首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— A transmission electron microscope (TEM) study of three coarse-grained Type A Ca, Al-rich inclusions (CAIs) from Allende, Acfer 082 and Acfer 086 (all CV3 chondrites) was performed in order to decipher their origin and effects of possible metamorphism. The constituent minerals of the CAIs are found to exhibit very similar microstructural characteristics in each of the inclusions studied. In general, the minerals show a well-developed equilibrium texture with typical 120° triple junctions. Melilites are clearly considerably strained and characterized by high dislocation densities up to 3 × 1011 cm?2. The dislocations have Burgers vectors of [001], [110] or [011] and often form subgrain boundaries subparallel {100}. Melilite in the Allende CAI additionally contains thin amorphous lamellae mostly oriented parallel to {001}. Fassaite (Al-Ti-diopside) is almost featureless even on the TEM scale. Only a few subplanar dislocation walls composed of dislocations with Burgers vectors [001] and 1/2 [110] were detected. Although enclosed within the highly strained melilites, the euhedral spinels contain only low dislocation densities (<2 × 104 cm?2). In the Allende CAI, spinels were found twinned on {111}. Perovskite is also characterized by a low number of linear lattice defects. All grains possess orthorhombic symmetry and are commonly twinned according to a 90° rotation around [101]. Many crystals exhibit typical domain structures as well as curved twin walls where two orthogonal sets intersect. In addition to the mineral phases described above, tiny inclusions of the simple oxides CaO and TiO2 were found within melilite (CaO), spinel (CaO, TiO2) and perovskite (CaO, TiO2). Based on these observations, it is assumed that at the beginning of the formation of the CAIs a condensed solid precursor was present. Euhedral spinels poikilitically enclosed within melilites suggest that this solid aggregate was then molten. If the pure oxides represent relict condensates, their presence proves that this melting was incomplete. While still plastic, the CAIs were shocked by microimpacts causing the high dislocation densities in melilite as well as diaplectic melilite glass and twinned spinels in the Allende CAI. In Acfer 082 and 086, the deformation took place at elevated temperatures, preventing the solid phase transition and mechanical twinning. The absence of linear lattice defects in spinel, fassaite and perovskite most probably reflects inhomogeneous pressure distribution in the polycrystalline CAI as well as the different strengths of the minerals. According to cooling-rate experiments on perovskite by Keller and Buseck (1994), the dominating (101) twins in the CAI perovskites point to cooling rates ≤50 °C/min. Finally, after crystallization of the CAI was complete, mild thermal metamorphism caused the formation of subgrain boundaries, 120° triple junctions and chemical homogenization of the melilites.  相似文献   

2.
Abstract— Fassaite is a major component of Ca‐Al‐rich inclusions (CAIs) of Types B and C that crystallized from liquids. In contrast, this mineral is rarely reported in Type A inclusions and has been much less studied. In this paper, we report highly Ti‐, Al‐enriched fassaite that occurs as rims on perovskite in two compact Type A inclusions from the Ningqiang meteorite. In addition, one of the inclusions contains an euhedral grain of Sc‐fassaite (16.4 wt% Sc2O3) isolated in melilite. The occurrence and mineral chemistry of the fassaite rims can be explained by a reaction of pre‐existing perovskite with CAI melts. Hence, such rims may serve as an indicator for partial melting of Type A inclusions. The Sc‐fassaite is probably a relict grain. A third spherical CAI contains several euhedral grains of V‐fassaite (4.8–5.4 wt% V2O3) enclosed in a melilite fragment. The high V content of fassaite cannot be related to any Fremdlinge, magnetite, or metallic Fe‐Ni, because these phases are absent in the inclusion. In the same CAI, other fassaites intergrow with spinel and minor perovskite, filling voids inside of the melilite and space adjacent to the Wark‐Lovering rim. The fassaite intergrown with spinel is almost V‐free. The coexistence of two types of fassaite suggests that this CAI has not been completely melted.  相似文献   

