首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contamination of heavy metals represents one of the most pressing threats to water and soil resources, as well as human health. Phytoremediation can be potentially used to remediate metal contaminated sites. In this study, concentrations of copper, zinc, iron, and magnesium accumulated by native plant species were determined in field conditions of Hame Kasi iron and copper mine in the central part of Iran in Hamadan province. The results showed that metal accumulation by plants differed among species and tissue bodies. Species grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance exists widely amongst them. The mentioned species could accumulate relatively higher metal concentrations far above the toxic concentration in the plant shoots. With high translocation factor, metal concentration ratio of plant shoots to roots indicates internal detoxification metal tolerance mechanism; thus, they have potential for phytoextraction. The factors affecting metal accumulation by plant species including metal concentrations, pH, electrical conductivity, and nutrient status in substrata were measured. Mostly, concentrations of zinc and copper in both aboveground and underground tissues of the plants were significantly, positively related to their total in substrata, while iron, zinc, and copper were negatively correlated to soil phosphorus.  相似文献   

2.
Plant species that accumulate high levels of metals in proportion to the metal content in the soil are of considerable interest in biogeochemical and biogeobotanical prospecting. This study was aimed at investigating copper and nickel accumulation in the plants Helichrysum candolleanum and Blepharis diversispina, to assess their potential use as mineral indicators in biogeochemical prospecting. Soils and plants were collected from copper–nickel mineralised areas in Botswana. Analyses of the soils and the respective plant parts (roots, stem, leaves and flowers) were carried out using ultrasonic slurry sampling electrothermal atomic absorption spectrometry (ETAAS), which allowed rapid determination of copper and nickel in small amounts of the samples.The metal concentration in the soil was in the range ≈ 40 μg/g–4% (w/w) for Cu and ≈ 60 μg/g–0.3% (w/w) for Ni. The concentration ranges of the elements in the plant parts were ≈ 6 μg/g–0.2% Cu and ≈ 3–210 μg/g Ni. At high soil metal content (greater than 2.5% (w/w) Cu and 0.1% (w/w) Ni), high levels of both nickel and copper were found in the shoots (leaves and flowers) of H. candolleanum. Concentrations as high as 0.2% (w/w) Cu were found in the leaves and flowers of H. candolleanum, indicating hyperaccumulation for this plant. For B. diversispina, the metal concentrations did not exceed 100 μg/g for any plant part, for both metals. Both plant species tolerate high concentrations of metals and should therefore be categorized as metallophytes. In order to evaluate metal translocation from the soil to the shoots, metal leaf transfer coefficients (ratio of metal concentration in the leaf to metal concentration in the soil) were calculated. Our data suggest that the two plant species have different metal uptake and transport mechanisms, which needs to be investigated further. The present work also suggests that H. candolleanum may be used as a copper/nickel indicator plant in biogeochemical or biogeobotanical prospecting.  相似文献   

3.
The distribution of Zn, Pb, Cu, Cr, Ni and Co in the plant species and soil of the Zn-Pb sulfide deposits of the Besham area in Pakistan has been studied for geochemical prospecting and environmental pollution. Representative samples of several plant species and associated soil were collected and analyzed by the atomic absorption technique. The data suggest that the plants, especially Plectranthus rugosus, Artemisia indica and Verbascum thapsus, in the mineralized area are enriched in Zn, Pb and Cu (Zn>Pb>Cu) and depleted in Cr, Ni and Co. This is correlated with the concentration of these metals in the associated soil. There is no significant correlation of elements among each other in plants and soil; however, strong correlation of Cu, Cr and Ni has been observed between plants and associate soil. Plectranthus rugosus has the greatest capability for accumulating Zn and Pb in its tissues through soil and can be used as a bioindicator for base metal mineral exploration. This plant along with other plant species such as Artemisia indica and Verbascum thapsus having high scavenging ability for Zn and Pb from the soil and could cause serious environmental and health problems in the living organisms of the area.  相似文献   

