首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
上世纪中叶以来,微震探查法等基于面波相速度频散测定以及其反演的地下构造勘探方法,在地壳研究、工程地质勘探等方面得到了广泛的应用.本研究分析了遗传算法(GA)应用在面波频散反演当中出现的问题,采用遗传算法和Levenberg-Marquardt 算法(LM法)的联合运用法——以遗传算法反演出来的大局的搜索结果为初始点,再进行LM法搜索,由此克服两者的缺点,实现高精度的反演.  相似文献   

2.
借助虚拟反演思路,通过对各种遗传算子不同匹配方式的比较研究,指出了对于频散曲线反演浮点数编码与轮盘赌选择的匹配方式离线性能最好,提出了一种两步优化反演策略.该两步策略利用浮点数编码、轮盘赌选择、浮点数均匀交换与变异算子匹配组成基本遗传算法框架,在此框架基础上施加免疫启发策略和免重复计算加速策略,多次运行,对每次运行结果继续施加模拟退火算法使其至少达到局部最优,最后取得最优解.免疫启发策略充分利用最佳个体的信息加速进化进程,通过对每代的最佳个体施加一服从标准正态分布的随机数来加强对邻近区域的局部搜索,通过标准差的调整也兼顾了对邻近区域以外区域的搜索,将局部搜索和全局搜索有机地结合起来,同时还最大限度地降低了对遗传算法自身进化进程的干扰;免重复计算策略大大减少了正演计算次数,节约了计算成本,提高了反演效率.两步反演策略避免了多次平均法的缺陷,提高了反演结果的稳定性和精度,降低了非惟一性.  相似文献   

3.
In the traditional inversion of the Rayleigh dispersion curve, layer thickness, which is the second most sensitive parameter of modelling the Rayleigh dispersion curve, is usually assumed as correct and is used as fixed a priori information. Because the knowledge of the layer thickness is typically not precise, the use of such a priori information may result in the traditional Rayleigh dispersion curve inversions getting trapped in some local minima and may show results that are far from the real solution. In this study, we try to avoid this issue by using a joint inversion of the Rayleigh dispersion curve data with vertical electric sounding data, where we use the common‐layer thickness to couple the two methods. The key idea of the proposed joint inversion scheme is to combine methods in one joint Jacobian matrix and to invert for layer S‐wave velocity, resistivity, and layer thickness as an additional parameter, in contrast with a traditional Rayleigh dispersion curve inversion. The proposed joint inversion approach is tested with noise‐free and Gaussian noise data on six characteristic, synthetic sub‐surface models: a model with a typical dispersion; a low‐velocity, half‐space model; a model with particularly stiff and soft layers, respectively; and a model reproduced from the stiff and soft layers for different layer‐resistivity propagation. In the joint inversion process, the non‐linear damped least squares method is used together with the singular value decomposition approach to find a proper damping value for each iteration. The proposed joint inversion scheme tests many damping values, and it chooses the one that best approximates the observed data in the current iteration. The quality of the joint inversion is checked with the relative distance measure. In addition, a sensitivity analysis is performed for the typical dispersive sub‐surface model to illustrate the benefits of the proposed joint scheme. The results of synthetic models revealed that the combination of the Rayleigh dispersion curve and vertical electric sounding methods in a joint scheme allows to provide reliable sub‐surface models even in complex and challenging situations and without using any a priori information.  相似文献   

4.
作为近地表横波速度结构成像的主要手段之一,面波多道分析法的正问题研究对现场观测系统设计及后续反演计算具有重要意义.目前面波频散曲线的正演主要分为两类:一是对水平层状介质中面波的本征值问题进行求解,该类方法计算效率高但较难考虑地下介质在横向上的不均匀性;二是基于波动方程的全波场模拟,该类方法在理论上可考虑任意复杂的地质模型但计算成本相对较高.本文基于振幅归一化加权的聚束分析,提出了一种适用于横向非均匀介质模型的多道瑞雷波频散曲线正演方法.首先,基于聚束分析的计算公式推导得到了经振幅归一化加权后输出功率谱中相速度与局部相速度之间的关系,然后通过黄金分割极值搜索算法计算得到了多道瑞雷波数据的理论频散曲线.数值分析结果表明,该算法能够快速地实现横向非均匀介质中多道瑞雷波频散曲线的正演计算,所求取的频散曲线与采用二维弹性波时间域有限差分模拟分析得到的结果误差较小,这在一定程度上说明了该计算方法的可靠性,从而可为面波多道分析法中的观测系统快速优化设计以及横向非均匀介质中频散曲线的反演解释提供理论支撑.  相似文献   