3.
Abstract— In situ SIMS oxygen isotope data were collected from a coarse‐grained type B1 Ca‐Al‐rich inclusion (CAI) and an adjacent fine‐grained CAI in the reduced CV3 Efremovka to evaluate the timing of isotopic alteration of these two objects. The coarse‐grained CAI (CGI‐10) is a sub‐spherical object composed of elongate, euhedral, normally‐zoned melilite crystals ranging up to several hundreds of Pm in length, coarse‐grained anorthite and Al, Ti‐diopside (fassaite), all with finegrained (~10 μm across) inclusions of spinel. Similar to many previously examined coarse‐grained CAIs from CV chondrites, spinel and fassaite are 16O‐rich and melilite is 16O‐poor, but in contrast to many previous results, anorthite is 16O‐rich. Isotopic composition does not vary with textural setting in the CAI: analyses of melilite from the core and mantle and analyses from a variety of major element compositions yield consistent 16O‐poor compositions. CGI‐10 originated in an 16O‐rich environment, and subsequent alteration resulted in complete isotopic exchange in melilite. The fine‐grained CAI (FGI‐12) also preserves evidence of a 1st‐generation origin in an 16O‐rich setting but underwent less severe isotopic alteration. FGI‐12 is composed of spinel ± melilite nodules linked by a mass of Al‐diopside and minor forsterite along the CAI rim. All minerals are very fine‐grained (<5 μm) with no apparent igneous textures or zoning. Spinel, Al‐diopside, and forsterite are 16O‐rich, while melilite is variably depleted in 16O (δ17,18O from ~‐40‰ to ?5‰). The contrast in isotopic distributions in CGI‐10 and FGI‐12 is opposite to the pattern that would result from simultaneous alteration: the object with finer‐grained melilite and a greater surface area/ volume has undergone less isotopic exchange than the coarser‐grained object. Thus, the two CAIs were altered in different settings. As the CAIs are adjacent to each other in the meteorite, isotopic exchange in CGI‐10 must have preceded incorporation of this CAI in the Efremovka parent body. This supports a nebular setting for isotopic alteration of the commonly observed 16O‐poor melilite in coarse‐grained CAIs from CV chondrites.  相似文献   

4.
Abstract— Wark‐Lovering rims of six calcium‐aluminum‐rich inclusions (CAIs) representing the main CAI types and groups in Allende, Efremovka and Vigarano were microsurgically separated and analysed by neutron activation analysis (NAA). All the rims have similar ~4x enrichments, relative to the interiors, of highly refractory lithophile and siderophile elements. The NAA results are confirmed by ion microprobe and scanning electron microscope (SEM) analyses of rim perovskites and rim metal grains. Less refractory Eu, Yb, V, Sr, Ca and Ni are less enriched in the rims. The refractory element patterns in the rims parallel the patterns in the outer parts of the CAIs. In particular, the rims on type B1 CAIs have the igneously fractionated rare earth element (REE) pattern of the melilite mantle below the rim and not the REE pattern of the bulk CAI, proving that the refractory elements in the rims were derived from the outer mantle and were not condensates onto the CAIs. The refractory elements were enriched in an Al2O3‐rich residue <50 μm thick after the most volatile ~80% of the outermost 200 μm of each CAI had been volatilized, including much Mg, Si and Ca. Some volatilization occurred below the rim, and created refractory partial melts that crystallized hibonite and gehlenitic melilite. The required “flash heating” probably exceeded 2000 °C, but for only a few seconds, in order to melt only the outer CAI and to unselectively volatilize slow‐diffusing O isotopes which show no mass fractionation in the rim. The volatilization did, however, produce “heavy” mass‐fractionated Mg in rims. In some CAIs this was later obscured when “normal” Mg diffused in from accreted olivine grains at relatively high temperature (not the lower temperature meteorite metamorphism) and created the ~50 μm set of monomineralic rim layers of pyroxene, melilite and spinel.  相似文献   

