首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Water losses from snow intercepted by forest canopy can significantly influence the hydrological cycle in seasonally snow‐covered regions, yet how snow interception losses (SIL) are influenced by a changing climate are poorly understood. In this study, we used a unique 30 year record (1986–2015) of snow accumulation and snow water equivalent measurements in a mature mixed coniferous (Picea abies and Pinus sylvestris ) forest stand and an adjacent open area to assess how changes in weather conditions influence SIL. Given little change in canopy cover during this study, the 20% increase in SIL was likely the result of changes in winter weather conditions. However, there was no significant change in average wintertime precipitation and temperature during the study period. Instead, mean monthly temperature values increased during the early winter months (i.e., November and December), whereas there was a significant decrease in precipitation in March. We also assessed how daily variation in meteorological variables influenced SIL and found that about 50% of the variation in SIL was correlated to the amount of precipitation that occurred when temperatures were lower than ?3 °C and to the proportion of days with mean daily temperatures higher than +0.4 °C. Taken together, this study highlights the importance of understanding the appropriate time scale and thresholds in which weather conditions influence SIL in order to better predict how projected climate change will influence snow accumulation and hydrology in boreal forests in the future.  相似文献   

3.
4.
This paper uses detailed hydrometeorological data to evaluate the influence of channel bed processes on the river energy budget at an experimental site on the regulated River Blithe, Staffordshire, UK. Results from a pilot study are presented for eight days during July, September, October and November 1994. Total energy gains were dominated by net short-wave radiation (97·60%) with significant contributions from sensible heat exchange and friction (1·17 and 1·06%, respectively) and minor additions from condensation and bed conduction (0·16 and 0·01%, respectively). Net long-wave radiation, evaporation, conduction into the river bed, sensible heat transfer and the energy advected during evaporation accounted for 53·98, 23·56, 16·27, 5·25 and 0·94% of the total heat losses. On average, over 82% of the total energy transfers occurred at the air–water interface. Approximately 15% of the total energy exchanges occurred at the channel bed, but maximum daily heat exchanges accounted for up to 24% of the daily total energy transfer. The amount of short-wave radiation attenuated in the water column, and values measured at the channel bed varied considerably from those calculated using a standard coefficient. Values of bed conduction varied in response to different vertical thermal profiles in the channel bed, reflecting the variable influence of sedimentology and groundwater flux. Fluctuations in levels of periphyton and macrophyte cover were also shown to have a significant effect on energy fluxes at the channel bed. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
Water temperature influences most of the physical, chemical and biological properties of rivers. It plays an important role in the distribution of fish and the growth rates of many aquatic organisms. Therefore, a better understanding of the thermal regime of rivers is essential for the management of important fisheries resources. This study deals with the modelling of river water temperature using a new and simplified model based on the equilibrium temperature concept. The equilibrium temperature concept is an approach where the net heat flux at the water surface can be expressed by a simple equation with fewer meteorological parameters than required with traditional models. This new water temperature model was applied on two watercourses of different size and thermal characteristics, but within a similar meteorological region, i.e., the Little Southwest Miramichi River and Catamaran Brook (New Brunswick, Canada). A study of the long‐term thermal characteristics of these two rivers revealed that the greatest differences in water temperatures occurred during mid‐summer peak temperatures. Data from 1992 to 1994 were used for the model calibration, while data from 1995 to 1999 were used for the model validation. Results showed a slightly better agreement between observed and predicted water temperatures for Catamaran Brook during the calibration period, with a root‐mean‐square error (RMSE) of 1·10 °C (Nash coefficient, NTD = 0·95) compared to 1·45 °C for the Little Southwest Miramichi River (NTD = 0·94). During the validation period, RMSEs were calculated at 1·31 °C for Catamaran Brook and 1·55 °C for the Little Southwest Miramichi River. Poorer model performances were generally observed early in the season (e.g., spring) for both rivers due to the influence of snowmelt conditions, while late summer to autumn modelling performances showed better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
