首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

2.
A sample containing 1 026 stars of spectral types F, G, and K, mainly dwarfs, from the solar neighbourhood with available space velocities and metallicities is treated. The treatment comprises a statistical analysis of the metallicity and velocity data and calculation of galactocentric orbits. Sample stars identified as members of the galactic halo are detached from the rest of the sample based on the values of their metallicities, velocity components and galactocentric orbits. In identifying halo stars a new, kinematical, criterion is proposed. Except one, these halo stars are the metal‐poorest ones in the sample. Besides, they have very high velocities with respect to LSR. On the other hand, the separation between the thin disc and thick one is done statistically based on LSR space velocities, membership probability (Schwarzschild distribution with assumed parameters) and galactocentric orbits. In the metallicity these two groups are not much different. For each of the three subsamples the mean motion and velocity ellipsoid are calculated. The elements of the velocity ellipsoids agree well with the values found in the literature, especially for the thin disc. The fractions of the subsystems found for the present sample are: thin disc 93%, thick disc 6%, halo 1%. The sample stars established to be members of the thin disc are examined for existence of star streams. Traces of both, known and unknown, star streams are not found (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The phase-space structure of our Galaxy holds the key to understand and reconstruct its formation. The ΛCDM model predicts a richly structured phase-space distribution of dark matter and (halo) stars, consisting of streams of particles torn from their progenitors during the process of hierarchical merging. While such streams quickly loose their spatial coherence in the process of phase mixing, the individual stars keep their common origin imprinted into their kinematic and chemical properties, allowing the recovery of the Galaxy’s individual “building blocks”. The field of Galactic Archeology has witnessed a dramatic boost over the last decade, thanks to the increasing quality and size of available data sets. This is especially true for the solar neighborhood, a volume of 1–2 kpc around the sun, where large scale surveys like SDSS/SEGUE continue to reveal the full 6D phase-space information of thousands of halo stars. In this review, I summarize the discoveries of stellar halo streams made so far and give a theoretical overview over the search strategies imployed. This article is intended as an introduction to researchers new to the field, but also as a reference illustrating the achievements made so far. I conclude that disentangling the individual fragments from which the Milky Way was built requires more precise data that will ultimately be delivered by the Gaia mission.  相似文献   

4.
The Galactic orbits of 27 440 stars of all classes with accurate coordinates and parallaxes of more than 3 mas from the Hipparcos catalogue, proper motions from the Tycho-2 catalogue, and radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV) are analyzed. The sample obtained is much more representative than the Geneva-Copenhagen survey and other studies of Galactic orbits in the solar neighborhood. An estimation of the influence of systematic errors in the velocities on orbital parameters shows that the errors of the proper motions due to the duplicity of stars are tangible only in the statistics of orbital parameters for very small samples, while the errors of the radial velocities are noticeable in the statistics of orbital parameters for halo stars. Therefore, previous studies of halo orbits may be erroneous. The distribution of stars in selection-free regions of the multidimensional space of orbital parameters, dereddened colors, and absolute magnitudes is considered. Owing to the large number of stars and the high accuracy of PCRV radial velocities, nonuniformities of this distribution (apart from the well-known dynamical streams) have been found. Stars with their peri- and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the disk, perigalacticons in the bulge and apogalacticons in the halo, and perigalacticons in the disk and apogalacticons in the halo have been identified. Thus, the bulge and the halo are inhomogeneous structures, each consisting of at least two populations. The radius of the bulge has been determined: 2 kpc.  相似文献   

5.
6.
Summary In the solar neighborhood, approximately half of all intermediate mass main sequence stars with initially between 1 and about 5 Mbecome carbon stars with luminosities near 104 L for typically less than 106 years. These high luminosity carbon stars lose mass at rates nearly always in excess of 10–7 M yr–1 and sometimes in excess of 10–5 M yr–1. Locally, close to half of the mass returned into the interstellar medium by intermediate mass stars before they become white dwarfs is during the carbon star phase. A much greater fraction of lower metallicity stars become carbon-rich before they evolve into planetary nebulae than do higher metallicity stars; therefore, carbon stars are much more importan t in the outer than in the inner Galaxy.  相似文献   