5.
Abstract— A large (7 mm in diameter) Allende type B inclusion has a typical bulk composition and a unique structure: a fassaite‐rich mantle enclosing a melilite‐rich core. The core and mantle have sharply contrasting textures. In the mantle, coarse (?1 mm across), subhedral fassaite crystals enclose radially oriented melilite laths about 500 μm long that occur at the inclusion rim. The core consists of blocky melilite grains 20–50 μm across and poikilitically enclosed in anhedral fassaite grains that are optically continuous over ?1 mm. Another unique feature of this inclusion is that melilite laths also extend from the core into the mantle. Fassaite in both the core and mantle is very rich in fine‐grained (1–10 μm) spinel. The rim laths are normally zoned (Åk30–70) inward from the rim of the inclusion with reverse zoning over the last ?200 μm to crystallize. A very wide range of melilite compositions is found in the core of the inclusion, where gehlenitic grains (Åk5–12) occur. These grains are enclosed in strongly zoned (Åk15–70) overgrowths. The gehlenitic cores and innermost parts of the overgrowths are Na2O‐free, but the outer parts of the overgrowths are not. In the laths at the rim, Na2O decreases inward from the rim, then increases. Fassaite in the core has the same range of Ti contents as that in the mantle: 2–9 wt% TiO2 + Ti2O3. Two melting events are required to account for the features of this inclusion. In the first event, the precursor assemblage is heated to ?1400 °C and melts except for gehlenitic (Åk5–12) melilite and some spinel. These grains become concentrated in the core. During cooling, Na2O‐free melilite nucleates at the rim of the inclusion and on the relict grains in the core. After open system secondary alteration, the inclusion is heated again, but only to ?1260 °C. Melilite more gehlenitic than Åk40 does not melt. During cooling, Na2O‐bearing melilite crystallizes as small, blocky grains and laths in the core and as overgrowths on relict grains in the core and at the rim. Eventually melilite co‐crystallizes with fassaite, leading to the reverse zoning observed in the laths. The coexistence in this inclusion of Na‐free and Na‐bearing melilite, plus a positive correlation between Na2O and åkermanite contents in melilite in an inclusion with a bulk Mg isotopic composition that is mass‐fractionated in favor of the heavy isotopes, are both consistent with at least two melting events. Several other recently described coarse‐grained inclusions also have features consistent with a sequence of early, high‐temperature melting, secondary alteration, and remelting at a lower temperature, suggesting that remelting of refractory inclusions was a common occurrence in the solar nebula.  相似文献   

6.
Abstract— We have conducted an electron microprobe study of minor element distributions among spinels from two type B1 calcium-aluminum-rich inclusions (CAIs): Allende TS-23 and Leoville 3537–2. We show that by maintaining the petrologic context (edge, middle, and center of the inclusion plus their host silicate phase), four populations of spinels are resolvable based on their minor element contents. One population resides within the edge area (mainly mantle melilite) and is characterized by the highest V contents. Unlike Leoville 3537–2, many edge grains from Allende TS-23 also have high-Fe contents (up to 4.0 wt%) and low-Cr values. Based on their V and Ti concentrations (which is positively correlated), middle and center grains define a trend that is divided into three populations: spinels enclosed by melilite, fassaite, and anorthite. The overall range in Ti concentration based on fractional crystallization should be much less than a factor of 2; however, the observed range is considerably larger. The minor element contents of these grains are interpreted as recording alteration, primary fractional crystallization, and a complex igneous history that may involve remelting and recrystallization. From our data, Allende TS-23 has experienced more alteration than Leoville 3537–2, which is consistent with previous petrologic studies of silicates within these objects; yet both objects have likely been remelted (at least one additional melting event, possibly two, postdating the initial formation of these CAIs). By invoking a remelting history, the large range ir Ti concentrations and the different populations of spinels can be explained. Although our data suggest that more than one generation of spinels exist within these objects, we are unable to establish any population of relic spinel grains that predate the initial melting event.  相似文献   

