首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
青藏高原盛夏雨季降水中断和活跃是高原地区一种季节性天气气候现象。本文所指的雨季中断是高原夏季雨季期间的少雨时段。 我们选用1969—1978年7—8月各层等压面图、雨量和风场等资料对青藏高原盛夏雨季中断、活跃以及印度季风中断、活跃作了分析。通过对比分析发现:高原盛夏雨季中断和活跃存在着准两周振动规律,及两者在环流上存在着明显的差异。  相似文献   

2.
青藏高原雨季的降水特征与东亚夏季风爆发   总被引:9,自引:4,他引:5  
用小波分析方法研究了1993年和1994年青藏高原雨季降水的多时间尺度变化特征,结果表明,小波变换对高原上降水从活跃期到中断期之间突变的时间有很好的分辨能力,并发现强弱季风年高原降水的变化特征有很大的差异:即高原降水除了其季节变化外,强东亚季风年(1994年)还有明显的30~60天低频变化;弱东亚季风年(1993年)却是准双周的变化明显。另外,还将高原上降水从活跃期到中断期的变化与同期的NcEP资料作了一些对比分析,发现高原雨季的开始与东亚夏季风爆发可能有一定的联系,即高原东部夏季降水的第一次活跃期与东亚夏季风的爆发时间基本一致。  相似文献   

3.
利用青藏高原气象台站逐日观测资料,采用候雨量稳定通过临界阈值的方法对高原雨季起讫期进行客观定量划分,在此基础上,进一步分析增暖背景下雨季起讫期和雨季降水演变特征,并对比增暖前后高原雨季起讫期及不同等级降水的响应特征。结果表明:青藏高原雨季平均开始期为5月第3候、结束期为9月第6候、共持续28候;青藏高原雨季降水集中期为6月中旬至9月中旬,并在7月上旬、下旬和8月下旬出现3个峰值,7月上旬为雨季主峰期;1961—2017年雨季降水量总体呈增加趋势,雨季降水量自东南向西北逐渐递减,高值区位于青藏高原东南部的横断山脉;青藏高原雨季气候于1997年开始增暖,增暖前后雨季起讫期区域间差异较大,增暖后雨季开始期在青藏高原西部明显推迟,其余地区均提前,结束期则总体推迟;气候增暖后中雨以上日数增多,雨季降水极端性显著增强且空间覆盖范围明显扩大。  相似文献   

4.
采用1954—2010年NCEP/NCAR逐日再分析资料和中国753站逐日站点降水资料,定义了华北雨季的开始日和结束日,发现华北夏季存在单峰和双峰两种降水过程,选取典型单峰和双峰降水过程,对比分析这两种降水过程的特征和机理.结果表明:1)在华北雨季期间,单峰降水过程中的副高脊线没有中断的现象,而双峰降水过程中的降水中断现象是因副高的东退南压所致.2)华北夏季单峰降水年的季风中断现象不明显,季风的影响能一直持续至雨季结束,而双峰降水年的季风加强(减弱中断)对应着降水峰值(中断).3)滤波后的华北夏季降水时间变化显示,当30~60 d和7~14 d振荡的波峰相对时,则出现降水峰值;当30~60 d振荡的波谷和7~14 d振荡的波峰相对时,则出现降水中断.4)华北夏季双峰降水年的低频纬向风传播与双峰降水的时间演变具有较好的对应关系.  相似文献   

5.
张瑛  陈隆勋  何金海  李薇 《气象学报》2008,66(4):577-591
利用日本GAME资料、TRMM卫星资料及中国730站降水资料研究了1998年夏季亚洲地区对流层至平流层低频振荡(LFO)的传播特征及该年长江中下游夏季降水变化的LFO型,结果表明:1998年5-8月,在青藏高原经纬度上,对流层LFO的东西向传播特征与季节变化有关.在东西方向上,高原和东亚大陆雨季开始前,LFO以向东传播为主;在雨季开始后,LFO以向西传播为主.南北方向上,LFO的传播在雨季前后基本一致,高原南北两侧均向高原传播.在南北方向上,青藏高原是LFO的汇;而在东西方向上,高原西部只在雨季开始后是LFO加强区,使西传进入高原的LFO继续西传.整个大气层以对流层顶(100 hPa)LFO最强,进入平流层LFO迅速减弱.1998年夏季长江中下游降水存在两次明显的LFO循环,我们根据两次降水LFO各位相合成分析了降水、500和100 hPa LFO环流以及沿30°N LFO垂直环流.结果表明:来自西伯利亚向南传播和来自孟加拉湾及南海向北传播的LFO气旋(降水谷值期)和反气旋(降水峰值期)形成了高原东部上空LFO气旋(降水谷值期)和反气旋(降水峰值期)以及来自中纬度西太平洋南下西移经日本、黄海到达中国大陆东部海洋上空的LFO反气旋(降水谷值期)和气旋(降水峰值期)的共同作用造成了长江中下游地区强烈的下沉(降水谷值期)和上升(降水峰值期),形成长江中下游降水LFO谷值期和峰值期.  相似文献   

