首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Two years of subtidal sea‐level data from Nain, Labrador, are analysed in terms of local atmospheric pressure and the two components of geostrophic wind or stress. Frequency‐dependent response coefficients are determined by multiple regression analysis involving inversion of the cross‐spectral matrix of the inputs. At very low frequencies the response to pressure is isostatic and the wind stress coefficients are consistent with those determined by Thompson et al. (1985) from analysis of a longer series of monthly means. There is very little change in the response between icy and ice‐free seasons. The wind, or stress, coefficients correspond to geostrophic set‐up by a narrow longshore current but do not show as much of an increase of phase lag with increasing frequency as expected. The pressure response is less than isostatic and lags as the frequency increases from zero to about 0.02 cph. Possible reasons for this are discussed. Removal of wind as well as pressure effects ffom the sea‐level data makes only minor changes to the monthly mean residual sea‐level.  相似文献   

2.
Increasingly severe drought has not only threatened food security but also resulted in massive socio-economic losses. In the face of increasingly serious drought conditions, the question of how to mitigate its impacts through appropriate measures has received great attention. The overall goal of this study is to examine the influence of policies and social capital on farmers’ decisions to adopt adaptation measures against drought. The study is based on a large-scale household and village survey conducted in six provinces nationwide. The survey results show that 86% of rural households have taken adaptive measures to protect crop production against drought, most of which are non-engineering measures. In the case of non-engineering measures, changing agricultural production inputs and adjusting seeding or harvesting dates are two popular options. A multivariate regression analysis reveals that government policy support against drought such as releasing early warning information and post-disaster services, technical assistance, financial and physical supports have significantly improved farmers’ ability to adapt to drought. However, since only 5% of villages benefited from such supports, the government in China still has significant room to implement these assistances. Moreover, having a higher level of social capital in a farm household significantly increases their adaptation capacity against drought. Therefore, the government should pay particular attention to the farming communities, and farmers within a community who have a low level of social capital. Finally, farmers’ ability to adapt to drought is also associated with the characteristics of their households and local communities. The results of this study also have implications for national adaptation plans for agriculture under climate change in other developing countries.  相似文献   

3.
Theoretical and Applied Climatology - This study introduces the climate of Iran determined according to Köppen-Geiger, Feddema, and UNPEP climate classifications, computed with a...  相似文献   

4.
An advanced one-dimensional radiative-convective model (RCM) is used to estimate the past, present and future climatic forcings induced by greenhouse gases of anthropogenic origin, such as CO2, CH4, N2O and CFCs, in this paper. The results show that the decadal climatic forcing for the last decade is one-order bigger than that prior to the year 1900, and in the case of no control on the emission of the greenhouse gases the climatic forcing for the year 2100 will be almost 4 times as much as now.  相似文献   

5.
Crete Island is located in the southmost border of East Mediterranean basin, facing exacerbating atmospheric conditions (mainly concentrations of particulates) due to Saharan dust outbreaks. It is worth to note that these episodes are more frequent during spring and autumn, when mild biometeorological conditions become intolerable due to the synergy of the so called Föhn winds. Cretan mountains, especially Psiloritis Mt. (summit at 2456 m), are orientated perpendicularly to the southwest air mass flow, generating the Föhn winds. Propagating from the leeward of the mountains, these dry, hot winds have an effect on prevailing biometeorological conditions. While descending to the lowlands on the leeward side of the range, the wind becomes strong, gusty, and desiccating. This wind often lasts less than an hour to several days, with gradual weakening after the first or the second day. Sometimes, it stops very abruptly. In this work, the authors examined and analyzed the abrupt changes of human thermal perception within specific case studies during which Föhn winds appeared in Heraklion city at the leeward of Psiloritis Mt, associated with extreme Saharan dust episodes, observed within the period 2006–2010. In order to verify the development of Föhn winds, Meteorological Terminal Aviation Routine Weather Reports (METARs, meteorological observations every half hour), were acquired from the Heraklion meteorological station installed by the Hellenic National Meteorological Service (HNMS). The biometeorological conditions analyzed are based on human thermal bioclimatic indices such as the Physiologically equivalent temperature (PET) and the Universal Thermal Climate Index (UTCI). METAR recordings of meteorological variables, such as air temperature, vapor pressure, wind speed, and cloudiness, were used as input variables in modeling the aforementioned thermal indices, so that to interpret the grade of the thermo-physiological stress. The PET and UTCI analysis was performed by the use of the radiation and bioclimate model, “RayMan,” which is well-suited to calculate radiation fluxes and human biometeorological indices. The results of the performed analysis showed even an increase of air temperature from 20 to 30 °C within 5 h, associated with a decrease in the vapor pressure from 11.5 to 9.3 hPa. In addition, the wind speed at 10 m increased from 5.1 to 20.1 m/s, 3.7 to 14.3 m/s with respect to 1.1 m height, during the events of Föhn winds. The biometeorological analysis has given evidence that slight/moderate heat stress classes of the examined thermal indices appear during Saharan dust episodes. Such conditions are uncommon at the beginning of spring season, indicating that Saharan dust episodes are not only responsible for acute health impacts but also for adverse biometeorological conditions, due to the very likely development of Föhn winds towards the wider area of Heraklion, a coastal city in the eastern Mediterranean.  相似文献   

