首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of sulfur between haplogranitic melt and aqueous fluid has been measured as a function of oxygen fugacity (Co-CoO-buffer to hematite-magnetite buffer), pressure (0.5-3 kbar), and temperature (750-850 °C). Sulfur always strongly partitions into the fluid. At a given oxygen fugacity, pressure and temperature, the distribution of sulfur between melt and fluid can be described by one constant partition coefficient over a wide range of sulfur concentrations. Oxygen fugacity is the most important parameter controlling sulfur partitioning. While the fluid/melt partition coefficient of sulfur is 468 ± 32 under Co-CoO buffer conditions at 2 kbar and 850 °C, it decreases to 47 ± 4 at an oxygen fugacity 0.5-1 log unit above Ni-NiO at the same pressure and temperature. A further increase in oxygen fugacity to the hematite-magnetite buffer has virtually no effect on the partition coefficient (Dfluid/melt = 49 ± 2). The dependence of Dfluid/melt on temperature and pressure was systematically explored at an oxygen fugacity 0.5-1 log units above Ni-NiO. At 850 °C, the effect of pressure on the partition coefficient is small (Dfluid/melt = 58 ± 3 at 0.5 kbar; 94 ± 9 at 1 kbar; 47 ± 4 at 2 kbar and 68 ± 5 at 3 kbar) and temperature also has only a minor effect on partitioning.The data show the “sulfur excess” observed in many explosive volcanic eruptions can easily be explained by the presence of a small fraction of hydrous fluid in the magma chamber before the eruption. The sulfur excess can be calculated as the product of the fluid/melt partition coefficient of sulfur and the mass ratio of fluid over melt in the erupted material. For a plausible fluid/melt partition coefficient of 47 under oxidizing conditions, a 10-fold sulfur excess corresponds to a 17.6 wt.% of fluid in the erupted material. Large sulfur excesses (10-fold or higher) are only to be expected if only a small fraction of the magma residing in the magma chamber is erupted.The behavior of sulfur, which seems to be largely independent of pressure and temperature under oxidizing conditions is very different from chlorine, where the fluid/melt partition coefficient strongly increases with pressure. Variations in the SO2/HCl ratio of volcanic gases, if they reflect primary processes in the magma chamber, therefore provide an indicator of pressure variations in a magma. In particular, major increases in the S/Cl ratio of an aqueous fluid coexisting with a felsic magma suggest a pressure reduction in the magma chamber and/or magma rising to the surface.  相似文献   

2.
Platinum solubility was determined in a haplobasaltic, diopside-anorthite melt at 1523 K and 0.2 GPa as a function of oxygen fugacity and chlorine content. Synthetic glass powder of an An42Di58 composition was sealed in a platinum or platinum-iridium alloy capsule and equilibrated with a solid CaCl2 and MgCl2 chlorine source, water and the noble-metal capsule. All experiments were run in an internally-heated pressure-vessel equipped with a rapid-quench device with oxygen fugacity controlled by the water content and intrinsic hydrogen fugacity of the autoclave (MnO-Mn3O4). Resultant glasses were analyzed by isotope dilution ICP-MS and LA-ICP-MS to determine the solubility and distribution of Pt and assess potential Cl-complexation of Pt in the melt.Experiments with run durations longer than 96 h show Pt solubilities consistent with solubilities determined for the equivalent Cl-free diopside-anorthite system, under the same P-T conditions. These results indicate that chlorine has no discernable effect on Pt solubility and there is no evidence of Pt-Cl complexing in the silicate melt from 0.6 to 2.75 wt% Cl (saturation).However, products from short run duration experiments (<96 h) contain Pt concentrations which are orders of magnitude higher than those of the Pt-free starting glass and of the experimental products of the longer run duration experiments. These anomalously high levels are most pronounced in the shortest experiments and Pt concentration decreases with increasing run duration. It is suggested that this excess platinum is dissolved within the Cl-bearing fluid during the heating stages of the experiment and is left behind as the fluid dissolves into the melt leaving small amounts of Pt as “micronuggets”, increasing the bulk Pt concentration. With increasing run duration the platinum appears to migrate out of the melt, back to the capsule walls, decreasing the amount of Pt contained within the glass. This behavior offers compelling evidence that Cl-bearing fluids have the capacity to transport significant amounts of Pt under magmatic conditions.Mass balance calculations on the excess amount of Pt in the glass (above inherent solubility) in short duration experiments lead to an estimation of Pt concentration in the Cl-bearing fluid ranging from tens to a few hundred ppm, versus ppb levels in the melt. The correspondingly high estimated apparent partition coefficients of 103-104 suggest that Cl-bearing fluids can be highly efficient at enriching and transporting platinum in mafic magmatic-hydrothermal ore-forming systems. These values strongly contrast with recent experimental results in felsic systems, highlighting the potential importance of melt composition on partitioning, the need for composition specific partitioning experiments, as well as a detailed understanding of Pt distribution in experimental products.  相似文献   