6.
藏北高原土壤温、湿度变化在高原干湿季转换中的作用   总被引:15,自引:2,他引:15  
王澄海  尚大成 《高原气象》2007,26(4):677-685
通过1997年和1999年藏北高原沱沱河观测站土壤温、湿度变化和对应降水变化的分析,表明与高原冻融过程相联系的土壤湿度变化和高原干湿季转换及湿季降水存在联系。土壤融冻引起土壤增湿的时间比高原雨季降水开始的时间约早20天,春季高原土壤温、湿度的增加在高原地表感潜热的变化中有重要贡献。春末夏初高原土壤冻融过程引起的土壤湿度变化,在高原局地尺度的水分循环中为高原湿季开始提供了有利的水汽条件。因此,在青藏高原陆气相互作用过程中,与冻融过程相联系的土壤湿度变化在高原季节转换中是一个不可忽视的因子。  相似文献   

7.
西藏高原夏季旱涝年OLR分布差异   总被引:10,自引:0,他引:10       下载免费PDF全文
根据美国NOAA卫星观测得到的射出长波辐射资料(Outgoing Longwave Radiation,简称OLR),分析了西藏高原及其附近地区各月的辐射气候特征,指出:高原冬、春季节OLR主要反映了高原下垫面温度的季节变化,高原夏季为雨季,OLR与降水之间存在较好的负相关。印度季风爆发前后的OLR演变特征反映出中、低纬大气环流调整对高原雨季形成及降水分布的影响。旱涝年OLR合成分析表明:高原夏季降水与赤道印度洋反Walker环流强弱、印度季风槽、副热带高压及西太平洋暖池区对流强度、位置变化有密切的关系。  相似文献   

8.
青藏高原雨季起讫的研究   总被引:5,自引:2,他引:5  
本文利用西藏、青海、宁夏、甘肃、陕西、四川、云南、贵州、广西九个省区1951—1970年的降水资料,讨论了高原及其邻近地区雨季划分的方法、雨季起讫和持续期的特征以及高原雨季与环流、高原季风爆发和长江流域入梅的关系。从而为长期预报提供一些依据。  相似文献   

9.
华南前汛期雨季开始期的降水及环流特征   总被引:17,自引:2,他引:17  
根据较客观的分析,给出了历年华南前汛期雨季开始期的划分结果。然后分析了华南雨季开始期的降水特征、雨季开始期前后500hPa平均环流的差异以及开始期内各种降水分布型的500hPa环流特征。结果表明,华南前汛期雨季开始期前后,500hPa平均环流发生明显变化。开始期前,环流场有利于华南升温增湿。开始期后,环流场有利于冷空气向华南输送。在雨季开始期,华南地区的降水具有6种主要分布型,各型具有不同的环流特  相似文献   

10.
横断山脉中西部降水的季节演变特征   总被引:3,自引:2,他引:1  
肖潺  宇如聪  原韦华  李建 《气象学报》2013,71(4):643-651
利用台站观测逐日降水资料,对横断山脉中西部地区的降水季节演变特征进行了分析,发现该地区降水具有独特的季节变化特征:雨季开始早,从第10候前后降水开始迅速增加,至第19候前后就达到第1个峰值;雨季时间长,从第10候前后雨季开始,至第60候雨季结束,雨季持续长达8个月;多峰值特征明显,雨季先后经历3个降水峰值,分别在第19、35、55候前后.通过再分析资料对这一地区风场的季节变化进行分析发现,这些降水的季节演变特征与这一地区独特地形下风场季节演变密不可分.雨季开始早与第10候起低层西风、南风迅速加强,特别是西风加强有关;第2、3个降水峰值则与西南风,特小,降水主要受西风系统影响,与西风系统的季节变化密切相关;而第2、3个降水峰值分别发生在西太平洋副热带高压西伸、东退进程中,位势高度场东高西低,降水主要受西南风控制,并伴有南风辐合,与南风的季节变化相关.别是经向南风增强有关.对3个降水峰值时刻的环流背景进行了分析,第1个降水峰值发生时,位势高度东西方向水平差异  相似文献   