5.
套管井井壁附近地层横波速度径向分布反演   总被引:2,自引:0,他引:2       下载免费PDF全文
王兵  马明明  刘鹤  刘志军 《地球物理学报》2016,59(12):4782-4790
套管外地层受异常地应力、油气开采的影响,在径向上表现出非均质性;采用声波测井可以对该非均质性进行探测,利用偶极子横波测井数据可以对横波速度的径向分布进行反演.本文建立了套管井外地层横波速度径向分层参考模型,采用修正的微扰法计算了该模型的偶极弯曲波频散曲线,建立了横波速度径向分布反演目标函数,采用高斯牛顿法和快速模拟退火法对目标函数进行了求解,得到了套管井外地层横波速度的径向分布.分析了偶极弯曲波频段、套管横波速度对反演结果的影响,对比了高斯牛顿法和快速模拟退火法对反演过程的影响.分析对比结果表明,采用偶极弯曲波激发强度较高的频段与采用全频段的反演结果相近;套管的横波速度准确度越高,反演结果越准确;高斯牛顿法和快速模拟退火法计算精度相同,都可以得到高精度的横波速度径向分布;快速模拟退火法的计算效率略低于高斯牛顿法,但其收敛性对初始值依赖更小,实际处理中应选择快速模拟退火法.  相似文献   

6.
We present results from the resolution and sensitivity analysis of 1D DC resistivity and IP sounding data using a non-linear inversion. The inversion scheme uses a theoretically correct Metropolis–Gibbs' sampling technique and an approximate method using numerous models sampled by a global optimization algorithm called very fast simulated annealing (VFSA). VFSA has recently been found to be computationally efficient in several geophysical parameter estimation problems. Unlike conventional simulated annealing (SA), in VFSA the perturbations are generated from the model parameters according to a Cauchy-like distribution whose shape changes with each iteration. This results in an algorithm that converges much faster than a standard SA. In the course of finding the optimal solution, VFSA samples several models from the search space. All these models can be used to obtain estimates of uncertainty in the derived solution. This method makes no assumptions about the shape of an a posteriori probability density function in the model space. Here, we carry out a VFSA-based sensitivity analysis with several synthetic and field sounding data sets for resistivity and IP. The resolution capability of the VFSA algorithm as seen from the sensitivity analysis is satisfactory. The interpretation of VES and IP sounding data by VFSA, incorporating resolution, sensitivity and uncertainty of layer parameters, would generally be more useful than the conventional best-fit techniques.  相似文献   

7.
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.  相似文献   

8.
崔岩  王彦飞 《地球物理学报》2022,65(3):1086-1095
目前瑞雷波多阶模式频散曲线反演中仅考虑数据的拟合,缺乏对模型的约束,不能很好地刻画地层间断面的问题,针对此问题,研究了瑞雷波多阶模式频散曲线稀疏正则化反演方法.正演模拟基于广义反射-透射系数法,数值计算上采用一种快速求根方法,与二等分方法相比,能够在很短的时间内达到最优的收敛效果;反演建模时采用L1范数正则化方法对模型...  相似文献   

9.
反演瑞雷波频散曲线能有效获取地层横波速度和厚度.但由于其高度的非线性、多参数、多极值等特点,传统的全局搜索方法易出现收敛速度慢、早熟收敛及搜索精度低的问题.鉴于此,本文提出并测试了基于萤火虫优化算法(FA)和带惯性权重的蝙蝠优化算法(WBA)的新的瑞雷波频散曲线反演策略.在瑞雷波频散曲线反演中,FA全局搜索能力强,但后期搜索精度低,而WBA局部搜索能力强,搜索精度高,但易出现早熟收敛.故本文将二者结合,提出了一种新的优化策略,称其为WFBA,即在反演前期使用FA,后期使用WBA,很好地解决了FA后期搜索精度低及WBA早熟收敛的问题.本文首先反演了三个典型理论模型的无噪声、含噪声的数据,验证了WFBA对瑞雷波数据反演的有效性与稳定性.然后将WFBA与WBA、FA单独反演以及不含惯性权重的FBA和粒子群优化算法(PSO)反演的结果进行了对比,说明了WFBA相对于WBA、FA、FBA和PSO具有更稳定、收敛速度更快、求解精度更高等优点.最后,反演了来自美国怀俄明地区的实测资料,检验了WFBA对瑞雷波数据反演的实用性.理论模型试算和实测资料分析表明,WFBA很适用于瑞雷波频散曲线的定量解释,具有很高的实用性价值.  相似文献   