7.
We report on the primary and secondary mineralogies of three coarse-grained igneous calcium-aluminum-rich inclusions (CAIs) (Compact Type A [CTA], Type B [B], and forsterite-bearing type B [FoB]) from the Northwest Africa (NWA) 5343 (CK3.7) and NWA 4964 (CK3.8) carbonaceous chondrites, compare them with the mineralogy of igneous CAIs from the Allende (CV3.6) chondrite, and discuss the nature of the alteration processes that affected the CK and CV CAIs. The primary mineralogy and mineral chemistry of the CK3 CAIs studied are similar to those from Allende; however, primary melilite and anorthite are nearly completely absent. Although the secondary minerals identified in CK CAIs (Al-diopside, andradite, Cl-apatite, clintonite, forsterite, ferroan olivine, Fe,Ni-sulfides, grossular, ilmenite, magnetite, plagioclase, spinel, titanite, and wadalite) occur also in the Allende CAIs, there are several important differences: (i) In addition to melilite and anorthite, which are nearly completely replaced by secondary minerals, the alteration of CK CAIs also affected high-Ti pyroxenes (fassaite and grossmanite) characterized by high Ti3+/Ti4+ ratio and spinel. These pyroxenes are corroded and crosscut by veins of Fe- and Ti-bearing grossular, Fe-bearing Al,Ti-diopside, titanite, and ilmenite. Spinel is corroded by Fe-bearing Al-diopside and grossular. (ii) The secondary mineral assemblages of grossular + monticellite and grossular + wollastonite, commonly observed in the Allende CAIs, are absent; the Fe-bearing grossular + Fe-bearing Al-diopside ± Fe,Mg-spinel, Fe-bearing grossular + Fe,Mg-olivine ± Fe,Mg-spinel, and Ca,Na-plagioclase + Fe-bearing Al-diopside + Fe-bearing grossular assemblages are present instead. These mineral assemblages are often crosscut by veins of Fe-bearing Al-diopside, Fe,Mg-olivine, Fe,Mg-spinel, and Ca,Na-plagioclase. The coarse-grained secondary grossular and Al-diopside often show multilayered chemical zoning with distinct compositional boundaries between the layers; the abundances of Fe and Ti typically increase toward the grain edges. (iv) Sodium-rich secondary minerals, nepheline and sodalite, commonly observed in the peripheral portions of the Allende CAIs, are absent; Ca,Na-plagioclase is present instead. We conclude that coarse-grained igneous CAIs from CK3.7–3.8 s and Allende experienced an open-system multistage metasomatic alteration in the presence of an aqueous solution–infiltration metasomatism. This process resulted in localized mobilization of all major rock-forming elements: Si, Ca, Al, Ti, Mg, Fe, Mn, Na, K, and Cl. The metasomatic alteration of CK CAIs is more advanced and occurred under higher temperature and higher oxygen fugacity than that of the Allende CAIs.  相似文献   

8.
Abstract— Type B coarse‐grained calcium‐aluminum‐rich inclusions (CAIs) are the oldest known materials to have formed in the solar system and are a unique source of information regarding conditions and processes in the protoplanetary disk around the young sun. Recent experimental results on the crystallization and evaporation of type B‐like silicate melts allow us to place the following constraints on the conditions in the protoplanetary disk during the formation of type B CAIs. 1) Once type B CAIs precursors have been condensed from a solar composition gas, they were reheated at 1250–1450 °C, as is indicated by their igneous texture. 2) The melilite mantles characteristic of type B1 CAIs could be formed by crystallization of magnesium‐ and silicon‐depleted melt in the outer part of the partially molten droplets. Such depletion can arise when evaporation is fast compared to chemical diffusion in the melt. This requires the pressure of the surrounding solar composition gas to be at least 10−4 bars during the initial crystallization of melilite mantle. Type B2 CAIs with uniform distribution of melilite are expected to form at pressures less than 10−5 bars. 3) Evaporation calculations are used to place bounds on the thermal history of the type B CAIs. Observed compositional zoning in melilite suggests that the temperatures in the protoplanetary disk where the type B CAIs resided after crystallization could not have exceeded ˜1000 °C for more than a few tens of thousands of years. A recent calculation of the physical conditions associated with nebular shocks produced transient temperatures and gas pressures very much like what we find is required to melt reasonable CAI precursors and evaporate these sufficiently quickly to make a type B1 CAI.  相似文献   

9.
Abstract Ca-Al-rich inclusions (CAIs) in the Yamato-791717 CO carbonaceous chondrite contain 5 to 80 vol% of nepheline, along with minor sodalite, and thus are among the most nepheline-rich CAIs known. The primary phases in inclusions are mainly spinel, fassaite, aluminous diopside, perovskite, and hibonite. In contrast to many CO chondrites, melilite is rare. Spinel contains variable amounts of Fe (0 to 57 mol% FeAl2O4) and is commonly zoned. Texture suggests that nepheline is a secondary alteration product formed by replacing mainly melilite, fassaite, and spinel; melilite is the most susceptible to alteration of the primary phases, so most of it was probably already consumed to form nepheline. The majority of inclusions are single concentric objects or aggregates of concentric objects. Lightly altered inclusions have cores of spinel surrounded by bands of nepheline (replacing fassaite), fassaite, and diopside. In moderately altered inclusions, spinel cores are replaced by nepheline. In heavily altered inclusions, the major part of internal areas (50 to 80% in volume) are replaced by nepheline. In some moderately and heavily altered inclusions, only diopside rims remain unaltered. Textural relationships indicate that the resistance of primary phases to alteration increases in the order melilite, fassaite, spinel, diopside. The alteration probably proceeded with reaction of the primary phases with the low-temperature (≤ 1000 K) nebular gas rich in Na, Fe and CI. The degree of alteration in Y791717 CAIs appears to be much higher than those in CAIs in other reported meteorites.  相似文献   