11.
利用1961~ 2007年NCEP/NCAR的再分析逐日资料,分析高原主体上空大气环流的季节变化和受到高原影响的东亚大型环流系统的季节变化,以此证明本文得到的“高原普适性划分方法”的合理性.得到的初步结论概括如下:高原主体上空的位势高度、风场、高空温度、降水的季节变化和高原普适性季节划分方法划分的高原四季变化一致,高原南亚高压、副热带高压、副热带西风急流的三个特征指数季节变化和高原普适性季节划分方法划分的高原四季变化一致,这些结论都说明高原普适性季节划分方法划分的高原四季是合理的;风场季节率(500hPa、100hPa)显著区随高度升高向赤道靠近,风场季节率的变化主要和东亚季风的变化有关,大气环流系统季节率的显著说明了大气环流的季节变化,同时也证明了高原普适性季节划分方法的合理性.  相似文献   

12.
青藏高原汛期(5—9月)降水具有南北反相的空间分布特征,利用青藏高原67个台站1967—2008年逐月降水资料,分别讨论了汛期各月降水的主要空间分布型以及初夏(5—6月)和盛夏(7—8月)对应的水汽配置和环流异常.结果表明:初夏高原降水以南北反相型(North-South Reverse Type,NSRT)为主,全区一致型(Whole Region Consistent Type,WRCT)次之;盛夏高原降水以WRCT为主.高原降水呈现NSRT分布时,初夏水汽由高原南部输向北部,而盛夏高原北部为水汽辐合区,南部为水汽辐散区.高原降水呈现WRCT分布时,初夏高原水汽主要来自西太平洋,盛夏水汽主要来自阿拉伯海向东转向的水汽输送,该水汽输送由高原西南地区进入高原.在500 hPa位势高度场上,初夏(盛夏)降水两种主要空间分布型的位势高度差异以经(纬)向差异为主,且影响高原降水异常分布的系统多为深厚系统.  相似文献   

13.
青藏高原低涡研究的回顾与展望   总被引:7,自引:0,他引:7  
青藏高原低涡是青藏高原地区特有的产物,是夏季高原上的主要降水系统,而东移出高原的低涡,又往往引发青藏高原下游地区一次大范围的灾害性天气过程。全面回顾了20世纪70年代后期以来,青藏高原气象学研究领域中有关高原低涡的研究进展,按天气学、动力学和数值模拟3方面对有关研究进行了分类,简要总结了各类研究涉及的重要问题及主要成果。在此基础上分析了存在的主要问题,展望了今后高原低涡研究的重要方向和基本趋势。  相似文献   

14.
The propagation characteristics of the atmospheric low frequency (LF, 30--60 days) oscillation (LFO) around the Tibetan Plateau from troposphere to stratosphere and its relationship with the floods over the mid-lower reaches of the Yangtze River in the summer of 1998 are studied, based on the GAME dataset from Meteorological Research Institute (MRI)/Japan Meteorological Agency, the TRMM satellite rainfall and the 730-station precipitation over China. The results show that the zonal propagation direction of LFOs in horizontal winds varies with seasons in the troposphere during May to August in 1998. The eastward propagation of LFOs is remarkable before the start of the rainy season in the Tibetan Plateau and the eastern Asian continent, while the westward propagation is significant after the start date. The northward LFOs from the south side of the plateau and the southward LFOs from the north are both significant before and after the start date. The plateau is a LFO sink in the meridional and zonal directions, but the west part of it is an intensifying area for the continual westward LFOs only after the start of the rainy season. Besides, the strongest LFOs occur at the tropopause (100 hPa) and rapidly decay after entering the stratosphere. The rainfall over the mid-low reaches of Yangtze River in the summer of 1998 exhibits two LFO cycles. According to the phases of the two rainfall LFO cycles, the composite analysesof precipitation distribution, LF circulations at 500 and 100 hPa,and LF vertical motion along 30°N are performed. It is the joint effect of the mid-upper tropospheric strong 30--60-day filtered cyclone (anticyclone) over the eastern plateau and the LFO anticyclone (cyclone) over the west subtropical Pacific that induces the whole layer LF descending (ascending) motion over the mid-lower reaches of Yangtze River, which provides the favorable condition for the break (maintenance) of precipitation.  相似文献   