10.
Surface wave dispersion curve inversion is a challenging problem for linear inversion procedures due to its highly non-linear nature and to the large numbers of local minima and maxima of the objective function (multi-modality). In order to improve the reliability of the inversion results, we implemented and tested a two-step inversion scheme based on Genetic Algorithms (GAs). The proposed scheme performs several preliminary “parallel” runs (first step) and a final global run using the previously-determined fittest models as starting population.In this work we focus on the inversion of shear-wave velocity and layer thickness while fixing compressional-wave velocity and density according to user-defined Poisson's ratios and velocity–density relationship respectively. The procedure can nonetheless perform the inversion under different degrees of regularization, depending on the a priori information and the desired degree of freedom of the system.Thanks to the large number of considered models, in addition to the fittest model, a mean model and its accuracy are evaluated by means of a statistical approach based on the estimation of the Marginal Posterior Probability Density (MPPD).We tested the proposed GA-based inversion scheme on three synthetic models reproducing a complex structure with low-to-moderate velocity cover (also including a low-velocity channel) lying over hard bedrock. For all the considered cases the bedrock velocity and depth were properly identified, and velocity inversion was reconstructed with minor uncertainties.The performed tests also investigate the influence of the first higher mode, the reduction of the frequency range of the considered dispersion curve as well as the use of different number of strata. While a limited frequency range of the dispersion curve (maximum frequency reduced from 80 to 40 Hz) does not seem to significantly limit the accuracy of the retrieved model, the adoption of the correct number of strata and the addition of the first higher mode help better focus the final solution.In conclusion, the proposed approach represents an improvement of a purely GA-based optimization scheme and the MPPD-based mean model typically offers a more significant and precise solution than the fittest one.Results of the inversion performed on a field data set were validated by borehole stratigraphy.  相似文献   

11.
Addressing non-uniqueness in linearized multichannel surface wave inversion   总被引:1,自引:0,他引:1  
The multichannel analysis of the surface waves method is based on the inversion of observed Rayleigh-wave phase-velocity dispersion curves to estimate the shear-wave velocity profile of the site under investigation. This inverse problem is nonlinear and it is often solved using 'local' or linearized inversion strategies. Among linearized inversion algorithms, least-squares methods are widely used in research and prevailing in commercial software; the main drawback of this class of methods is their limited capability to explore the model parameter space. The possibility for the estimated solution to be trapped in local minima of the objective function strongly depends on the degree of nonuniqueness of the problem, which can be reduced by an adequate model parameterization and/or imposing constraints on the solution.
In this article, a linearized algorithm based on inequality constraints is introduced for the inversion of observed dispersion curves; this provides a flexible way to insert a priori information as well as physical constraints into the inversion process. As linearized inversion methods are strongly dependent on the choice of the initial model and on the accuracy of partial derivative calculations, these factors are carefully reviewed. Attention is also focused on the appraisal of the inverted solution, using resolution analysis and uncertainty estimation together with a posteriori effective-velocity modelling. Efficiency and stability of the proposed approach are demonstrated using both synthetic and real data; in the latter case, cross-hole S-wave velocity measurements are blind-compared with the results of the inversion process.  相似文献   

12.
Sites with a limited overburden over a stiff basement are of particular relevance for seismic site response. The characterization of such stratigraphies by means of surface wave methods poses some difficulties in interpretation. Indeed the presence of sharp seismic contrasts between the sediments and the shallow bedrock is likely to cause a relevance of higher modes in the surface wave apparent dispersion curve, which must be properly taken into account in order to provide reliable results. In this study a Monte Carlo algorithm based on a multimodal misfit function has been used for the inversion of experimental dispersion curves. Case histories related to the characterization of stations of the Italian accelerometric network are reported. Spectral ratios and amplification functions associated to each site are moreover evaluated to provide an independent benchmark test. The results show the robustness of the inversion method in such non-trivial conditions and the possibility of getting an estimate of uncertainty related to solution non-uniqueness.  相似文献   

13.