4.
The purpose of this study was to determine the levels of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in the five aquatic plants. For this purpose, the concentration of heavy metals were measured in water and in the five aquatic plant species, Lepironia articulata, Pandanus helicopus, Scirpus grossus, Cabomba furcata and Nelumbo nucifera, in 15 sites from Tasik Chini. The concentrations were different among the plant species as well as among the parts of plants. The highest concentration of heavy metals among the aquatic plants and plant parts was found in the roots of S. grossus. The concentrations of Cd in the leaves and stems of submerged aquatic plant, C. furcata, were higher than concentration of Cd in the leaves and stems of emergent aquatic plant and floating leaf plant. The concentration of Cu in the stem of C. furcata was greater than that in the leaf, while the concentration of Cd was more in the leaf than in the stem. The heavy metal contents of the aquatic plants were in descending order of Pb > Cu > Cd. The metal concentration quotient of leaves/roots and stems/roots (ML/MR and MS/MR) were calculated. The highest internal translocation was found in P. helicopus, while the lowest internal translocation was found in S. grossus.  相似文献   

5.
This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from cul-tivated farmlands in and around the mine, the unmineralized site and a nearby forest (the control site). The samples were analyzed for heavy metals (Fe, Zn, Mn, Cu, Pb, Cr and Cd) by Atomic Absorption Spectrophotometry (AAS). The physical properties of soils (pH and LOI) were also measured. Results showed that soils from cultivated farm-lands have neutral pH values (6.5-7.5), and low organic matter contents (10%). Levels of Zn, Pb and Cd in culti-vated soils were higher than the concentrations obtained from the control site. These heavy metals are most probably sourced from mining and agricultural activities in the study area. Heavy metal concentrations measured in plant parts decreased in the order of rice leavescassava tuberspeelings. In the same plant species, metal levels decreased in the order of ZnFeMnCuPbCrCd. Most heavy metals were found in plant parts at average concentrations normally observed in plants grown in uncontaminated soil, however, elevated concentrations of Pb and Cd were found in a few cassava samples close to the mine dump. A stepwise linear regression analysis identified soil metal contents, pH and LOI as some of the factors influencing soil-plant metal uptake.  相似文献   

6.
The impact of waste disposal on trace metal contamination was investigated in eleven wetlands in the Lake Victoria Basin. Samples of soil, water and plants were analysed for total Zn, Cu, Pb and Ni concentrations using flame atomic absorption spectrophotometry. The trace metal concentrations in soil were the highest in Katanga wetland with the highest mean concentrations of 387.5±86.5 mg/kg Zn, 171.5±36.2 mg/kg Pb, 51.20±6.69 mg/kg Cu and 21.33±2.23 mg/kg Ni compared to the lowest levels observed at Butabika (30.7±3.2 mg/kg Zn, 15.3±1.7 mg/kg Pb, 12.77±1.35 mg/kg Cu and 6.97±1.49 mg/kg Ni). Katanga receives waste from multiple industrial sources including a major referral city hospital while Butabika is a former solid waste dumpsite. Wetland soil near a copper smelter had a Cu concentration of 5936.3±56.2 mg/kg. Trace metal concentrations in industrial effluents were above international limits for irrigation water with the highest concentrations of 357,000 μg/L Cu and 1480 μg/L Zn at a Cu smelter and 5600 μg/L Pb at a battery assembling facility compared to the lowest of 50 μg/L Cu and 50 μg/L Zn in water discharged from Wakaliga dumpsite. Uptake of trace metals from soil differed from plant to plant and site to site. Higher levels of trace metals accumulated in the root rather than in the rhizome and the least amount was in the leaf. The study identifies industry as a potential source of trace metal contamination of water and the environment pent-up need for policy intervention in industrial waste management.  相似文献   