7.
This paper has two parts: one about observational constraints related to the empirical differential oxygen abundance distribution (EDOD), and the other about inhomogeneous models of chemical evolution, in particular the theoretical differential oxygen abundance distribution (TDOD). In the first part, the EDOD is deduced from subsamples related to two different samples involving (i) N=532 solar neighbourhood (SN) stars within the range, −1.5<[Fe/H]<0.5, for which the oxygen abundance has been determined both in presence and in absence of the local thermodynamical equilibrium (LTE) approximation (Ramirez et al. in Astron. Astrophys. 465:271, 2007); and (ii) N=64 SN thick disk, SN thin disk, and bulge K-giant stars within the range, −1.7<[Fe/H]<0.5, for which the oxygen abundance has been determined (Melendez et al. in Astron. Astrophys. 484:L21, 2008). A comparison is made with previous results implying use of [O/H]–[Fe/H] empirical relations (Caimmi in Astron. Nachr. 322:241, 2001b; New Astron. 12:289, 2007) related to (iii) 372 SN halo subdwarfs (Ryan and Norris in Astron. J. 101:1865, 1991); and (iv) 268 K-giant bulge stars (Sadler et al. in Astron. J. 112:171, 1996). The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1–0.9. In the second part, inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts with the exception of the thin or thick + thin disk, where two additional restrictions are needed: (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from, or enhanced in, forming stars at different rates with respect to a selected reference case. Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor enhanced in, forming stars with respect to a selected reference case) can also reproduce the data to an acceptable extent. Our main conclusions are (1) different models are necessary to fit the (incomplete) halo sample, which is consistent with the idea of two distinct halo components: an inner, flattened halo in slow prograde rotation, and an outer, spherical halo in net retrograde rotation (Carollo et al. in Nature 450:1020, 2007); (2) the oxygen enrichment within the inner SN halo, the SN thick disk, and the bulge, was similar and coeval within the same metallicity range, as inferred from observations (Prochaska et al. in Astron. J. 120:2513, 2000); (3) the fit to thin disk data implies an oxygen abundance range similar to its thick disk counterpart, with the extension of conclusion (2) to the thin disk, and the evolution of the thick + thin disk as a whole (Haywood in Mon. Not. R. Astron. Soc. 388:1175, 2008) cannot be excluded; (4) leaving outside the outer halo, a fit to the data related to different environments is provided by models with a strictly universal IMF but different probabilities of a region being active, which implies different global efficiencies of the star formation rate; (5) a special case of stellar migration across the disk can be described by models with enhanced star formation, where a fraction of currently observed SN stars were born in situ and a comparable fraction is due to the net effect of stellar migration, according to recent results based on high-resolution N-body + smooth particle hydrodynamics simulations (Roškar et al. in Astrophys. J. Lett. 684:L79, 2008).  相似文献   

8.
The recent VIIth Catalogue of Galactic Wolf-Rayet Stars lists 227 Population I WR stars, comprising 127 WN, 87 WC, 10 WN/WC and 3 WO stars. Additional discoveries bring the census to 234 WR stars. A re-determination of the optical photometric distances and the galactic distribution of WR stars shows in the solar neighbourhood a projected surface density of 2.7 WR stars per kpc2, a N WC/N WN number ratio of 1.3, and a WR binary frequency of 40 %.The galactocentric distance (R WR) distribution per subtype showsR WN and R WC decreasing with WN and WC subtypes. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
We present a spectroscopic and photometric follow-up of binary stars, discovered in a sample of X-ray sources, aimed at a deep characterization of the stellar X-ray population in the solar neighborhood and in Star Forming Regions (SFRs). The sources have been selected from the RasTyc sample, obtained by the cross-correlation between the ROSAT all-sky survey and Tycho catalogues (Guillout et al., 1999). Thanks to the high resolution spectroscopy, we have obtained good radial velocity curves, whose solutions provided us with the mass ratios and minimum masses of the components. We have also obtained an accurate spectral classification with codes specifically developed by us. In addition, we could obtain information on the age of the sources through the Lii-6708 line and on the chromospheric activity level through the Hα line.We show also some results on very young pre-main sequence (PMS) binaries discovered as optical counterparts of X-ray sources in SFRs. The spectroscopic and photometric monitoring has allowed us to determine the orbital and physical parameters and the rotation periods, that are of great importance for testing the models of PMS evolution.  相似文献   