Surface wave methods have received much attention due to their efficient, flexible and convenient characteristics. However, there are still critical issues regarding a key step in surface wave inversion. In most existing methods, the number of layers is assumed to be known prior to the process of inversion. However, improper assignment of this parameter leads to erroneous inversion results. A Bayesian nonparametric method for Rayleigh wave inversion is proposed herein to address this problem. In this method, each model class represents a particular number of layers with unknown S-wave velocity and thickness of each layer. As a result, determination of the number of layers is equivalent to selection of the most applicable model class. Regarding each model class, the optimization search of S-wave velocity and thickness of each layer is implemented by using a genetic algorithm. Then, each model class is assessed in view of its efficiency under the Bayesian framework and the most efficient class is selected. Simulated and actual examples verify that the proposed Bayesian nonparametric approach is reliable and efficient for Rayleigh wave inversion, especially for its capability to determine the number of layers.

  相似文献   

14.
Following a brief overview of the history and the development of the Surface Wave Method—with a focus on techniques for processing and inverting field data—a Simplified Inversion Method (SIM) is described, which constitutes an improvement of the Satoh et al. (1991) [1] method. The SIM is a direct inversion method of surface wave dispersion data, making use of a penetration depth coefficient, aR, whose value is a function of Poisson's ratio and the overall shape of the dispersion curve. In the present study the coefficient aR has been evaluated using data from (a) an extensive database compiled from the technical literature and containing results of inverted surface wave measurements and nearby cross-hole/down-hole measurements, (b) results of side by side surface wave and cross-hole measurements, performed at five sites in the course of this study, (c) finite element analyses simulating the performance of surface wave measurements and thus providing “virtual” data, and (d) applying a current advanced inversion code, available on the Web. Based on all the above data, optimum values of aR (and of the corresponding uncertainty of the derived Vso vs. depth profile) have been estimated. These values were found to be independent of depth from ground surface. The results of all analyses and comparisons indicate that for the majority of realistic soil profiles (including cases of normal and inverse dispersion conditions) the proposed SIM provides very reliable Vso vs. depth profiles when a value of aR=0.63–0.67 is used in the inversion process. It is concluded that the SIM can be used with confidence as a direct inversion method of surface wave dispersion data.  相似文献   

15.
应用改进蜂群算法反演面波频散曲线以获得近地表横波速度剖面.蜂群算法属于群智能算法中的一种,灵感来源于蜜蜂群体特定的觅食行为,在该算法的基础上结合粒子群算法中的全局最优解引导思想,同时引入遗传算法中交叉运算操作,即采用基于交叉操作的全局人工蜂群算法对面波频散曲线进行反演研究.改进蜂群算法在继承传统算法精于探索特性的同时,针对其疏于开发的缺陷着重加强了算法对全局的探索能力.使用理论和实测瑞雷波数据,本文研究了改进蜂群算法在推导近地表横波速度分布的有效性和适用性.在反演中,目标函数的收敛性好,改进算法在迭代的过程中能够快速收敛到全局最优;模型参数的概率分布高,即在寻找到全局最优解的同时,能够确保解中每个参数同时达到最优,保证了反演的结果可靠度,使其能有效地应用于瑞雷波频散曲线的反演和解释中.  相似文献   

16.
Following a brief overview of the history and the development of the Surface Wave Method—with a focus on techniques for processing and inverting field data—a Simplified Inversion Method (SIM) is described, which constitutes an improvement of the Satoh et al. (1991) [1] method. The SIM is a direct inversion method of surface wave dispersion data, making use of a penetration depth coefficient, aR, whose value is a function of Poisson's ratio and the overall shape of the dispersion curve. In the present study the coefficient aR has been evaluated using data from (a) an extensive database compiled from the technical literature and containing results of inverted surface wave measurements and nearby cross-hole/down-hole measurements, (b) results of side by side surface wave and cross-hole measurements, performed at five sites in the course of this study, (c) finite element analyses simulating the performance of surface wave measurements and thus providing “virtual” data, and (d) applying a current advanced inversion code, available on the Web. Based on all the above data, optimum values of aR (and of the corresponding uncertainty of the derived Vso vs. depth profile) have been estimated. These values were found to be independent of depth from ground surface. The results of all analyses and comparisons indicate that for the majority of realistic soil profiles (including cases of normal and inverse dispersion conditions) the proposed SIM provides very reliable Vso vs. depth profiles when a value of aR=0.63–0.67 is used in the inversion process. It is concluded that the SIM can be used with confidence as a direct inversion method of surface wave dispersion data.  相似文献   