3.
Halogen diffusion in a basaltic melt   总被引:2,自引:0,他引:2  
The diffusion of the halogens fluorine, chlorine and bromine was measured in a hawaiitic melt from Mt. Etna at 500 MPa and 1.0 GPa, 1250 to 1450 °C at anhydrous conditions; the diffusion of F and Cl in the melt was also studied with about 3 wt% of dissolved water. Experiments were performed using the diffusion-couple technique in a piston cylinder. Most experiments were performed with only one halogen diffusing between the halogen-enriched and halogen-poor halves of the diffusion couple, but a few experiments with a mixture of halogens (F, Cl and Br) were also performed in order to investigate the possibility of interactions between the halogens during diffusion. Fluorine and chlorine diffusivity show a very similar behavior, slightly diverging at low temperature. Bromine diffusion is a factor of about 2-5 lower than the other halogens in this study. Diffusion coefficients for fluorine range between 2.3 × 10−11 and 1.4 × 10−10 m2 s−1, for chlorine between 1.1 × 10−11 and 1.3 × 10−10 and for bromine between 9.4 × 10−12 and 6.8 × 10−11 m2 s−1. No pressure effect was detected at the conditions investigated. In experiments involving mixed halogens, the diffusivities appear to decrease slightly (by a factor of ∼3), and are more uniform among the three elements. However, activation energies for diffusion do not appear to differ between experiments with individual halogens or when they are all mixed together. The effect of water increases the diffusion coefficients of F and Cl by no more than a factor of 3 compared to the anhydrous melt (DF = 4.0 × 10−11 to 1.6 × 10−10 m2 s−1; DCl = 3.0 × 10−11 to 1.9 × 10−10 m2 s−1). Comparing our results to the diffusion coefficients of other volatiles in nominally dry basaltic melts, halogen diffusivities are about one order of magnitude lower than H2O, similar to CO2, and a factor of ∼5 higher than S. The contrasting volatile diffusivities may affect the variable extent of volatile degassing upon melt depressurization and vesiculation, and can help our understanding of the compositions of rapidly grown magmatic bubbles.  相似文献   

4.
The magmatic-hydrothermal evolution of two barren granites associated with the Tertiary Questa Caldera in northern New Mexico was reconstructed on the basis of microthermometric and laser-ablation inductively coupled plasma mass spectrometry analysis of fluid and melt inclusions in quartz of magmatic and hydrothermal origin. During progressive crystallization and fluid exsolution, the Cs content of the residual melt increased from 1 ppm to values as high as 5500 ppm, which requires an increase in crystallinity by at least 99.98%. In conjunction with a Rayleigh fractionation model simulating the melt evolution at fluid-saturated vs. fluid-undersaturated conditions, the melt inclusion data can be used to determine the crystallinity at which fluid saturation was reached. Our results suggest that both plutons attained fluid saturation before 30% crystallization and that evolved residual melts accumulated in their roof zones. At ∼90% crystallization, the exsolving fluids were of low salinity (∼5 wt.% NaClequiv) and in the one-phase field, in accordance with phase relations at the reconstructed P and T conditions (∼1.1 to 1.3 kbar, 700 to 720°C). Fluid-melt partition coefficients for a range of metals determined on assemblages of coeval melt and fluid inclusions were generally too low to allow efficient metal extraction from the melt (DX, fluid-melt < 22). As a result, the metal concentrations in both the residual melt and the coexisting fluid increased with progressive crystallization. Absolute metal contents in the fluids exsolving from barren systems appear low, however, when compared with mineralized systems. It is concluded that the absence of mineralization in the Rito del Medio and Cañada Pinabete plutons primarily stems from a low salinity of the exsolving fluids, resulting in a less efficient metal extraction from the melt.  相似文献   