10.
We review recent observational and theoretical results concerning the presence of actinide nuclei on the surfaces of old halo stars and their use as an age determinant. We present model calculations which show that the observed universality of abundances for 56<Z<75 elements in these stars does not necessarily imply a unique astrophysical site for the r-process. Neither does it imply a universality of abundances of nuclei outside of this range. In particular, we show that a variety of astrophysical r-process models can be constructed which reproduce the same observed universal r-process curve for 56<Z<75 nuclei, yet have vastly different abundances for Z≥75 and possibly Z<56 as well. This introduces an uncertainty into the use of the Th/Eu chronometer as a means to estimate the ages of the metal deficient stars. We do find, however, that the U/Th ratio is a robust chronometer. This is because the initial production ratio of U to Th is almost independent of the astrophysical nucleosynthesis environment. The largest remaining uncertainties in the U/Th initial production ratio are due to the input nuclear physics models.  相似文献   

11.
We collected 55 galactic extreme carbon stars from the published literature in this paper. Observational data from IRAS, 2MASS and ISO were analyzed. The results show that the infrared properties of extreme carbon stars are quite different to those for ordinary visual carbon stars. It is shown from IRAS and 2MASS photometric data that extreme carbon stars have much redder infrared colors not only in the far infrared, but also in the near infrared, hence they have much thicker ciucumstellar envelopes and mass loss. It is also indicated from IRAS Low-Resolution Spectra (LRS) and ISO Short Wavelength Spectra (SWS) that they have much redder infrared spectra from 2 μm to 45 μm. The above results are believed to be the signature of undergoing the last stages of AGB evolution for extreme carbon stars.  相似文献   

12.
The characteristics of the line profile variations observed in optical transitions of O-type stars are reviewed. For a few well-observed stars, there is compelling evidence that the variations are due to photospheric velocity fields from one or more modes of nonradial pulsation. However, the origin of the line profile variations observed in most O stars is not yet established. To date, there is little empirical evidence to suggest that the variability in optical absorption lines of O stars is causally linked to the stellar wind variability commonly observed in their UV resonance lines.  相似文献   

13.
We present an analysis of UBVRI data from the selected area SA 141. By applying recalibrated methods of measuring ultraviolet excess (UVX), we approximate abundances and absolute magnitudes for 368 stars over 1.3 deg2 out to distances over 10 kpc. With the density distribution constrained from our previous photometric parallax investigations and with sufficient accounting for the metallicity bias in the UVX method, we are able to compare the vertical abundance distribution to those measured in previous studies. We find that the abundance distribution has an underlying uniform component consistent with previous spectroscopic results that posit a monometallic thick disc and halo with abundances of  [Fe/H]=−0.8  and −1.4, respectively. However, there are a number of outlying data points that may indicate contamination by more metal-rich halo streams. The absence of vertical abundance gradients in the Galactic stellar populations and the possible presence of interloping halo streams would be consistent with expectations from merger models of Galaxy formation. We find that our UVX method has limited sensitivity in exploring the metallicity distribution of the distant Galactic halo, owing to the poor constraint on the UBV properties of very metal-poor stars. The derivation of metallicities from broad-band UBV photometry remains fundamentally sound for the exploration of the halo but is in need of both improved calibration and superior data.  相似文献   

14.
High signal-to-noise ratio spectra were obtained of 10 high-proper-motion stars having  −1 ≲[Fe/H] < 0  , and a comparable number of disc stars. All but two of the high-proper-motion stars were confirmed to have  [Fe/H] > −1.0  , some approaching solar metallicity, but, even so, earlier measurements overestimated the metallicities and velocities of some of these stars. Models of stellar populations were used to assign membership probabilities to the Galactic components to which the high-velocity stars might belong. Many were found to be more probably thick-disc than halo objects, despite their large space motions, and two might be associated with the inner Galaxy. It may be necessary to reassess contamination of previous halo samples, such as those used to define the metallicity distribution, to account for contamination by high-velocity thick-disc stars, and to consider possible subcomponents of the halo.
The change in [α/Fe] ratios at  [Fe/H]≃−1.0  is often used to constrain the degree and timing of Type Ia supernova nucleosynthesis in Galactic chemical-evolution models. [Ti/Fe] values were measured for eight of the high-velocity stars. Both high- and low-[Ti/Fe] halo stars exist; likewise high- and low-[Ti/Fe] thick-disc stars exist. We conclude that the [Ti/Fe]'break' is not well defined for a given population; nor is there a simple, continuous evolutionary sequence through the break. Implications for the interpretation of the [α/Fe] break in terms of SN Ia time-scales and progenitors are discussed. The range of [Ti/Fe] found for high -velocity (low rotation) thick-disc stars contrasts with that for the low -velocity (high rotation) thick-disc sample studied by Prochaska et al.  相似文献   