10.
Abstract– The oxygen isotopic microdistributions within melilite measured using in situ secondary ion mass spectrometry correspond to the chemical zoning profiles in single melilite crystals of a fluffy type A Ca‐Al‐rich inclusions (CAIs) of reduced CV3 Vigarano meteorite. The melilite crystals show chemical reverse zoning within an individual single crystal from the åkermanite‐rich core to the åkermanite‐poor rim. The composition changes continuously with the crystal growth. The zoning structures suggest that the melilite grew in a hot nebular gas by condensation with decreasing pressure. The oxygen isotopic composition of melilite also changes continuously from 16O‐poor to 16O‐rich with the crystal growth. These observations suggest that the melilite condensation proceeded with change consistent with an astrophysical setting around the inner edge of a protoplanetary disk where both 16O‐rich solar coronal gas and 16O‐poor dense protoplanetary disk gas could coexist. Fluffy type A CAIs could have been formed around the inner edge of the protoplanetary disk surrounding the early sun.  相似文献   

11.
We report an occurrence of hexagonal CaAl2Si2O8 (dmisteinbergite) in a compact type A calcium‐aluminum‐rich inclusion (CAI) from the CV3 (Vigarano‐like) carbonaceous chondrite Northwest Africa 2086. Dmisteinbergite occurs as approximately 10 μm long and few micrometer‐thick lath‐shaped crystal aggregates in altered parts of the CAI, and is associated with secondary nepheline, sodalite, Ti‐poor Al‐diopside, grossular, and Fe‐rich spinel. Spinel is the only primary CAI mineral that retained its original O‐isotope composition (Δ17O ~ ?24‰); Δ17O values of melilite, perovskite, and Al,Ti‐diopside range from ?3 to ?11‰, suggesting postcrystallization isotope exchange. Dmisteinbergite, anorthite, Ti‐poor Al‐diopside, and ferroan olivine have 16O‐poor compositions (Δ17O ~ ?3‰). We infer that dmisteinbergite, together with the other secondary minerals, formed by replacement of melilite as a result of fluid‐assisted thermal metamorphism experienced by the CV chondrite parent asteroid. Based on the textural appearance of dmisteinbergite in NWA 2086 and petrographic observations of altered CAIs from the Allende meteorite, we suggest that dmisteinbergite is a common secondary mineral in CAIs from the oxidized Allende‐like CV3 chondrites that has been previously misidentified as a secondary anorthite.  相似文献   

12.
CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. Although CKs are described as calcium‐aluminum‐rich inclusion (CAI)‐poor objects, the abundance of CAIs in the 18 CK3–6 we analyzed ranges from zero to approximately 16.4%. During thermal metamorphism, some of the fine‐grained CAIs recrystallized as irregular assemblages of plagioclase + Ca‐rich pyroxene ± olivine ± Ca‐poor pyroxene ± magnetite. Coarse‐grained CAIs display zoned spinel, fassaite destabilization, and secondary grossular and spinel. Secondary anorthite, grossular, Ca‐rich pyroxene, and spinel derive from the destabilization of melilite, which is lacking in all CAIs investigated. The Al‐Mg isotopic systematics measured in fine‐ and coarse‐grained CAIs from Tanezrouft (Tnz) 057 was affected by Mg redistribution. The partial equilibration of Al‐Mg isotopic signatures obtained in the core of a coarse‐grained CAI (CG1‐CAI) in Tnz 057 may indicate a lower peak temperature for Mg diffusion of approximately 540–580 °C, while grossular present in the core of this CAI indicates a higher temperature of around 800 °C for the metamorphic event on the parent body of Tnz 057. Excluding metamorphic features, the similarity in nature and abundance of CAIs in CK and CV chondrites confirms that CVs and CKs form a continuous metamorphic series from type 3 to 6.  相似文献   