5.
Hydrothermal experiments were conducted to determine the partitioning of Cl between rhyolitic to rhyodacitic melts, apatite, and aqueous fluid(s) and the partitioning of F between apatite and these melts at ca. 200 MPa and 900-924 °C. The number of fluid phases in our experiments is unknown; they may have involved a single fluid or vapor plus saline liquid. The partitioning behavior of Cl between apatite and melt is non-Nernstian and is a complex function of melt composition and the Cl concentration of the system. Values of DClapat/melt (wt. fraction of: Cl in apatite/Cl in melt) vary from 1 to 4.5 and are largest when the Cl concentrations of the melt are at or near the Cl-saturation value of the melt. The Cl-saturation concentrations of silicate melts are lowest in evolved, silica-rich melts, so with elevated Cl concentrations in a system and with all else equal, the maximum values of DClapat/melt occur with the most felsic melt. In contrast, values of DFapat/melt range from 11 to 40 for these felsic melts, and many of these are an order of magnitude greater than those applying to basaltic melts at 200 MPa and 1066-1150 °C. The Cl concentration of apatite is a simple and linear function of the concentration of Cl in fluid. Values of DClfluid/apat for these experiments range from 9 to 43, and some values are an order of magnitude greater than those determined in 200-MPa experiments involving basaltic melts at 1066-1150 °C.In order to determine the concentrations and interpret the behavior of volatile components in magmas, the experimental data have been applied to the halogen concentrations of apatite grains from chemically evolved rocks of Augustine volcano, Alaska; Krakatau volcano, Indonesia; Mt. Pinatubo, Philippines; Mt. St. Helens, Washington; Mt. Mazama, Oregon; Lascar volcano, Chile; Santorini volcano, Greece, and the Bishop Tuff, California. The F concentrations of these magmas estimated from apatite-melt equilibria range from 0.06 to 0.12 wt% and are generally equivalent to the concentrations of F determined in the melt inclusions. In contrast, the Cl concentrations of the magmas estimated from apatite-melt equilibria (e.g., ca. 0.3-0.9 wt%) greatly exceed those determined in the melt inclusions from all of these volcanic systems except for the Bishop Tuff where the agreement is good. This discrepancy in estimated Cl concentrations of melt could result from several processes, including the hypothesis that the composition of apatite represents a comparatively Cl-enriched stage of magma evolution that precedes melt inclusion entrapment prior to the sequestration of Cl by coexisting magmatic aqueous and/or saline fluid(s).  相似文献   

6.
Rb and Sr partitioning between haplogranitic melts and aqueous solutions   总被引:2,自引:0,他引:2  
Rubidium and strontium partitioning experiments between haplogranitic melts and aqueous fluids (water or 1.16-3.56 m (NaCl + KCl) ± HCl) were conducted at 750-950 °C and 0.2-1.4 GPa to investigate the effects of melt and fluid composition, pressure, and temperature. In addition, we studied if the applied technique (rapid and slow quench, and in-situ determination of trace element concentration in the fluid) has a bearing on the obtained data. There is good agreement of the data from different techniques for chloridic solutions, whereas back reactions between fluid and melt upon cooling have a significant effect on results from the experiments with water.The Rb fluid-melt partition coefficient shows no recognizable dependence on melt composition and temperature.For chloridic solutions, it is ∼0.4, independent of pressure. In experiments with water, it is one to two orders of magnitude lower and increases with pressure. The strontium fluid-melt partition coefficient does not depend on temperature. It increases slightly with pressure in Cl free experiments. In chloridic fluids, there is a sharp increase in the Sr partition coefficient with the alumina saturation index (ASI) from 0.003 at an ASI of 0.8 to a maximum of 0.3 at an ASI of 1.05. At higher ASI, it decreases slightly to 0.2 at an ASI of 1.6. It is one to two orders of magnitude higher in chloridic fluids compared to those found in H2O experiments. The Rb/Sr ratio in non-chloridic solutions in equilibrium with metaluminous melts increases with pressure, whereas the Rb/Sr ratio in chloridic fluids is independent of pressure and decreases with fluid salinity.The obtained fluid-melt partition coefficients are in good agreement with data from natural cogenetic fluid and melt inclusions. Numerical modeling shows that although the Rb/Sr ratio in the residual melt is particularly sensitive to the degree of fractional crystallization, exsolution of a fluid phase, and associated fluid-melt partitioning is not a significant factor controlling Rb and Sr concentrations in the residual melt during crystallization of most granitoids.  相似文献   