6.
7.
8.
9.
Multiple equilibria of a forced, dissipative atmosphere system studied by Charney andothers have provided a new insight into the dynamics of the atmospheric circulation. But thetheoretical results remain some uncertainty for different approaches. Charney and Devore (1979) obtained two stable equilibria for certain range of externalforcing in the barotropic model, one of which is a high--index circulation, and the other alow--index for a blocking state. However Charney and Straus (1980) found that only thelow--index (blocking) state is stable and there do not exist multiple equilibria in the baroclinicmodel.  相似文献   

10.
The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter lc for rotating fluids convection, and (2) as expresse...  相似文献   

11.
The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter lc for rotating fluids convection, and (2) as expressed with the cube of velocity times the drag coefficient through the formula for total kinetic energy dissipation in the atmospheric boundary layer. In the quasistationary case the dissipation equals the generation of the energy. In both cases the velocity scale can be expressed through temperature and humidity differences between the ocean and the atmosphere in terms of the reduced gravity, and both forms produce quite comparable velocity scales. Using parameters b and lc, we can form scales of the area and, by adding the mass of a unit air column, a scale of the total kinetic energy as well. These scales nicely explain the much smaller size of a PL, as compared to a TC, and the total kinetic energy of a TC is of the order 1018-1019 J. It will be shown that wind of 33 m s-1 is produced when the total enthalpy fluxes between the ocean and the atmosphere are about 700 W m-2 for a TC and 1700 W m-2 for a PL, in association with the much larger role of the latent heat in the first case and the stricter geostrophic constraints and larger static stability in the second case. This replaces the mystical role of 26oC as a criterion for TC origin. The buoyancy flux, a product of the reduced gravity and the wind speed, together with the atmospheric static stability, determines the rate of the penetrating convection. It is known from the observations that the formation time for a PL reaching an altitude of 5--6 km can be only a few hours, and a day, or even half a day, for a TC reaching 15--18 km. These two facts allow us to construct curves on the plane of Ts and ΔT=Ts-Ta to determine possibilities for forming an intense vortex. Here, Ta is the atmospheric temperature at the height z=10 m. A PL should have ΔT>20oC in accordance with the observations and numerical simulations. The conditions for a TC are not so straightforward but our diagram shows that the temperature difference of a few degrees, or possibly even a fraction of a degree, might be sufficient for TC development for a range of static stabilities and development times.  相似文献   

12.
The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter lc for rotating fluids convection, and (2) as expressed with the cube of velocity times the drag coefficient through the formula for total kinetic energy dissipation in the atmospheric boundary layer. In the quasistationary case the dissipation equals the generation of the energy. In both cases the velocity scale can be expressed through temperature and humidity differences between the ocean and the atmosphere in terms of the reduced gravity, and both forms produce quite comparable velocity scales. Using parameters b and lc., we can form scales of the area and, by adding the mass of a unit air column, a scale of the total kinetic energy as well. These scales nicely explain the much smaller size of a PL, as compared to a TC, and the total kinetic energy of a TC is of the order 1018 - 1019 J. It will be shown that wind of 33 m s-1 is produced when the total enthalpy fluxes between the ocean and the atmosphere are about 700 W m-2 for a TC and 1700 W m-2 for a PL, in association with the much larger role of the latent heat in the first case and the stricter geostrophic constraints and larger static stability in the second case. This replaces the mystical role of 26~C as a criterion for TC origin. The buoyancy flux, a product of the reduced gravity and the wind speed, together with the atmospheric static stability, determines the rate of the penetrating convection. It is known from the observations that the formation time for a PL reaching an altitude of 5-6 km can be only a few hours, and a day, or even half a day, for a TC reaching 15-18 km. These two facts allow us to construct curves on the plane of Ts and △T= Ts - Ta to determine possibilities for forming an intense vortex. Here, Ta is the atmospheric temperature at the height z = 10 m. A PL should have △T > 20℃ in accordance with the observations and numerical simulations. The conditions for a TC are not so straightforward but our diagram shows that the temperature difference of a few degrees, or possibly even a fraction of a degree, might be sufficient for TC development for a range of static stabilities and development times.  相似文献   