13.
Abstract— Rumuruti chondrites (R chondrites) constitute a well‐characterized chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Many of these meteorites are breccias containing primitive type 3 fragments as well as fragments of higher petrologic type. Ca,Al‐rich inclusions (CAIs) occur within all lithologies. Here, we present the results of our search for and analysis of Al‐rich objects in Rumuruti chondrites. We studied 20 R chondrites and found 126 Ca,Al‐rich objects (101 CAIs, 19 Al‐rich chondrules, and 6 spinel‐rich fragments). Based on mineralogical characterization and analysis by SEM and electron microprobe, the inclusions can be grouped into six different types: (1) simple concentric spinel‐rich inclusions (42), (2) fassaite‐rich spherules, (3) complex spinel‐rich CAIs (53), (4) complex diopside‐rich inclusions, (5) Al‐rich chondrules, and (6) Al‐rich (spinel‐rich) fragments. The simple concentric and complex spinel‐rich CAIs have abundant spinel and, based on the presence or absence of different major phases (fassaite, hibonite, Na,Al‐(Cl)‐rich alteration products), can be subdivided into several subgroups. Although there are some similarities between CAIs from R chondrites and inclusions from other chondrite groups with respect to their mineral assemblages, abundance, and size, the overall assemblage of CAIs is distinct to the R‐chondrite group. Some Ca,Al‐rich inclusions appear to be primitive (e.g., low FeO‐contents in spinel, low abundances of Na,Al‐(Cl)‐rich alteration products; abundant perovskite), whereas others were highly altered by nebular and/or parent body processes (e.g., high concentrations of FeO and ZnO in spinel, ilmenite instead of perovskite, abundant Na,Al‐(Cl)‐rich alteration products). There is complete absence of grossite and melilite, which are common in CAIs from most other groups. CAIs from equilibrated R‐chondrite lithologies have abundant secondary Ab‐rich plagioclase (oligoclase) and differ from those in unequilibrated type 3 lithologies which have nepheline and sodalite instead.  相似文献   

14.
Abstract— It was suggested that multilayered accretionary rims composed of ferrous olivine, andradite, wollastonite, salite‐hedenbergitic pyroxenes, nepheline, and Ni‐rich sulfides around Allende calcium‐aluminum‐rich inclusions (CAIs) are aggregates of gas‐solid condensates which reflect significant fluctuations in physico‐chemical conditions in the slowly cooling solar nebula and grain/gas separation processes. In order to test this model, we studied the mineralogy of accretionary rims around one type A CAI (E104) and one type B CAI (E48) from the reduced CV3 chondrite Efremovka, which is less altered than Allende. In contrast to the Allende accretionary rims, those in Efremovka consist of coarse‐grained (20–40 μm), anhedral forsterite (Fa1–8), Fe, Ni‐metal nodules, amoeboid olivine aggregates (AOAs) and fine‐grained CAIs composed of Al‐diopside, anorthite, and spinel, ± forsterite. Although the fine‐grained CAIs, AOAs and host CAIs are virtually unaltered, a hibonite‐spinel‐perovskite CAI in the E48 accretionary rim experienced extensive alteration, which resulted in the formation of Fe‐rich, Zn‐bearing spinel, and a Ca, Al, Si‐hydrous mineral. Forsterites in the accretionary rims typically show an aggregational nature and consist of small olivine grains with numerous pores and tiny inclusions of Al‐rich minerals. No evidence for the replacement of forsterite by enstatite was found; no chondrule fragments were identified in the accretionary rims. We infer that accretionary rims in Efremovka are more primitive than those in Allende and formed by aggregation of high‐temperature condensates around host CAIs in the CAI‐forming regions. The rimmed CAIs were removed from these regions prior to condensation of enstatite and alkalies. The absence of andradite, wollastonite, and hedenbergite from the Efremovka rims may indicate that these rims sampled different nebular regions than the Allende rims. Alternatively, the Ca, Fe‐rich silicates rimming Allende CAIs may have resulted from late‐stage metasomatic alteration, under oxidizing conditions, of original Efremovka‐like accretionary rims. The observed differences in O‐isotope composition between forsterite and Ca, Fe‐rich minerals in the Allende accretionary rims (Hiyagon, 1998) suggest that the oxidizing fluid had an 16O‐poor oxygen isotopic composition.  相似文献   