7.
The solubility of U and Th in aqueous solutions at P-T-conditions relevant for subduction zones was studied by trapping uraninite or thorite saturated fluids as synthetic fluid inclusions in quartz and analyzing their composition by Laser Ablation-ICPMS. Uranium is virtually insoluble in aqueous fluids at Fe-FeO buffer conditions, whereas its solubility increases both with oxygen fugacity and with salinity to 960 ppm at 26.1 kbar, Re-ReO2 buffer conditions and 14.1 wt% NaCl in the fluid. At 26.1 kbar and 800°C, uranium solubility can be reproduced by the equation: log\textU = 2.681 + 0.1433logf\textO2 + 0.594\textCl, \log {\text{U}} = 2.681 + 0.1433\log f{\text{O}}_{2} + 0.594{\text{Cl,}} where fO2 is the oxygen fugacity, and Cl is the chlorine content of the fluid in molality. In contrast, Th solubility is generally low (<10 ppm) and independent of oxygen fugacity or fluid salinity. The solubility of U and Th in clinopyroxene in equilibrium with uraninite and thorite was found to be in the order of 10 ppm. Calculated fluid/cpx partition coefficients of Th are close to unity for all conditions. In contrast, Dfluid/cpx for uranium increases strongly both with oxygen fugacity and with salinity. We show that reducing or NaCl-free fluids cannot produce primitive arc magmas with U/Th ratio higher than MORB. However, the dissolution of several wt% of oxidized, saline fluids in arc melts can produce U/Th ratios several times higher than in MORB. We suggest that observed U/Th ratios in arc magmas provide tight constraints on both the salinity and the oxidation state of subduction zone fluids.  相似文献   

8.
Solubility of Au in Cl- and S-bearing hydrous silicate melts   总被引:2,自引:0,他引:2  
The solubility of Au in Cl- and S-bearing hydrous rhyodacitic and andesitic melts has been experimentally investigated at 1050 °C, 200 MPa and log fO2 close to the Ni/NiO solid oxygen buffer (NNO). The concentrations of Au in the experimental glasses have been determined using Laser Ablation ICP-MS (LA) with special efforts to avoid incorporation of Au micronuggets in the analysis. It is concluded that metal micronuggets are an experimental artefact and produced by Au partitioning into the fluids during heating with consequent precipitation on fluid dissolution in the melting glass powder. Hence, the micronuggets do not represent quench phases and must be excluded from the analysis. The micro-analytical data obtained by LA show that Au concentrations vary from ∼0.2 to ∼2.5 ppm by weight, generally consistent with the literature data for other melt compositions. The measured Au concentrations increase with increasing amounts of Cl and S dissolved in the silicate melt and show a correlation with the apparent activities of Cl and S in the system. The apparent activities of Cl and S are defined by the simplified linear relationship between volatile concentrations in the melt and activity of volatiles. The maximum activity (a = 1) is assumed to be reached at the saturation of the systems in respect of Cl-rich brine or FeS liquid for Cl and S, respectively. The dependence of Au solubility on the concentrations/activities of Cl and S at the fixed redox conditions shows that Au may form not only oxide- but also Cl- and S-bearing complexes in silicate melts. Furthermore, it indicates that exsolution of S and Cl from the melt by degassing/segregation/crystallization processes may lead to mobilization and extraction of Au into the fluid, liquid and/or mineral phase(s).  相似文献   