Alluvial mountain streams exhibit a range of channel forms: pool–riffle, plane bed, step–pool and cascades. Previous work suggested that these forms exist within discrete, and progressively steeper slope classes. Measurements conducted at over 100 sites in west‐central and central Idaho confirm that slope steepens progressively as one moves from pool–riffle, to plane bed, to step–pool, and finally to cascades. Median slope for pool–riffle topography is 0·0060, for plane beds 0·013, for step–pools 0·044, and for cascades 0·068. There is substantial overlap in the slopes associated with these channel forms. Pool–riffle topography was found at slopes between 0·0010 and 0·015, plane beds between 0·0010 and 0·035, step–pools between 0·015 and 0·134, and cascades between 0·050 and 0·12. Step–pools are particularly striking features in headwater streams. They are characterized by alternating steep and gentle channel segments. The steep segments (step risers) are transverse accumulations of boulder and cobbles, while the gentle segments (pools) contain finer material. Step wavelength is best correlated to step height which is in turn best correlated to the median particle size found on step risers. This result differs from past studies that have reported channel slope to be the dominant control on step wavelength. The presumed geometry and Froude number associated with the features under formative conditions are consistent with the existence field for antidunes and by extension with the hypothesis that step–pools are formed by antidunes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
The in?uence of pool length on the strength of turbulence generated by vortex shedding was investigated in a 6 m long recirculating ?ume. The experiment utilized a 38% constriction of ?ow and an average channel‐bed slope of 0·007. The base geometry for the intermediate‐length pool experiment originated from a highly simpli?ed, 0·10 scale model of a forced pool from North Saint Vrain Creek, Colorado. Discharge in the ?ume was 31·6 l/s, which corresponds to a discharge in the prototype channel of 10 m3/s. Three shorter and four longer pool lengths also were created with a ?xed bed to determine changes in turbulence intensities and energy slope with pool elongation. Three‐dimensional velocities were measured with an acoustic Doppler velocimeter at 31–40 different 0·6‐depth and near‐bed locations downstream of the rectangular constriction. The average velocity and root mean square (RMS) of the absolute magnitude of velocity at both depths are signi?cantly related to the distance from the constriction in most pool locations downstream of the constriction. In many locations, pool elongation results in a non‐linear change in turbulence intensities and average velocity. Based on the overall ?ow pattern, the strongest turbulence occurs in the center of the pool along the shear zone between the jet and recirculating eddy. The lateral location of this shear zone is sensitive to changes in pool length. Energy slope also was sensitive to pool length due to a combination of greater length of the pool and greater head loss with shorter pools. The results indicate some form of hydraulic optimization is possible with pools adjusting their length to adjust the location and strength of turbulent intensities in the center of pools, and lower their rate of energy dissipation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Measurements of sap flow, meteorological parameters, soil water content and tension were made for 4 months in a young cashew (Anacardium occidentale L.) plantation during the 2002 rainy season in Ejura, Ghana. This experiment was part of a sustainable water management project in West Africa. The Granier system was used to measure half‐hourly whole‐tree sap flow. Weather variables were observed with an automatic weather station, whereas soil moisture and tension were measured with a Delta‐T profile probe and tensiometers respectively. Clearness index (CI), a measure of the sky condition, was significantly correlated with tree transpiration (r2 = 0·73) and potential evaporation (r2 = 0·86). Both diurnal and daily stomata conductance were