7.
Accumulation of heavy metals in soil media is considered as a serious environmental problem, which is hazardous to human and animal health. There have been several methods for the removal of these toxic metals. One of the commonly used methods is the use of plants, especially ornamental plants to remove heavy metals from soils. In this regard, the study has been conducted on the soils contaminated with Mn, Pb, Ni, and Cd using factorial experiment in a completely randomized design with two factors including three types of soil (soil A for the highest level of contamination, B for the lowest level of pollution, and C for the non-contaminated soil) with different contamination levels as well as three types of ornamental plants, gladiolus, daffodils, and narcissus with four replications. In another part of the study, soil A and gladiolus were used in a completely randomized design with three replications, and also three types of fertilizers, such as municipal solid waste compost, triple superphosphate and diammonium phosphate, were added to this soil. In addition, the availability of heavy metal was studied in gladiolus as influenced by the application of organic and chemical fertilizers. The results showed that heavy metal pollution caused reduction in the dry weight of gladiolus and tulips compared to the control sample, while there was no significant effect of pollution on the dry weight of narcissus. The uptake of Mn, Pb, Ni, and Cd by all three plants has been increased with enhancing the pollution levels of heavy metals. The highest concentration of Pb in the shoots of plants was observed in soil A with an average amount of 61.16 (mg kg?1), which revealed a substantial difference relative to the treatment of soil B and C. The most and least amount of Ni in the plants shoots were related to soil A and soil C with an average of 2.35 and 0.89 mg kg?1, respectively. The uptake of Pb by shoots of all three plants was nearly similar to each other, while more Pb was absorbed by the bulbs of gladiolus compared to the bulbs of other plants. Increment in the pollution levels led to the decrement in enrichment factor (EF); however, there was no effect of pollution levels on EF of Mn and Pb. Moreover, there was no effect of increasing pollution levels on translocation factor of these elements. In gladiolus, after application of organic and chemical fertilizers, it was observed that the concentration of heavy metals was far more in the bulbs compared to the shoots. In conclusion, the cultivation of these ornamental plants is highly recommended due to not only their decorative aspect but also their ability for bioremediation as well as being economical.  相似文献   

8.
研究目的】植物修复技术因其具有绿色、经济、环保的特点,在矿山生态修复中应用广泛,而调查和筛选矿山周边适应本地生境的植物物种是进行植物生态修复的关键环节。【研究方法】通过野外调查取样和室内分析测试相结合的方法,对内蒙古包头某废弃铁矿尾矿库及周边11种优势植物的重金属含量、重金属迁移富集能力及其上覆土壤重金属特征进行分析研究,以期筛选优良修复植物,为矿区生态修复提供科学依据。【研究结果】该废弃铁矿尾矿库及周边土壤Fe、Mn、Cu、Pb、Zn、Cr、Cd、F含量均远超过河套平原土壤背景值,地累积指数显示污染等级为2~7级,污染程度从轻—中度污染到极强度污染。植物地下部分各元素含量总体上高于地上部分,除Cu外各植物重金属含量大多超出了正常值范围。【结论】沙蒿和独行菜具有富集型植物特征,玉米、狗尾草、虎尾草和拂子茅属于根部囤积型,碱蓬、灰条菜、苍耳、新疆杨和红柳符合规避型植物特征。可根据植物对重金属的吸收和富集特点,科学合理地选择适宜的植物进行矿区受污染土壤植物修复。创新点:研究了废弃铁尾矿库及周边11种优势植物的重金属特征;揭示了优势植物对重金属的吸收机制。  相似文献   

9.
The heavy metals at high concentration are generally toxic to the plants for their metabolism and growth; therefore, interactions among metals, rhizosphere microbes and plants have attracted attention because of the biotechnological potential of microorganisms for metal removal directly from contaminated soils or the possible transference of them to the plants. The aim of this study was to compare the relationships between the physiological in vitro characteristics of rhizobacteria isolated from plant metal accumulators and their distribution relating with the heavy metals content in contaminated soils. The results of this study showed that the heavy metals present in the rhizosphere of the plant species analyzed, decrease the microbial biomass and content of heavy metals caused a different distribution of rhizobacteria found. Gram negative rhizobacteria (90 %) and gram positive rhizobacteria (10 %) were isolated; all of them are metal-resistant rhizobacteria and 50 % of the isolated rhizobacteria possess both traits: higher indol acetic acid and siderophore producers. The inoculation with these rhizosphere microorganisms that possess metal-tolerating ability and plant growth promoting activities, can be recommended with a practical importance for both metal-contaminated environment and plant growth promotion.  相似文献   