9.
In order to fully assess the role of rutile in fractionation of Nb/Ta during partial melting of hydrous metabasalt, we have measured rutile - felsic melt partition coefficients (D values) for Nb and Ta with tonalitic to trondhjemitic compositions at 1.5-3.5 GPa, 900-1350 °C and ∼5.0-20 wt% H2O. DNb, DTa and DNb/DTa range from 17 ± 1 to 246 ± 13, 34 ± 2 to 232 ± 25 and 0.51 ± 0.04 to 1.06 ± 0.13, respectively. For the compositions investigated, melt composition appears to have no observable effect on the partitioning; the effect of pressure is also slight; whereas temperature and H2O have marked effects. DNb, DTa and DNb/DTa increase with decreasing temperature and H2O content, showing a reversal of DNb/DTa from <1.0 to >1.0. Using the data that approached equilibrium and obeyed Henry’s law, expressions describing the dependences of DNb, DTa and DNb/DTa on temperature, pressure and melt H2O content were obtained:
(1)  相似文献   

10.
We experimentally determined F and Cl partition coefficients together with that of 19 trace elements (including REE, U-Th, HFSE and LILE) between basaltic melt and lherzolite minerals: olivine, orthopyroxene, clinopyroxene, plagioclase and garnet. Under conditions from 8 to 25 kbars and from 1,265 to 1,430°C, compatibilities of F and Cl are globally ordered as D Cpx/melt > D Opx/melt > D Grt/melt > D Ol/melt > D Plag/melt, and D F mineral/melt is larger than D Clmineral/melt. Four other major results were brought to light. (1) Chlorine partition coefficients positively correlate with the jadeite component in orthopyroxene, and increase of the CaTs component promotes Cl incorporation in clinopyroxene. (2) Variations of fluorine partition coefficients correlate strongly with melt viscosity. (3) F and Cl partition coefficients correlate with the Young’s modulus (E 0) of pyroxene octahedral sites (M sites) and with Raman vibrational modes of pyroxenes. This demonstrates a fundamental interaction between the M site of pyroxenes and the incorporation of F and Cl. (4) We also determined the parameters of the lattice-strain model applied to 3+ cation trace elements for the two M sites in orthopyroxene and clinopyroxene: D 0M1, D 0M2, r 0M1r 0M2E 0M1 and E 0M2.  相似文献   

11.
Trace element partitioning between apatite and silicate melts   总被引:7,自引:0,他引:7  
We present new experimental apatite/melt trace element partition coefficients for a large number of trace elements (Cs, Rb, Ba, La, Ce, Pr, Sm, Gd, Lu, Y, Sr, Zr, Hf, Nb, Ta, U, Pb, and Th). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La, Ce, Pr, Sm, Gd, and Lu), Y, and Sr are compatible in apatite, whereas the larger lithophile elements (Cs, Rb, and Ba) are strongly incompatible. Other trace elements such as U, Th, and Pb have partition coefficients close to unity. In all experiments we found DHf > DZr, DTa ≈ DNb, and DBa > DRb > DCs. The experiments reveal a strong influence of melt composition on REE partition coefficients. With increasing polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about an order of magnitude. We also present some results in fluorine-rich and water-rich systems, respectively, but no significant influence of either H2O or F on the partitioning was found. Furthermore, we also present experimentally determined partition coefficients in close-to natural compositions which should be directly applicable to magmatic processes.  相似文献   