poorly correlated with the climatic variables. Estimated daily canopy conductance gc ranged from 4·0 to 21·2 mm s−1, with a mean value of 8·0 ± 3·3 mm s−1. Water flux variation was related to a range of environmental variables: soil water content, air temperature, solar radiation, relative humidity and vapour pressure deficit. Linear and non‐linear regression models, as well as a modified Priestley–Taylor formula, were fitted with transpiration, and the well‐correlated variables, using half‐hourly measurements. Measured and predicted transpiration using these regression models were in good agreement, with r2 ranging from 0·71 to 0·84. The computed measure of accuracy δ indicated that a non‐linear model is better than its corresponding linear one. Furthermore, solar radiation, CI, clouds and rain were found to influence tree water flux. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Fish habitat and aquatic life in rivers are highly dependent on water temperature. Therefore, it is important to understand andto be able to predict river water temperatures using models. Such models can increase our knowledge of river thermal regimes as well as provide tools for environmental impact assessments. In this study, artificial neural networks (ANNs) will be used to develop models for predicting both the mean and maximum daily water temperature. The study was conducted within Catamaran Brook, a small drainage basin tributary to the Miramichi River (New Brunswick, Canada). In total, eight ANN models were investigated using a variety of input parameters. Of these models, four predicted mean daily water temperature and four predicted maximum daily water temperature. The best model for mean daily temperature had eight input parameters: minimum, maximum and mean air temperatures of the current day and those of the preceding day, the day of year and the water level. This model had an overall root‐mean‐square error (RMSE) of 0·96 °C, a bias of 0·26 °C and a coefficient of determination R2 = 0·971. The model that best predicted maximum daily water temperature was similar to the first model but excluded mean daily air temperature. Good results were obtained for maximum water temperatures with an overall RMSE of 1·18 °C, a bias of 0·15 °C and R2 = 0·961. The results of ANN models were similar to and/or better than those observed from the literature. The advantages of artificial neural networks models in modelling river water temperature lie in their simplicity of use, their low data requirement and their good performance, as well as their flexibility in allowing many input and output parameters. Copyright © 2008 Crown in the right of Canada and John Wiley & Sons, Ltd.  相似文献   

10.
Relatively little is known about the role of perched aquifers in hydrological, biogeochemical, and biological processes of vernal pool landscapes. The objectives of this study are to introduce a perched aquifer concept for vernal pool formation and maintenance and to examine the resulting hydrological and biogeochemical phenomena in a representative catchment with three vernal pools connected to one another and to a seasonal stream by swales. A combined hydrometric and geochemical approach was used. Annual rainfall infiltrated but perched on a claypan/duripan, and this perched groundwater flowed downgradient toward the seasonal stream. The upper layer of soil above the claypan/duripan is ~0·6 m in thickness in the uplands and ~0·1 m in thickness in the vernal pools. Some groundwater flowed through the vernal pools when heads in the perched aquifer exceeded ~0·1 m above the claypan/duripan. Perched groundwater discharge accounted for 30–60% of the inflow to the vernal pools during and immediately following storm events. However, most perched groundwater flowed under or around the vernal pools or was recharged by annual rainfall downgradient of the vernal pools. Most of the perched groundwater was discharged to the outlet swale immediately upgradient of the seasonal stream, and most water discharging from the outlet swale to the seasonal stream was perched groundwater that had not flowed through the vernal pools. Therefore, nitrate‐nitrogen concentrations were lower (e.g. 0·17 to 0·39 mg l?1) and dissolved organic carbon concentrations were higher (e.g. 5·97 to 3·24 mg l?1) in vernal pool water than in outlet swale water discharging to the seasonal stream. Though the uplands, vernal pools, and seasonal stream are part of a single surface‐water and perched groundwater system, the vernal pools apparently play a limited role in controlling landscape‐scale water quality. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

12.