10.
The spatial variability of soil heavy metals in conventional and organic greenhouse vegetable production (CGVP and OGVP) systems can reveal the influence of different farming activities on their accumulation and plant uptake. This provides important basic data for soil utilization and pollution risk assessment. Based on horizontal and vertical spatial analysis, this paper presents the spatial variability and accumulation of soil heavy metals. The effects on plant uptake and factors influencing heavy metal accumulation are presented using the two typical greenhouse vegetable sites in Nanjing City, China as examples. Results showed that different greenhouse vegetable production systems had their own dominant heavy metal accumulation, specifically, Hg and Pb in CGVP system and Cd in OGVP system. The spatial analysis showed that horizontally, distribution of soil properties and heavy metal concentrations in the two sites showed decreases from specific regions to the periphery for organic matter (OM), Cd, Cu, Hg, Pb, and Zn in CGVP and OM, As, Cd, Cu, Hg, Pb, and Zn in OGVP. Vertically, soil properties and heavy metals mainly vary in the topsoil. The key factor for the accumulation was excess fertilizer input. Variation of soil properties and the accumulation of soil heavy metals significantly influenced heavy metal uptake by plants. However, accumulation risk varied according to different heavy metals and different plant species. Environmental management of these two kinds of production systems should pay more attention to fertilizer application, plant selection, and soil properties.  相似文献   

11.
Soil and stream sediment sampling have been the primary geochemical exploration tools in the Appalachian piedmont to date. However, the great thicknesses of soil and saprolite found in the region coupled with the dense vegetation frequently encountered favor biogeochemistry as an alternative or supplemental method since deep-rooted plants sample closer to bedrock. To evaluate this method, an orientation survey was performed in which soils and vegetation at 17 sites north of Mineral, Virginia, were sampled and analyzed for Ag, Cd, Cu, Pb and Zn. The traverse included stations over the host rocks of massive sulfide mineralization, as well as over apparent “barren” country rock. Samples were analyzed by atomic absorption spectrophotometry using standard digestion and analytical techniques.Both A- and B-horizon soil metals generally appear to be reliable indicators of mineralization, with soils developed over sulfides showing up to three-fold enrichment in metal content relative to the average soils developed on the country rock. Correlation of metal concentrations in vegetation to soil metal concentrations reveal plant concentrations expressed on a dry-weight basis correlate stronger and more frequently to soil metals than do ash-weight concentrations. Copper shows some promise in selected organs and species, Ag appears fair but data are limited to one organ of one species, and plant Pb seems totally unresponsive to soil metal concentrations perhaps because foliar absorption is an important plant uptake mechanism here. However, Zn and Cd in organs of the oak group, especially mature leaves and twigs of the current year's growth show the greatest promise as prospecting tools. They correlate well with soil metals and when compared directly to the geology they reliably reflect mineralization. Although results using White oak were slightly less profound than those obtained from the Black-Red oak group, White oak may be preferred as it is a single, more widespread, easily-identifiable species. Copper and especially Zn although essential elements to plants, do not appear to be “difficult” elements for biogeochemical prospecting in the Appalachian piedmont.  相似文献   

12.
土壤修复过程中重金属形态的研究综述   总被引:4,自引:0,他引:4  
重金属污染土壤的修复是现阶段污染土壤治理中的难点之一,在土壤修复过程中对重金属的形态研究已在多个领域中开展,并且在重金属形态及其与生物有效性和毒性等研究领域取得了一定的成果。本文综述了现阶段在污染土壤修复过程中对重金属形态研究的主要领域,分析研究重金属形态的必要性,总结出土壤修复过程中重金属形态方面应当从重金属在土壤与植物中的存在形态入手,研究重金属元素在不同界面间的迁移转化规律,通过阻断重金属元素在污染源、土壤、生物之间的传递链条,以阻止重金属对生物体造成危害,从而为土壤重金属污染的治理修复提供理论基础。  相似文献   