12.
The partitioning behavior of Cl among apatite, mafic silicate melt, and aqueous fluid and of F between apatite and melt have been determined in experiments conducted at 1066 to 1150 °C and 199-205 MPa. The value of DClapatite/melt (wt. fraction of Cl in apatite/Cl in melt) ≈0.8 for silicate melt containing less than ∼3.8 wt.% Cl. At higher melt Cl contents, small increases in melt Cl concentration are accompanied by large increases in apatite Cl concentration, forcing DClapatite/melt to increase as well. Melt containing less than 3.8% Cl coexists with water-rich vapor; that containing more Cl coexists with saline fluid, the salinity of which increases rapidly with small increases in melt Cl content, analogous to the dependency of apatite composition on melt Cl content. This behavior is due to the fact that the solubility of Cl in silicate melt depends strongly on the composition of the melt, particularly its Mg, Ca, Fe, and Si contents. Once the melt becomes “saturated” in Cl, additional Cl must be accommodated by coexisting fluid, apatite, or other phases rather than the melt itself. Because Cl solubility depends on composition, the Cl concentration at which DClapatite/melt and DClfluid/melt begin to increase also depends on composition. The experiments reveal that DFapatite/melt ≈3.4. In contrast to Cl, the concentration of F in silicate melt is only weakly dependent on composition (mainly on melt Ca contents), so DFapatite/melt is constant for a wide range of composition.The experimental data demonstrate that the fluids present in the waning stages of the solidification of the Stillwater and Bushveld complexes were highly saline. The Cl-rich apatite in these bodies crystallized from interstitial melt with high Cl/(F + OH) ratio. The latter was generated by the combined processes of fractional crystallization and dehydration by its reaction with the relatively large mass of initially anhydrous pyroxene through which it percolated.  相似文献   

13.
We determined the solubility limit of Pt in molten haplo-basalt (1 atm anorthite-diopside eutectic composition) in piston-cylinder and multi-anvil experiments at pressures between 0.5 and 14 GPa and temperatures from 1698 to 2223 K. Experiments were internally buffered at ∼IW + 1. Pt concentrations in quenched-glass samples were measured by laser-ablation inductively coupled-plasma mass spectrometry (LA-ICPMS). This technique allows detection of small-scale heterogeneities in the run products while supplying three-dimensional information about the distribution of Pt in the glass samples. Analytical variations in 195Pt indicate that all experiments contain Pt nanonuggets after quenching. Averages of multiple, time-integrated spot analyses (corresponding to bulk analyses) typically have large standard deviations, and calculated Pt solubilities in silicate melt exhibit no statistically significant covariance with temperature or pressure. In contrast, averages of minimum 195Pt signal levels show less inter-spot variation, and solubility shows significant covariance with pressure and temperature. We interpret these results to mean that nanonuggets are not quench particles, that is, they were not dissolved in the silicate melt, but were part of the equilibrium metal assemblage at run conditions. We assume that the average of minimum measured Pt abundances in multiple probe spots is representative of the actual solubility. The metal/silicate partition coefficients (Dmet/sil) is the inverse of solubility, and we parameterize Dmet/sil in the data set by multivariate regression. The statistically robust regression shows that increasing both pressure and temperature causes Dmet/silto decrease, that is, Pt becomes more soluble in silicate melt. Dmet/sil decreases by less than an order of magnitude at constant temperature from 1 to 14 GPa, whereas isobaric increase in temperature produces a more dramatic effect, with Dmet/sil decreasing by more than one order of magnitude between 1623 and 2223 K. The Pt abundance in the Earth’s mantle requires that Dmet/sil is ∼1000 assuming core-mantle equilibration. Geochemical models for core formation in Earth based on moderately and slightly siderophile elements are generally consistent with equilibrium metal segregation at conditions generally in the range of 20-60 GPa and 2000-4000 K. Model extrapolations to these conditions show that the Pt abundance of the mantle can only be matched if oxygen fugacity is high (∼IW) and if Pt mixes ideally in molten iron, both very unlikely conditions. For more realistic values of oxygen fugacity (∼IW − 2) and experimentally-based constraints on non-ideal mixing, models show that Dmet/sil would be several orders of magnitude too high even at the most favorable conditions of pressure and temperature. These results suggest that the mantle Pt budget, and by implication other highly siderophile elements, was added by late addition of a ‘late veneer’ phase to the accreting proto-Earth.  相似文献   

14.
This paper reports the results of a study of the composition of mica (biotite) crystallizing in the system of phonolite melt-Cl- and F-bearing aqueous fluid at T ~ 850°C, P = 200 MPa, and \(f_{O_2 } \) = Ni-NiO, as well as data on F and Cl partitioning between coexisting phases. It was established that Cl content in mica is significantly lower than in phonolite melt and, especially, in fluid. Fluorine shows a different behavior in this system: its content in mica is always higher than in phonolite melt but lower than in fluid. The mica-melt partition coefficients of Cl and F also behave differently. The Cl partition coefficient gradually increases from 0.17 to 0.33 with increasing Cl content in the system, whereas the partition coefficient of F sharply decreases from 3.0 to 1.0 with increasing total F content. The apparent partition coefficients of F between biotite and groundmass (melt) in various magmatic rocks are usually significantly higher than the experimental values. It was supposed that the higher Bt/glassDF values in natural samples could be related to the influence of later oxidation reactions, reequilibration of biotite at continuously decreasing \(f_{H_2 O} \)/f HF ratio, and an increase in this coefficients with decreasing total F content in the system.  相似文献   