M. F. Merck  B. T. Neilson 《水文研究》2012,26(25):3921-3933
This study examines the variability of in‐pool temperatures in Imnavait Creek, a beaded arctic stream consisting of small pools connected by shallow chutes, for the purpose of predicting potential impacts of climate variations on the system. To better understand heat fate and transport through this system, the dominant heat sources and sinks creating and influencing thermal stratification within even the smallest and shallowest pools must be quantified. To do this, temperature data were collected vertically within the pool water column and surrounding bed sediments during stratified conditions. These temperature and other supporting data (e.g. instream flow, weather data, and bathymetry) were used to formulate and develop an instream temperature model that captures the site‐specific processes occurring within the pools during summer low flow conditions. The model includes advective, air–water interface, and bed conduction fluxes, simplified vertical exchange between stratified pool layers, and attenuation of shortwave radiation within the water column. We present the model formulation, data collection methods used in support of model development and population, and the resulting model calibration and validation for one of the study pools. We also provide information regarding dominant heat sources and sinks and residence times of different layers within the stratified pool. We found that the dominant heat sources vary between stratified layers and that increases in thaw depths surrounding these pools due to possible climate changes can shift stratification, mixing, and instream storage dynamics, thereby influencing the fate and transport of heat and other constituents of interest (e.g. nutrients). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Groundwater warming below cities has become a major environmental issue; but the effect of distinct local anthropogenic sources of heat on urban groundwater temperature distributions is still poorly documented. Our study addressed the local effect of stormwater infiltration on the thermal regime of urban groundwater by examining differences in water temperature beneath stormwater infiltration basins (SIB) and reference sites fed exclusively by direct infiltration of rainwater at the land surface. Stormwater infiltration dramatically increased the thermal amplitude of groundwater at event and season scales. Temperature variation at the scale of rainfall events reached 3 °C and was controlled by the interaction between runoff amount and difference in temperature between stormwater and groundwater. The annual amplitude of groundwater temperature was on average nine times higher below SIB (range: 0·9–8·6 °C) than at reference sites (range: 0–1·2 °C) and increased with catchment area of SIB. Elevated summer temperature of infiltrating stormwater (up to 21 °C) decreased oxygen solubility and stimulated microbial respiration in the soil and vadose zone, thereby lowering dissolved oxygen (DO) concentration in groundwater. The net effect of infiltration on average groundwater temperature depended upon the seasonal distribution of rainfall: groundwater below large SIB warmed up (+0·4 °C) when rainfall occurred predominantly during warm seasons. The thermal effect of stormwater infiltration strongly attenuated with increasing depth below the groundwater table indicating advective heat transport was restricted to the uppermost layers of groundwater. Moreover, excessive groundwater temperature variation at event and season scales can be attenuated by reducing the size of catchment areas drained by SIB and by promoting source control drainage systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Values of evapotranspiration are required for a variety of water planning activities in arid and semi‐arid climates, yet data requirements are often large, and it is costly to obtain this information. This work presents a method where a few, readily available data (temperature, elevation) are required to estimate potential evapotranspiration (PET). A method using measured temperature and the calculated ratio of total to vertical radiation (after the work of Behnke and Maxey, 1969) to estimate monthly PET was applied for the months of April–October and compared with pan evaporation measurements. The test area used in this work was in Nevada, which has 124 weather stations that record sufficient amounts of temperature data. The calculated PET values were found to be well correlated (R2=0·940–0·983, slopes near 1·0) with mean monthly pan evaporation measurements at eight weather stations.In order to extrapolate these calculated PET values to areas without temperature measurements and to sites at differing elevations, the state was divided into five regions based on latitude, and linear regressions of PET versus elevation were calculated for each of these regions. These extrapolated PET values generally compare well with the pan