13.
Arsenic in soil, vegetation and water of a contaminated region   总被引:2,自引:1,他引:1  
Arsenic concentrations of surface waters, soils and plants were surveyed in three contaminated villages of Bijar County. Total arsenic in water samples (4.5 to 280 μg/L) was correlated with electrical conductivity, total dissolved solid, total hardness, alkalinity, chloride, sulphate, bicarbonate, calcium and sodium (p<0.001). Total arsenic in the soils ranged from 105.4 to 1500 mg/kg. Some of the soil factors play an important role in soil arsenic content and its bioavailability for organisms. In general, the arsenic concentrations in plants were low, especially in the most common wild species. Among 13 plant species, the highest mean arsenic concentration was found in leaves of Mentha Longifolia (79.4 mg/kg). Arsenic levels in soils and plants were positively correlated, while the ability of the plants to accumulate the element, expressed by their biological accumulation coefficients and arsenic transfer factors, was independent of the soil arsenic concentration. Relationships between the arsenic concentrations in plants, soils and surface water and the environmental aspects of these relationships have been discussed in comparison with literature data. The accumulation of arsenic in environmental samples (soil, sediment, water, plant, etc.) poses a potential risk to human health due to the transfer of this element in aquatic media, their uptake by plants and subsequent introduction into the food chain.  相似文献   

14.
The absorption and accumulation of Pb, Zn, Cu and Cd in some endurant weed plant species that survived in an old smeltery in Liaoning, China, were systematically investigated. Potential hyperaccumulative characteristics of these species were also discussed. The results showed that metal accumulation in plants differed with species, tissues and metals. Endurant weed plants growing in this contaminated site exhibited high metal adaptability. Both the metal exclusion and detoxification tolerance strategies were involved in the species studied. Seven species for Pb and four species for Cd were satisfied for the concentration time level standard for hyperaccumulator. Considering translocation factor (TF) values, one species for Pb, seven species for Zn, two species for Cu and five species for Cd possessed the characteristic of hyperaccumulator. Particularly, Abutilon theophrasti Medic, exhibited strong accumulative ability to four heavy metals. Although enrichment coefficients of all samples were lesser than 1 and the absolute concentrations didn’t reach the standard, species mentioned above were primarily believed to be potential hyperaccumulators.  相似文献   

15.
The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato (Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal contaminated soil. Further research work on in situ toxicity test will be necessary in order to identify the most resistive variety on this particular type of contaminated site.  相似文献   

16.
Consuming edible plants contaminated by heavy metals transferred from soil is an important pathway for human exposure to environmental contaminants. In the past several decades, heavy metal accumulation in contaminated soil has been widely studied; however, few researches investigated the background levels of metals in plants and evaluated the difference in plants grown in soils produced from different parent rocks. In this study, a systemic survey of heavy metal distribution and accumulation in the soil–pepper system was investigated in an unpolluted area, Hainan Island, China. Levels of Cu, Pb, Zn and Cd were measured in soils and pepper fruits from five representative pepper-growing areas with different soil parent rocks (i.e. basalt, granite, sedimentary rock, metamorphic rock and alluvial deposits). Average concentrations of Cu, Pb, Zn and Cd in pepper fruits were 11.52, 0.84, 8.77 and 0.05 mg/kg, respectively. The concentrations of heavy metals in soils are controlled by the parent materials and varied greatly from in different areas. Heavy metal contents in all pepper samples were lower than the Chinese maximum contaminant levels. The relationship between heavy metals in soils and biological absorption coefficient (BAC) of pepper fruits suggests that the uptake ability of pepper for soil metals depends mainly on the physiological mechanism, while in some cases, the soil types and supergene environment are also important.  相似文献   

17.
The effects of humic acid (HA) on heavy metal uptake by herbaceous plants in soil simultaneously contaminated with heavy metals and petroleum hydrocarbons were investigated. The results showed that HA reduced readily soluble and exchangeable forms of heavy metals in the contaminated soil but increased their plant-available forms. Potential bioavailability and leachability factors became larger than 1 after adding HA to the soil, except for those of Ni, suggesting that more heavy metals could be potentially phytoavailable for plant uptake. Furthermore, HA increased the accumulation of Pb, Cu, Cd, and Ni in the shoots and roots of selected plants. The greatest increase in the accumulation of heavy metals was 264.7 % in the shoot of Festuca arundinacea, with the bioconcentration factor (BCF) increasing from 0.30 to 1.10. Humic acid also increased the BCFs of the roots of Brassica campestris for Ni and Pb. These results suggest that HA amendment could enhance plant uptake of heavy metals, while concurrently reducing heavy metal leachability and preventing subsurface contamination, even in soils simultaneously contaminated with petroleum hydrocarbons.  相似文献   