15.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   

16.
Partition coefficients (zircon/meltDM) for rare earth elements (REE) (La, Ce, Nd, Sm, Dy, Er and Yb) and other trace elements (Ba, Rb, B, Sr, Ti, Y and Nb) between zircon and melt have been calculated from secondary ion mass spectrometric (SIMS) analyses of zircon/melt inclusion pairs. The melt inclusion-mineral (MIM) technique shows that DREE increase in compatibility with increasing atomic number, similar to results of previous studies. However, DREE determined using the MIM technique are, in general, lower than previously reported values. Calculated DREE indicate that light REE with atomic numbers less than Sm are incompatible in zircon and become more incompatible with decreasing atomic number. This behavior is in contrast to most previously published results which indicate D > 1 and define a flat partitioning pattern for elements from La through Sm. The partition coefficients for the heavy REE determined using the MIM technique are lower than previously published results by factors of ≈15 to 20 but follow a similar trend. These differences are thought to reflect the effects of mineral and/or glass contaminants in samples from earlier studies which employed bulk analysis techniques.DREE determined using the MIM technique agree well with values predicted using the equations of Brice (1975), which are based on the size and elasticity of crystallographic sites. The presence of Ce4+ in the melt results in elevated DCe compared to neighboring REE due to the similar valence and size of Ce4+ and Zr4+. Predicted zircon/meltD values for Ce4+ and Ce3+ indicate that the Ce4+/Ce3+ ratios of the melt ranged from about 10−3 to 10−2. Partition coefficients for other trace elements determined in this study increase in compatibility in the order Ba < Rb < B < Sr < Ti < Y < Nb, with Ba, Rb, B and Sr showing incompatible behavior (DM < 1.0), and Ti, Y and Nb showing compatible behavior (DM > 1.0).The effect of partition coefficients on melt evolution during petrogenetic modeling was examined using partition coefficients determined in this study and compared to trends obtained using published partition coefficients. The lower DREE determined in this study result in smaller REE bulk distribution coefficients, for a given mineral assemblage, compared to those calculated using previously reported values. As an example, fractional crystallization of an assemblage composed of 35% hornblende, 64.5% plagioclase and 0.5% zircon produces a melt that becomes increasingly more enriched in Yb using the DYb from this study. Using DYb from Fujimaki (1986) results in a melt that becomes progressively depleted in Yb during crystallization.  相似文献   

17.
Olivine/melt partitioning of ΣFe, Fe2+, Mg2+, Ca2+, Mn2+, Co2+, and Ni2+ has been determined in the systems CaO-MgO-FeO-Fe2O3-SiO2 (FD) and CaO-MgO-FeO-Fe2O3-Al2O3-SiO2 (FDA3) as a function of oxygen fugacity (fO2) at 0.1 MPa pressure. Total iron oxide content of the starting materials was ∼20 wt%. The fO2 was to used to control the Fe3+/ΣFe (ΣFe: total iron) of the melts. The Fe3+/ΣFe and structural roles of Fe2+ and Fe3+ were determined with 57Fe resonant absorption Mössbauer spectroscopy. Changes in melt polymerization, NBO/T, as a function of fO2 was estimated from the Mössbauer data and existing melt structure information. It varies by ∼100% in melts coexisting with olivine in the FDA3 system and by about 300% in the FD system in the Fe3+/ΣFe range of the experiments (0.805-0.092). The partition coefficients ( in olivine/wt% in melt) are systematic functions of fO2 and, therefore, NBO/T of the melt. There is a -minimum in the FDA3 system at NBO/T-values corresponding to intermediate Fe3+/ΣFe (0.34-0.44). In the Al-free system, FD, where the NBO/T values of melts range between ∼1 and ∼2.9, the partition coefficients are positively correlated with NBO/T (decreasing Fe3+/ΣFe). These relationships are explained by consideration of solution behavior in the melts governed by Qn-unit distribution and structural changes of the divalent cations in the melts (coordination number, complexing with Fe3+, and distortion of the polyhedra).  相似文献   