15.
青藏高原地表温度对华北汛期降水变化的影响   总被引:11,自引:4,他引:7  
余锦华  荣艳淑  任健 《气象科学》2005,25(6):579-586
利用1980-2001年青藏高原月平均地表温度、1961~2001年我国160站月降水以及NECP/NCAR再分析月平均高度场资料,分析了华北地区汛期降水与青藏高原地表温度的关系,结果表明华北地区汛期降水与青藏高原5~6月地表温度具有显著的正相关。相关场的正值中心位于高原的东北部和西南部地区。华北地区汛期降水偏少年,青藏高原前期5~6月地温以负距平为主且距平值较小;相反,降水偏多年,青藏高原前期5~6月地温以正距平为主且距平值较大。EOF和SVD分析表明,青藏高原5~6月地温和华北地区汛期降水的第一典型场都表现出大体一致的变化特点。此外,诊断分析得到,青藏高原5~6月地温偏高年,7~8月西太平洋副热带高压的强度偏强,位置偏北;地温偏低年,西太平洋副热带高压的强度偏弱,位置偏南。  相似文献   

16.
青藏高原热力异常与华北汛期降水关系的研究   总被引:24,自引:3,他引:24  
利用1980~1994年NCEP/NCAR再分析资料,以及我国336个测站1956~1994年月降水量资料,通过诊断分析和数值实验,研究了夏季高原上热力异常与华北汛期降水的关系.结果表明:华北汛期干旱年,青藏高压及西太平洋副热带高压偏南、偏东,华北汛期降水偏多年则相反;华北汛期旱年时,高原上升、高原东侧邻近地区下沉的垂直环流明显加强,而降水偏多年时,垂直环流减弱,华北地区为上升气流控制;夏季高原为热源和水汽汇区,它们的异常对华北地区降水有很大影响,当热源和水汽汇增强(减弱)时,华北地区降水偏少(偏多).数值试验表明,高原上潜热加热异常引起青藏高压、西太平洋副热带高压、亚洲季风以及欧亚中高纬地区环流的变化,进而影响到华北地区的降水.  相似文献   

17.
青藏高原汛期降水的时空分布特征   总被引:4,自引:1,他引:3  
根据1967~2008年青藏高原地区67个气象台站的月平均降水资料,利用线性趋势分析、EOF分解和Morlet小波变换等方法分析了青藏高原地区汛期(5~9月)降水的时空分布特征.结果表明:青藏高原汛期降水存在明显的区域性差异,EOF分解揭示出青藏高原汛期存在3种主要的空间分布型:南北反向型、全区一致型和东南-西北反向型...  相似文献   

18.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

19.
The atmospheric heat source over the Bolivian plateau for a mean January   总被引:2,自引:0,他引:2  
The atmospheric heat sources of large plateaus strongly influence the general circulation particularly in the summer season. The Bolivian plateau and the adjacent areas affect the upper tropospheric flow in a typical summer month by developing an anticyclone and deflecting the prevailing westerlies. The plateau initially warms the atmosphere through sensible heating and then through latent heating as thunderstorms develop.The atmospheric heat source over the Bolivian and adjacent plateau was computed employing conventional surface and satellite radiation data for the mean January 1979. Because of a lack of direct ground temperature data, the surface radiation was estimated following an empirical formula devised for some earlier Tibetan studies.The results revealed that the latent heating developing in the eastern and northeastern part of the plateau is the biggest contributor to the atmospheric heat source (500 W m-2). A comparison of these results against similar recent results from Tibet showed that the atmospheric heat source in South America is stronger than that over Tibet, primarily because of increased rainfall over Bolivia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号