evaporation measurements (R2=0·926–0·988, slopes near 1·0). The estimated values are generally somewhat lower than the pan measurements, in part because the effects of wind are not explicitly considered in the calculations, and near‐freezing temperatures result in a calculated PET of zero at higher elevations in the spring months. The calculated PET values for April–October are 84–100% of the measured pan evaporation values. Using digital elevation models in a geographical information system, calculated values were adjusted for slope and aspect, and the data were used to construct a series of maps of monthly PET. The resultant maps show a realistic distribution of regional variations in PET throughout Nevada which inversely mimics topography. The general methods described here could be used to estimate regional PET in other arid western states (e.g. New Mexico, Arizona, Utah) and arid regions world‐wide (e.g. parts of Africa). Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
Hagen Koch  Uwe Grünewald 《水文研究》2010,24(26):3826-3836
Daily stream temperatures are needed in a number of analyses. Such analyses might focus on aquatic organisms or industrial activities. To protect aquatic systems, industrial activities, for example, water withdrawals or discharges, are sometimes restricted. To evaluate where new industrial settings should be placed or if climate change will affect already existing industrial settings, the simulation of stream temperature is needed. Stream temperature models with weekly or monthly time scale might not be sufficient for this kind of analysis. Different regression models to simulate daily stream temperature for the river Elbe (Germany) are developed and their performance is estimated. For the calibration period the Nash–Sutcliffe coefficient (NSC) for the simplest model is 0·97, and the root mean squared error (RMSE) is 1·48 °C. For the most sophisticated model the NSC also is 0·97. However, the RMSE is 1·32 °C. For the validation period the NSC for the simplest model is 0·96, and the RMSE is 1·45 °C. The NSC for the most sophisticated model is 0·97, and the RMSE is 1·25 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
An oligotrophic bacterium was isolated from the biological soil crust underlayer in the Xinjiang Gurbantunggut Desert. It was numbered SGB-5, G+. Cell size is (0.328–0.746) μm×(0.171–0.240) μm. Raised colony is white, roundness and its diameter is 5 mm. The strain is a facultative aerobe. It was able to grow in conditions of 1–15 mg·C·L?1 culture medium at 10–50°C. The strain’s optimum growth temperature is 37°C. The range of its optimum growth pH is 8–9. A large amount of extracellular mucopolysaccharide was secreted during growth. The chemical composition of this mucopolysaccharide consists of arabinose, X sugar, glucose, galactose and mannitol. Mole ratio of these sugars is 1:14:19:6:14. The viscosity of the mucopolysaccharide can reach 6300 mPa·s, when the strain is cultivated for 72 h. After the culture solution in which viscosity was 1500 mPa·s was sprinkled on the quicksand surface, 6 mm bacteria crust of conglutinating sand was formed. This crust could not only stabilize sand, but could also potentially slow the rate of the soil water evaporation.  相似文献   

17.
The ratios of D/H and O18/O16 in natural waters from streams, boreholes, soda springs, hot pools, ponds and larger bodies of water in the Ngawha hydrothermal area were determined. The results are considered in relation to the isotopic changes known to occur in water subjected to evaporation. Where applicable chemical and other work was also considered. It is assumed that stream water isotope composition is the mean value for the isotopic composition of meteoric waters. Measurements on waters taken from boreholes drilled to 65 feet and 350 feet and from the other water sources mentioned, indicate that they were of meteoric origin as judged by stream isotope composition. The waters from the soda springs appeared to be isotopically the same as the stream water, a finding consistent with the absence of evaporative surface. These borehole waters were similar but slightly different in O18 due probably to exchange between rock and water. Heavy isotope enrichment of the ponds and larger bodies of water appeared to be due to non-equilibrium evaporation at ambient temperature. The hot pools in the Ngawha springs area proper were enriched in the heavier isotopes probably due to non-equilibrium evaporation at the usual hot pool temperature of about 40°C and also to exchange of O18 between water and rock. The water from a further borehole drilled to approximately 2,000 feet appeared also to be of meteoric origin but was changed in O18 content to an extent consistent with the assumption that oxygen isotope exchange with rock had taken place at approximately 230°C. The results are used to illustrate possibilities for the use of oxygen and hydrogen isotope measurements in hydrothermal investigations.  相似文献   

18.
