shallow foundations under cyclic loading.  相似文献   

17.
Mechanics-based models are developed for the moment, the curvature and the chord rotation at yielding of circular concrete columns or piers, their secant stiffness to the yield point and the ultimate curvature and flexure-controlled ultimate chord rotation in cyclic loading. The strain criteria for yielding or ultimate are calibrated on the basis of over four hundred test results. Besides the model for the secant-to-yield-point stiffness which is in terms of the yield moment and chord rotation, an empirical one, independent of the vertical reinforcement, is fitted to the data. The ultimate chord rotation is obtained from a plastic hinge model employing a plastic hinge length, the yield and the ultimate curvatures of the end section and the fixed-end rotation due to slippage of bars from their anchorage zone beyond the column length. All models are extended to columns the vertical bars of which are lap-spliced within the plastic hinge and to columns with FRP wrapping and continuous or lap-spliced vertical bars. The comprehensive portfolio of expressions proposed for the deformation properties of circular columns is fully consistent across the various situations of continuous or lap-spliced bars, with or without FRP wrapping, and with models developed by the authors from much larger databases of rectangular columns in similar situations; the aspects specific to circular sections are limited to the mechanics-based section analysis for moment and curvature, a purely empirical coefficient for the secant-to-yield-point stiffness and the empirical plastic hinge length.  相似文献   

18.
采用地震工程开源模拟软件OpenSees(Open System for Earthquake Engineering Simulation)对CFRP(Carbon Fiber Reinforced Polymer,碳纤维增强复合材料)布加固高强钢筋混凝土方柱的抗震性能进行了数值分析。采用Steel02Material和Concrete02Material材料本构模型模拟了CFRP布加固高强混凝土方柱的抗震性能;在此基础上,进一步研究了轴压比和剪跨比这2个因素对试件抗震性能的影响。将所得数值分析结果与相同条件下的试验结果对比后发现:基于Steel02 Material和Concrete02 Material材料本构,利用OpenSees,可以较好地模拟CFRP布加固高强混凝土方柱的抗震性能,并且与试验结果(滞回曲线、骨架曲线、水平承载力和位移延性系数)能够较好地吻合,从而说明该数值分析方法还可以准确地反映出轴压比和剪跨比对高强混凝土柱抗震性能的影响规律。  相似文献   

19.
Effects of masonry infills on the seismic vulnerability of steel frames is studied through multi-scale numerical modelling. First, a micro-modelling approach is utilized to define a homogenized masonry material, calibrated on experimental tests, which is used for modelling the nonlinear response of a one-story, single span, masonry-infilled portal under horizontal loads. Based on results of the micro-model, the constitutive behavior of a diagonal strut macro-element equivalent to the infill panel is calibrated. Then, the diagonal strut is used to model infill panels in the macro-scale analysis of a multi-span multi-story infilled moment-resisting (MR) steel frame. The seismic vulnerability of the MR frame is evaluated through a nonlinear static procedure. Numerical analyses highlight that infills may radically modify the seismic response and the failure mechanism of the frame, hence the importance of the infill correct modelling.  相似文献   

20.
Studies are made on the structural damage at the Ashiyahama residential high‐rise steel building complex due to the Hyogo‐ken Nanbu Earthquake (Kobe Earthquake), which occurred on 17 January 1995. The axial breakage of very thick‐plated steel columns of the mega‐structure is unprecedented and has been attracting the special attention of structural engineers. The cause of the damage is first investigated from numerical computation with recourse to an explicit method of dynamic analysis based on a continuous medium. The numerical result is compared with that obtained from a conventional multi‐mass lumped stiffness model combined with an equivalent lateral‐force procedure. By comparing both the numerical results, the latter conventional method is shown to be inadequate for achieving earthquake‐resistant capability. The destructive power of the ground motion is found to have exceeded the horizontal earthquake‐resistant capacity that is prescribed in the structural design criteria. Great axial stresses are produced in columns by combined action of bending moment and axial force due to overturning moment. The fracture of heavy steel columns is caused from only the horizontal component of seismic ground motion. Actual locations of significant damage are closely related to the occurrence of plastic hinges in the analysis. It is emphasized as a warning to avoid yielding concentration in particular storeys. Lastly, recommendations to enhance earthquake‐resistant design are proposed from a practical point of view. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号