15.
Abstract— Calcium‐aluminum‐rich refractory inclusions (CAIs) in CR chondrites are rare (<1 vol%), fairly small (<500 μm) and irregularly‐shaped, and most of them are fragmented. Based on the mineralogy and petrography, they can be divided into grossite ± hibonite‐rich, melilite‐rich, and pyroxene‐anorthite‐rich CAIs. Other types of refractory objects include fine‐grained spinel‐melilite‐pyroxene aggregates and amoeboid olivine aggregates (AOAs). Some of the pyroxene‐anorthite‐rich CAIs have igneous textures, and most melilite‐rich CAIs share similarities to both the fluffy and compact type A CAIs found in CV chondrites. One major difference between these CAIs and those in CV, CM, and CO chondrites is that secondary mineral phases are rare. In situ ion microprobe analyses of oxygen‐isotopic compositions of 27 CAIs and AOAs from seven CR chondrites demonstrate that most of the CAIs are 16O‐rich (δ17O of hibonite, melilite, spinel, pyroxene, and anorthite < ?22‰) and isotopically homogeneous within 3–4‰. Likewise, forsterite, spinel, anorthite, and pyroxene in AOAs have nearly identical, 16O‐rich compositions (?24‰ < δ17O < ?20‰). In contrast, objects which show petrographic evidence for extensive melting are not as 16O‐rich (δ17O less than ?18‰). Secondary alteration minerals replacing 16O‐rich melilite in melilite‐rich CAIs plot along the terrestrial fractionation line. Most CR CAIs and AOAs are mineralogically pristine objects that largely escaped thermal metamorphism and secondary alteration processes, which is reflected in their relatively homogeneous 16O‐rich compositions. It is likely that these objects (or their precursors) condensed in an 16O‐rich gaseous reservoir in the solar nebula. In contrast, several igneous CAIs are not very enriched in 16O, probably as a result of their having melted in the presence of a relatively 16O‐poor nebular gas. If the precursors of these CAIs were as 16O‐rich as other CR CAIs, this implies either temporal excursions in the isotopic composition of the gas in the CAI‐forming regions and/or radial transport of some CAI precursors into an 16O‐poor gas. The absence of oxygen isotope heterogeneity in the primary minerals of melilite‐rich CAIs containing alteration products suggests that mineralogical alteration in CR chondrites did not affect oxygen‐isotopic compositions of their CAIs.  相似文献   

16.
Abstract— We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse‐grained, igneous, anorthite‐rich (type C) Ca‐Al‐rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule‐like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath‐shaped anorthite (An99), Cr‐bearing Al‐Ti‐diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na‐rich melilite (Åk63–74, 0.4–0.6 wt% Na2O). TS26 and 93 lack Wark‐Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6–8) and low‐Ca pyroxene/pigeonite (Fs1Wo1–9). The relict grains are corroded by Al‐Ti‐diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30–42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse‐grained pigeonite (Fs0.5–2Wo5–17), augite (Fs0.5Wo38–42), and anorthitic plagioclase (An84). Relict olivine and low‐Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite‐augite rim around 93 are 16O‐poor (Δ17O ~ ?1‰ to ?8‰). Spinel and Al‐Ti‐diopside in cores of CAIs ABC, TS26, and 93 are 16O‐enriched (Δ17O down to ?20‰), whereas Al‐Ti‐diopside in the outer zones, as well as melilite and anorthite, are 16O‐depleted to various degrees (Δ17O = ?11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ~5 × 10?5 ABC, 93, and TS26 are 26Al‐poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10?6 (1.5 ± 1.8) × 10?6 <1.2 × 10?6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O‐poor gaseous reservoir, probably in the chondrule‐forming region. This melting episode could have reset the 26Al‐26Mg systematics of the host CAIs, suggesting it occurred ~2 Myr after formation of most CAIs. These observations and the common presence of relict CAIs inside chondrules suggest that CAIs predated formation of chondrules.  相似文献   