18.
Os equilibrium solubilities were determined at 1350 °C over a wide range of oxygen fugacities (−12 < log fO2 < −7) applying the mechanically assisted equilibration technique (MAE) at 105 Pa (= 1 bar). Os concentrations in the glass samples were analysed using ID-NTIMS. Additional LA-ICP-MS and SEM analyses were performed to detect, visualize and analyse the nature and chemistry of “nanonuggets.” Os solubilities determined range at a constant temperature of 1350 °C from 0.63 ± 0.04 to 37.4 ± 1.16 ppb depending on oxygen fugacity. At the highest oxygen fugacities, Os3+ can be confirmed as the main oxidation state of Os. At low oxygen fugacities (below log fO2 = −8), samples are contaminated by nanonuggets which, despite the MAE technique, were still not removed entirely from the melt. However, the present results indicate that applying MAE technology does reduce the amount of nanonuggets present significantly, resulting in the lowest Os solubility results reported to date under these experimental conditions, and extending the experimentally accessible range of fO2 for these studies to lower values. Calculated metal/silicate melt partition coefficients are therefore higher compared to previous studies, making Os more siderophile. Neglecting the as yet unknown temperature dependence of the Os metal/silicate melt partition coefficient, extrapolation of the obtained Os solubilities to conditions for core-mantle equilibrium, results in a , while metallic alloy/silicate melt partition coefficients range from 1.4 × 106 to 8.6 × 107, in agreement with earlier findings. Therefore remains too high by 2-4 orders of magnitude to explain the Os abundance in the Earth’s mantle as result of core-mantle equilibrium during core formation.  相似文献   

19.
Zircon was grown from trace-element doped hydrous peralkaline rhyolite melts with buffered oxygen fugacities in cold-seal experiments at 0.1 and 0.2 GPa and 800 °C and piston-cylinder experiments at 1.5 GPa and 900-1300 °C. Zircon and glass were present in all run products, and small monazite crystals were present in eight of the 12 experiments. Average diameters of zircon crystals ranged from 5 to 20 μm at 800 °C to 30-50 μm at 1300 °C. Zircon crystals have thin rims, and adjacent glass has a narrow (∼1 μm thick) compositional boundary layer. Concentrations obtained through in-situ analysis of cores of run product zircon crystals and melt pools were used to calculate trace-element partition coefficients Dzircon/melt for P, Sc, Ti, V, Y, La, Ce, Pr, Nd, Eu, Gd, Ho, Yb, Lu, Hf, Th, and U. In most cases Lu was the most (D 12-105) and La the least (0.06-0.95) compatible elements. D values from this study fall within the range of previously measured values for Rare Earth Elements (REE). However, D values measured experimentally show less fractionation than those recently measured using natural phenocryst/matrix pairs. For example, DLu/DLa measured experimentally in this study range between 27 and 206 compared to a value of 706,522 for a natural zircon/dacite pair [Sano, Y., Terada, K., and Fukuoka, T. 2002 High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem. Geol.184, 217-230]. Although D values from this study show good agreement with the lattice strain model, D values from natural phenocryst/matrix pairs combined with measured zircon compositions better reproduce host-rock (magma) compositions of igneous rocks. They also yield more reasonable estimates of magma compositions when combined with compositions of ‘‘out-of-context” zircons. For example, compositions of the Hadean detrital zircons from Jack Hills, Australia yield LREE-enriched magmas when combined with D values from phenocryst/matrix pairs yields, but yield LREE-depleted magmas when experimentally determined D values are used. We infer that experimentally measured Dzircon/melt values represent disequilibrium partitioning resulting from rapid zircon growth during short laboratory timescales. Rapid growth causes development of observed diffusive boundary layers in the melt adjacent to zircon crystals. D values from phenocryst/matrix pairs are therefore recommended for petrogenetic modeling.  相似文献   

20.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号