13.
In 1830, Libri announced the finding of a 16-year-long record of daily temperature observed in Florence, Italy, by Father Renieri before the activity of the Medici Network (1654 to 1670) that is usually considered the earliest instrumental series in the world. The Libri announcement was supported by the concurrent finding of a box with the early Little Florentine Thermometers that survived the Inquisition and was confirmed by Schouw, von Humboldt and Maxwell. However, all investigations made to find Renieri’s observations were fruitless. This paper clarifies this complex situation differentiating between myth and reality. A careful analysis of the Libri’s announcement in the historical context points out that Libri made the announcement while escaping for conspiracy from Florence and needed a scoop to be introduced in the French Academy of Sciences. For this reason he made a deliberate mix of new and old assertions, i.e. he claimed to have made new discoveries but without explaining too much and reporting misleading details about well known stories concerning the earliest meteorological observations. This induced people to suppose that further, earlier records existed. The consequence of this was that climatologists searched for years the claimed records. This paper shows that the Medici Network almost certainly contains the earliest exploitable instrumental observations. The possibility of finding a short series of observations prior to 1654 is remote.  相似文献   

14.
Are there social limits to adaptation to climate change?   总被引:1,自引:0,他引:1  
While there is a recognised need to adapt to changing climatic conditions, there is an emerging discourse of limits to such adaptation. Limits are traditionally analysed as a set of immutable thresholds in biological, economic or technological parameters. This paper contends that limits to adaptation are endogenous to society and hence contingent on ethics, knowledge, attitudes to risk and culture. We review insights from history, sociology and psychology of risk, economics and political science to develop four propositions concerning limits to adaptation. First, any limits to adaptation depend on the ultimate goals of adaptation underpinned by diverse values. Second, adaptation need not be limited by uncertainty around future foresight of risk. Third, social and individual factors limit adaptation action. Fourth, systematic undervaluation of loss of places and culture disguises real, experienced but subjective limits to adaptation. We conclude that these issues of values and ethics, risk, knowledge and culture construct societal limits to adaptation, but that these limits are mutable.  相似文献   

15.
A shared learning model is described, in which researchers and local practitioners collaborate on climate change studies. The legacy of such partnerships is that beyond the generation of research results, practitioners may become climate change extension agents, supporting governments and businesses in responding to climate change.  相似文献   

16.
Precipitation causes several short- and long-term effects on wind-induced surface erodibility and subsequent dust emission. Among the principal effects considered by this paper are soil moisture, soil crusts, and vegetation. A quantitative method is developed to assess these effects using differences between the potential and the actual amounts of dust emitted from dust sources as inferred from surface meteorological measurements obtained downwind from those sources. The results of this assessment must be interpreted with caution, however, when the size and location of dust sources are unknown.Using meteorological data recorded near Yuma, Arizona at the Yuma Marine Corps Air Station (YMCAS), the method is applied to calculate the potential and actual amounts of dust emitted from upwind dust sources during the spring and fall/winter seasons between January 1, 1981 and May 31, 1988. (Spring is considered to be the period between February 1 and May 31; fall/winter, between October 1 and January 31.) Because summer precipitation is intermittent and wind patterns are localized, summer meteorological data are not used to evaluate regional correlations between precipitation and dust storms. For the period between 1981 and 1988, a correlation of -0.60 was found between fall/winter precipitation and the actual amount of dust emitted from sources upwind of YMCAS during the following spring. A particularly strong reduction in dust emission was noted during the springs of 1983 and 1984 following the start of an El Nino event in fall/winter 1982. Photographs taken at a geological and meteorological data-collection (Geomet) site, located in the natural desert 25 km southeast of YMCAS, show a correspondence between increased antecedent precipitation recorded at the site and increased vegetation. Whereas the annual precipitation totals at YMCAS and the Geomet site from the beginning of 1982 through 1984 are high, their seasonal totals, especially during the fall/winter seasons, are disparate. This fall/winter precipitation disparity may account for evidence suggesting that significant vegetation growth occurred at dust sources upwind of YMCAS by spring 1983, but that such growth did not occur at the Geomet site until fall/ winter of 1983. Spatial inhomogeneity in fall/winter precipitation probably contributed to the relatively low correlation (-0.60) between fall/winter precipitation recorded at YMCAS and the actual amount of dust emitted from upwind sources during the following spring.  相似文献   