15.
本文给出十颗Me星的低色散光谱资料,其中有六颗星以前没有人给出发射线资料,四颗前人没有给出光谱资料;还有一颗是新发现的Me星。这里我们均给出发射线资料及光谱型。另外还给出了每颗星的光谱描迹图及其中三颗星的证认图。  相似文献   

16.
We comment briefly on a recent paper by Fuhrmann which claims that about half of the sample of halo stars in the solar neighbourhood presented by Fuchs and Jahreiß [A&A 329 (1998) 81] are actually thick disc stars. By referring to star counts in the CADIS survey we argue that this is rather unlikely.  相似文献   

17.
Summary. During the last decade white dwarfs have become important as tools in many areas beyond traditional stellar physics: from the age determination of the stars in the solar neighborhood to the dating of open clusters and the distance determination of globular clusters. They are primary candidates for the MACHO microlensing events, possibly for a stellar component of the dark halo, and for the supernova Ia progenitors. The recent developments in these areas are reviewed, but some highlights from more “mature” areas such as stellar parameters, mass distributions, magnetic, and pulsating white dwarfs are also summarized briefly. Received 5 October 2001 / Published online 11 January 2002  相似文献   

18.
We have calculated the orbital parameters for 90 stars in Chen et al. and updated the kinematic data for stars in Edvardsson et al. by using the accurate Hipparcos parallaxes and proper motions, and recalculated the \\\\\\\\\\\\-element abundances in Edvardsson et al. in a way consistent with Chen et al. The two sets of data are combined in a study of stellar populations and characteristics of F & G stars in the solar neighborhood. We confirm the result of Chen et al. that a distinguishable group of stars may belong to the thick disk rather than the thin disk. The ages for the stars are determined using the theoretical isochrones of VandenBerg et al. The age-metallicity relation is investigated for different subgroups according to distance from the sun and galactic orbital parameters. It is found that a mixing of stars with different orbital parameters significantly affect the age-metallicity relation for the disk. Stars with orbits confined to the solar circle all have metallicities [Fe/H] > -0.3 irresp  相似文献   

19.
High-resolution spectra of five candidate metal-weak thick-disc stars suggested by Beers & Sommer-Larsen are analysed to determine their chemical abundances. The low abundance of all the objects has been confirmed, with metallicity reaching [Fe/H]=−2.9. However, for three objects the astrometric data from the Hipparcos catalogue suggest they are true halo members. The remaining two, for which proper-motion data are not available, may have disc-like kinematics. It is therefore clear that it is useful to address properties of putative metal-weak thick-disc stars only if they possess full kinematic data. For CS 22894−19 an abundance pattern similar to those of typical halo stars is found, suggesting that chemical composition is not a useful discriminant between thick-disc and halo stars. CS 29529−12 is found to be C-enhanced with [C/Fe]=+1.0; other chemical peculiarities involve the s-process elements: [Sr/Fe]=−0.65 and [Ba/Fe]=+0.62, leading to a high [Ba/Sr], considerably larger than that found in more metal-rich carbon-rich stars, but similar to those in LP 706-7 and LP 625-44, discussed by Norris et al. Hipparcos data have been used to calculate the space velocities of 25 candidate metal-weak thick-disc stars, thus allowing us to identify three bona fide members, which support the existence of a metal-poor tail of the thick disc, at variance with a claim to the contrary by Ryan & Lambert.  相似文献   

20.
The multiplicity of early-type stars is still not well established. The derived binary fraction is different for individual star forming regions, suggesting a connection with the age and the environment conditions. The few studies that have investigated this connection do not provide conclusive results. To fill in this gap, we started the first detailed adaptive-optic-assisted imaging survey of early-type field stars to derive their multiplicity in a homogeneous way. The sample has been extracted from the Hipparcos Catalog and consists of 341 BA-type stars within ∼300 pc from the Sun. We report the current status of the survey and describe a Monte-Carlo simulation that estimates the completeness of our companion detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号