18.
采用再力花和菖蒲构建湿地床,以考察其对污染河水的净化效果。6个月的连续试验表明:在水力负荷为0.24 m3/(m2.d)、植物种植密度大于158株/m2的条件下,2种植物存活率均大于93%,说明植物能适应低污染负荷、高种植密度的无土培养环境;再力花和菖蒲湿地床月均去除率分别为:总氮(TN),48.22%~78.53%和43.23%~72.42%;总磷(TP),77.62%~85.67%和58.07%~80.77%。再力花湿地床对TN、TP的净化效果好于菖蒲湿地床;2种植物吸收N、P含量分别占去除总量的比例:N为44.14%、37.75%,P为73.43%、62.05%。湿地床技术可有效去除来水中的TN、TP,通过植物吸收作用累积N、P含量较高,不同种类的植物构建湿地床对污染河水中N、P去除效果存在显著差异,且硝化反硝化和植物吸收是去除N的主要途径,而植物吸收是去除P的有效手段。  相似文献   

19.
Heavy metals’ frequent occurrence and toxicity caused considerable concerns in assessing the interactive effects of metals on exposed plants. Therefore, a hydroponic study was conducted to assess the growth response and physio-chemical changes in Brassica napus plants under single and combined stress of two environmentally alarming metals (Cd and Cu). Results showed that 15-day metal exposure to different metal concentrations (0, 50, 200 µM) significantly enhanced Cd accumulation, while lesser extent of Cu was observed in plant tissues. Nonetheless, Cu caused more pronounced oxidative damages and plant growth retardation. Both metals showed similar trend of changes in mineral composition, although Cu proved more damaging effect on K and Mn contents, and Cd on Zn contents. In combined treatments, Cd stimulated Cu uptake, notably at low concentration, while its own uptake was restricted by the presence of Cu. At either level of concentration, combined stress of these metals exacerbated plant growth inhibition and caused further oxidative damages compared to their individual stress. However, metals synergistic effects occurred only in conditions where Cu uptake was enhanced by Cd. A greater synergistic effect was observed in sensitive cultivar Zheda 622 as compared to the tolerant cultivar ZS 758. As to mineral composition, no metals synergistic effects were noted. This study highlighted the ecotoxicological significance of Cd-led Cu uptake in B. napus, which was assumed to drive metals’ synergistic toxicity, and showed that the relationship between Cd-led Cu uptake and plant growth responses could vary with respect to cultivar.  相似文献   

20.
With the increasing industrialization, heavy metals concentration in soils has greatly increased. Phytoremediation is a low-cost, non-intrusive and aesthetically harmonious technology that uses plants to remediate contaminated sites by heavy metals. The aim of the study was to determine Cd, Pb and Zn concentration in the biomass of plant species growing on a multi-metal-contaminated site of lead smelter processing, to assess the workability of using these plants for phytoremediation purposes and highlight possible damage in morphological leaf changes. Two plant species, i.e., Ipomoea asarifolia and Urochloa decumbens and the associated soil samples were collected and analyzed Cd, Pb and Zn concentrations and then calculating the bioconcentration factor and translocation factor parameters for each element. Leaves and roots samples were observed by light microscopy. Metal concentrations varied greatly and majorly depend on site sampled, plant species and tissue. Cd, Pb and Zn in tissue ranged from 0 to 102.48, 0 to 381.04 and 12.84 to 295.02 mg Kg?1. However, none of the plant showed potential for hyperaccumulation. Both plants showed bioaccumulation factor more than one, where it was 7.66 and 6.82 for Pb and Zn in U. decumbens, respectively. Translocation factor was calculated below one for both plants and all metals. Morphological studies revealed development of adaptive features that strengthen the U. decumbens to grow in contaminated soil. Our study suggests that I. asarifolia and U. decumbens have potential for phytostabilization at multi-metal-contaminated site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号