17.
Abstract— Four different types of calcium- and aluminium-rich inclusions (CAIs) have been identified in the CM2 chondrite Murray, three of which contain alteration products. Two types of altered CAIs, spinel inclusions and spinel-pyroxene inclusions, contain primary spinel (± perovskite ± hibonite ± diopside) and secondary Fe-rich serpentine phyllosilicates (± tochilinite ± calcite). Original melilite in these CAIs is inferred to have been altered during aqueous activity in the parent body and Fe-rich serpentines, tochilinite and calcite were formed in its place. The other type of altered CAI is represented by one inclusion, here called MCA-1. This CAI contains primary spinel, perovskite, fassaite and diopside with secondary calcite, paragonite, Mg-Al-Fe phyllosilicates and a Mg-Al-Fe sulphate. Importantly, MCA-1 is similar in both primary and secondary mineralogy to a small number of altered CAIs described from other CM2 meteorites including Essebi, Murchison and a CM2 clast from Plainview. Features that these CAIs have in common include an unusually large size, a CV3-like primary mineralogy and the presence of secondary aluminosilicates and calcite. The Al-rich alteration products in MCA-1 are also reminiscent of secondary minerals in refractory inclusions from CV3 meteorites, which have previously been interpreted to form by interaction of the inclusions with solar nebula gases. In common with the other types of altered CAIs in Murray, MCA-1 is inferred to have experienced its main phase of alteration in a parent body environment. The Mg-Al-Fe phyllosilicates, calcite and the Mg-Al-Fe sulphate formed following aqueous alteration of an Al-rich precursor, possibly Ca dialuminate. This episode of parent body alteration may have overprinted an earlier phase of alteration in a solar nebula environment from which only paragonite remains.  相似文献   

18.
Abstract— Fine‐grained, spinel‐rich inclusions in the reduced CV chondrites Efremovka and Leoville consist of spinel, melilite, anorthite, Al‐diopside, and minor hibonite and perovskite; forsterite is very rare. Several CAIs are surrounded by forsterite‐rich accretionary rims. In contrast to heavily altered fine‐grained CAIs in the oxidized CV chondrite Allende, those in the reduced CVs experienced very little alteration (secondary nepheline and sodalite are rare). The Efremovka and Leoville fine‐grained CAIs are 16O‐enriched and, like their Allende counterparts, generally have volatility fractionated group II rare earth element patterns. Three out of 13 fine‐grained CAIs we studied are structurally uniform and consist of small concentrically zoned nodules having spinel ± hibonite ± perovskite cores surrounded by layers of melilite and Al‐diopside. Other fine‐grained CAIs show an overall structural zonation defined by modal mineralogy differences between the inclusion cores and mantles. The cores are melilite‐free and consist of tiny spinel ± hibonite ± perovskite grains surrounded by layers of anorthite and Al‐diopside. The mantles are calcium‐enriched, magnesium‐depleted and coarsergrained relative to the cores; they generally contain abundant melilite but have less spinel and anorthite than the cores. The bulk compositions of fine‐grained CAIs generally show significant fractionation of Al from Ca and Ti, with Ca and Ti being depleted relative to Al; they are similar to those of coarsegrained, type C igneous CAIs, and thus are reasonable candidate precursors for the latter. The finegrained CAIs originally formed as aggregates of spinel‐perovskite‐melilite ± hibonite gas‐solid condensates from a reservoir that was 16O‐enriched but depleted in the most refractory REEs. These aggregates later experienced low‐temperature gas‐solid nebular reactions with gaseous SiO and Mg to form Al‐diopside and ±anorthite. The zoned structures of many of the fine‐grained inclusions may be the result of subsequent reheating that resulted in the evaporative loss of SiO and Mg and the formation of melilite. The inferred multi‐stage formation history of fine‐grained inclusions in Efremovka and Leoville is consistent with a complex formation history of coarse‐grained CAIs in CV chondrites.  相似文献   

19.
Abstract– Mg isotope data were collected by NanoSIMS with high‐precision and high‐spatial resolution from a coarse‐grained type B Ca‐, Al‐rich inclusion (CAI), EK1‐6‐3, in the Allende CV3 chondrite to evaluate the time scale of parent body thermal metamorphism. The CAI melilite and fassaite contain excesses of 26Mg (26Mg*) from the in‐situ decay of 26Al; the inferred initial ratio, (26Al/27Al)0 = (5.8 ± 2.4) × 10?5, is consistent with many previously reported coarse‐grained CAIs from CV chondrites (e.g., MacPherson et al. 1995 ). However, the anorthite has heterogeneous (26Al/27Al)0, ranging from 1.8 × 10?5 to 3.3 × 10?6. The 26Al‐26Mg systematics within the anorthite is consistent with thermal diffusion of Mg isotopes during metamorphism. We also show that the heterogeneous distribution of 26Mg* in anorthite could have resulted from thermal diffusion of 26Mg* over a 0.6–0.8 Ma time span. Mg diffusion thus may be responsible for the (26Al/27Al)0 heterogeneity within anorthite in CAIs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号