17.
In-seam seismic survey currently is a hot geophysical exploration technology used for the prediction of coal seam thickness in China. Many studies have investigated the relationship between the group velocity of channel wave at certain frequency and the actual thickness of exposed coal beds. But these results are based on statistics and not universally applicable to predict the thickness of coal seams. In this study, we first theoretically analyzed the relationship between the depth and energy distribution of multi-order Love-type channel waves and found that when the channel wave wavelength is smaller than the thickness of the coal seam, the energy is more concentrated, while when the wavelength is greater than the thickness, the energy reduces linearly. We then utilized the numerical simulation technology to obtain the signal of the simulated Love-type channel wave, analyzed its frequency dispersion, and calculated the theoretical dispersion curves. The results showed that the dispersion characteristics of the channel wave are closely related to the thickness of coal seam, and the shear wave velocity of the coal seam and its surrounding rocks. In addition, we for the first time realized the joint inversion of multi-order Love-type channel waves based on the genetic algorithm and inversely calculated the velocities of shear wave in both coal seam and its surrounding rocks and the thickness of the coal seam. In addition, we found the group velocity dispersion curve of the single-channel transmitted channel wave using the time–frequency analysis and obtained the phase velocity dispersion curve based on the mathematical relationship between the group and phase velocities. Moreover, we employed the phase velocity dispersion curve to complete the inversion of the above method and obtain the predicted coal seam thickness. By comparing the geological sketch of the coal mining face, we found that the predicted coal seam thickness is in good agreement with the actual thickness. Overall, adopting the channel wave inversion method that creatively uses the complete dispersion curve can obtain the shear wave velocities of the coal and its surrounding rocks, and analyzing the depth of the abruptly changed shear wave velocity can accurately obtain the thickness of the coal seam. Therefore, our study proved that this inversion method is feasible to be used in both simulation experiments and actual detection.  相似文献   

18.
2D多尺度混合优化地球物理反演方法及其应用(英文)   总被引:1,自引:0,他引:1  
局部优化和全局优化方法广泛应用到地球物理反演,但是两者各有其优缺点。将两类方法结合起来可以取长补短。将退火遗传算法(SAGA)和单纯形算法相结合,得到了一种高效、健全的2D非线性混合地震走时反演方法。首先,利用SAGA进行大范围的全局搜索,然后由单纯形方法进行快速局部搜索。为了降低层析成像的多解性,我们采用了多尺度逐次逼近的技巧。把速度场划分为不同的空间尺度,定义网格节点上的速度作为待反演参数,采用双三次样条函数模型参数化,正问题采用有限差分走时计算方法,反问题采用多尺度混合反演方法。一个低速度异常体的数值模拟试验和抗走时扰动试验表明该方法是有效和健全的。我们将该方法应用到青藏高原东北缘阿尼玛卿rlet,Meyer,Marr,缝合带东段上部地壳速度结构研究中。数字模型试验和实际资料的应用表明了方法的有效性和健全性。  相似文献   

19.
Spectral analysis of surface waves (SASW) is a nondestructive in-situ testing method that is used to determine stiffness profiles of soil and pavement sites based on dispersion characteristics of Rayleigh-type surface waves.Inversion of the Rayleigh wave dispersion curve of a site provides information on the variation of shear-wave velocity with depth. In the inversion procedures currently used for SASW tests, the field dispersion curve is matched with a theoretical dispersion curve obtained for the fundamental mode of surface wave propagation.In order to overcome difficulties associated with the presence of multi-modes in SASW signals, a new inversion method based on the maximum vertical flexibility coefficient is introduced in this paper. Unlike root-searching methods, the new method easily identifies the predominant propagation modes. In this new approach, the simplex method is used to match field and theoretical dispersion curves automatically. The purpose of this paper is to present the details of the new method and to demonstrate its advantages.  相似文献   

20.
面波频散反演地球内部构造的遗传算法   总被引:41,自引:16,他引:41       下载免费PDF全文
介绍了一种新的算法--遗传算法的基本概念和特点,及其在地震面波反演地球内部构造中的应用,指出了使用遗传算法的注意事项.提出了通过对初步搜索结果参数分布直方图进行分析,从而修改和缩小进一步搜索的范围,逐步搜索以提高搜索效率的方法.并对3层含低速层的理论模型和青藏高原的实际频散资料进行遗传算法反演,获得了满意的结果.讨论了遗传算法在其他地震学问题中进一步应用的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号