Although known as ‘islands of fertility’ or ‘resource islands’, information regarding the effect of shrubs upon microclimate in deserts is scarce. Here we report on measurements of evaporation and temperatures that were carried out in and around a pair of shrubs at the Nizzana research site in the western Negev Desert during 1993–94 and during the growing season (November–March) of 1994–95 and 1996–1997. Whereas evaporation was measured monthly using mini‐atmometers (10 cm diameter and 10 cm tall) at an exposed site and under and around the shrub (at the eastern, southern, western and northern aspects), temperature was measured under a shrub canopy, at its northern aspect, and at an exposed habitat. Evaporation was aspect dependent with increasing rates in the following order: exposed > south‐facing > west‐facing ≈ east‐facing > north‐facing > under canopy. Except from the northern aspect, the under‐canopy habitat showed substantially lower rates of evaporation in comparison with all other habitats. The differences between the under‐canopy and the exposed habitat were larger during wintertime (with the under‐canopy habitat having 0·53 times the evaporation rate than that of the exposed habitat) although higher differences in temperatures characterized both habitats in summertime (up to 14·4 °C in summer as compared with 6·9 °C only in winter). The results were explained by extended surface wetness that characterized the under‐canopy habitat following rainstorms. While already being dried out at the exposed habitat, surface wetness at the under canopy habitat persisted for several days afterwards, resulting, following one rainstorm, in vapour pressure of 2·15–2·39 kPa in comparison with only 0·82–0·83 kPa of the exposed habitat. The substantially lower evaporation rates that characterize the under‐canopy habitat may thus play a pivotal role in providing preferential conditions for lush under‐canopy annual growth. Copyright © 2008 John Wiley and Sons, Ltd.  相似文献   

19.
An experimental study of water fluxes from roofs in a residential area has quantified water fluxes from different types of roof and identified the major controls on the process. Roofs with pitches of 0°, 22° and 50° and orientations of 15° (from true north) (NNE) and 103° (ESE) were selected. A novel automatic system for monitoring has been developed. Noticeable differences in rainfall, runoff and evaporation were found for different roof slopes, aspects and heights. Depending on height, flat roofs collected 90 to 99% of rainfall recorded at ground level. Roofs with a 22° slope; facing south‐south‐west (i.e. facing the prevailing wind) captured most rain, whereas east‐south‐east facing roofs with slopes of 50° received the least. Depending on the roof slope, the average rainfall captured ranged from 62 to 93% of that at ground level. For the same slope, the results indicated that from roofs orientated normal to the prevailing wind; (i) captured rainfall was higher, (ii) evaporation was higher and (iii) runoff was less than that from roofs having other aspects. Monthly variations in the runoff–rainfall ratio followed the rainfall distribution, being lowest in summer and highest in winter. The highest mean ratio (0·91) was associated with the steeper roof slope; the lowest ratio (0·61) was for roofs facing the prevailing wind direction. For the same amount of rainfall, the runoff generated from a steeper roof was significantly higher than that generated by a moderate roof slope, but the lowest runoff was from roofs facing the prevailing wind. The results have also shown that the amount of runoff collected (under UK climatic condition) was sufficient to supply an average household in the studied area with the major part of its annual water requirements. The use of this water not only represents a financial gain for house owners but also will help protect the environment by reducing demand on water resources through the reduction of groundwater abstraction, construction of new reservoirs, and a reduction of the flood risk as its in situ use is considered a preventive measure known as a source control. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Four high mountain glacial basins of the northern and southern periphery of central Asia were studied to determine their interaction with the external hydrological cycle over the Eurasian continent. Two of them located in the northern periphery are closed drainage basins with continental climate and the other two are open basins located in the southern periphery. Calculations of mass energy exchange, glacial runoff and components of the hydrological cycles were conducted. For glaciers with a continental climate, the calculations of snow–ice melt and runoff were based on solar parameters. For glaciers with a marine climate regime, glacier melt and runoff were based on air temperature. The relative errors of simulated annual flows were, on average, 8–14%. The components of the regional hydrological cycles (precipitation, condensation, runoff and evaporation) were quantified for each glacial system and their share in total atmospheric moisture was determined. The closed basins of the northern periphery in central Asia stored annually about 0·1–2·4% of the total external atmospheric moisture in the Aralo-Caspian and Tarim hydrographic systems. About 0·22–0·24% of the external water cycle is transferred annually in open glacial basins of the southern periphery. The glaciers of these regions return 0·25–0·30% of the external water cycle per year to the Pacific and Indian oceans, 0·03% and 0·06% of this external moisture is taken from the glacial resources of the Gongga and Xixibangma glaciers. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号