17.
Hall  Richard J.  Hanna  Edward  Chen  Linling 《Climate Dynamics》2021,56(1-2):457-473

We investigate winter Arctic Amplification (AA) on synoptic timescales and at regional scales using a daily version of the Arctic Amplification Index (AAI) and examine causes on a synoptic scale. The persistence, frequency and intensity of high AAI events show significant increases over the Arctic. Similarly, low AAI events are decreasing in frequency, persistence and intensity. In both cases, there are regional variations in these trends, in terms of significance and timing. Significant trends in increasing persistence, frequency and intensity of high AAI events in winter are concentrated in the period 2000–2009, with few significant trends before and after this. There are some decreases in sea-ice concentration in response to synoptic-scale AA events and these AA events can contribute to the decadal trends in AA found in other studies. A sectoral analysis of the Arctic indicates that in the Beaufort–Chukchi and East Siberian–Laptev Seas, synoptic scale high AAI events can be driven by tropical teleconnections while in other Arctic sectors, it is the intrusion of moisture-transporting synoptic cyclones into the Arctic that is most important in synoptic-scale AA. The presence of Rossby wave breaking during high AAI events is indicative of forcing from lower latitudes, modulated by variations in the jet stream. An important conclusion is that the increased persistence, frequency and intensity of synoptic-scale high AAI events make significant contributions to the interannual trend in AA.

  相似文献   

18.
19.
《Climate Policy》2013,13(3):247-260
In order to stabilize long-term greenhouse gas concentrations at 450 ppm CO2-eq or lower, developed countries as a group should reduce emissions by 25–40% below 1990 levels by 2020, while developing countries' emissions need to be reduced by around 15–30%, relative to their baseline levels, according to the IPCC and our earlier work. This study examines 19 other studies on the emission reductions attributed to the developed and developing countries for meeting a 450 ppm target. These studies considered different allocation approaches, according to equity principles. The effect of the assumed global emissions cap in these studies is analysed. For developed countries, the original reduction range of 25–40% by 2020 is still within the average range of all studies, but does not cover it completely. Comparing the studies shows that assuming a global emissions cap of 5–15% above 1990 levels by 2020 generally leads to more stringent reduction targets than when a global emissions cap of 20–30% above 1990 levels is assumed. For developing countries, the reduction range of 15–30% below their baseline levels by 2020 corresponds to an increase on the 1990 level from 70% (about the 2006 level) to 120%. Reducing deforestation emissions by 50% below baseline levels by 2020 may relax the emission reductions for either group of countries; for developing countries by about 7% or for developed countries by about 15% (but not for both).  相似文献   

20.
In the context of recent discussions at the UN climate negotiations we compared several ways of calculating historical greenhouse gas (GHG) emissions, and assessed the effect of these different approaches on countries’ relative contributions to cumulative global emissions. Elements not covered before are: (i) including recent historical emissions (2000–2010), (ii) discounting historical emissions to account for technological progress; (iii) deducting emissions for ‘basic needs’; (iv) including projected emissions up to 2020, based on countries’ unconditional reduction proposals for 2020. Our analysis shows that countries’ contributions vary significantly based on the choices made in the calculation: e.g. the relative contribution of developed countries as a group can be as high as 80 % when excluding recent emissions, non-CO2 GHGs, and land-use change and forestry CO2; or about 48 % when including all these emissions and discounting historical emissions for technological progress. Excluding non-CO2 GHGs and land-use change and forestry CO2 significantly changes relative historical contributions for many countries, altering countries’ relative contributions by multiplicative factors ranging from 0.15 to 1.5 compared to reference values (i.e. reference contribution calculations cover the period 1850-2010 and all GHG emissions). Excluding 2000–2010 emissions decreases the contributions of most emerging economies (factor of up to 0.8). Discounting historical emissions for technological progress reduces the relative contributions of some developed countries (factor of 0.8) and increases those of some developing countries (factor of 1.2–1.5). Deducting emissions for ‘basic needs’ results in smaller contributions for countries with low per capita emissions (factor of 0.3–0.5). Finally, including projected emissions up to 2020 further increases the relative contributions of emerging economies by a factor of 1.2, or 1.5 when discounting pre-2020 emissions for technological progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号