首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of pile foundation in liquefiable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior of a reinforced concrete low-cap pile group embedded in this type of ground. In this study, a three-dimensional (3D) finite element (FE) analysis of the experiment was conducted. The computed response of the soil-pile system was in reasonable agreement with the experimental results, highlighting some key characteristics. Then, a parametric study was performed to explore the influence of pile spacing, pile stiffness (EI), superstructure mass, sand permeability, and shaking characteristics of input motion on the behavior of the pile. The investigation demonstrated a stiffening behavior appearing in the liquefied mediumdense sand, and the pile group effect seemed negligible. Furthermore, the kinematic effect was closely connected with both EI and sand permeability. Nevertheless, the inertial effect was strongly influenced by the superstructure mass. Meanwhile, high frequency and large amplitude of the input motion could produced greater the pile’s moments. It is estimated that this case study could further enhance the current understanding of the behavior of low-cap pile foundations in liquefied dense sand.  相似文献   

2.
为了合理分析可液化场地桥梁桩基侧向承载力进行了改进m值法的研究。基于振动台试验和m值法,建立了桩-土相互作用体系有限元分析模型;引入反映可液化砂层侧向承载力衰减状态的孔压比指标值Ru;将不同时刻对应墩顶配重惯性力作为体系外部激励施加于墩顶;通过不断试算液化过程中砂土的m值,保证桩的弯矩计算值与试验值吻合较好。建立了考虑孔压比效应的砂土m值衰减因子p与Ru之间关系式。最后,推荐给出可液化场地桥梁桩基侧向承载性能分析的改进m值法。  相似文献   

3.
4.
A Study of Piles during Earthquakes: Issues of Design and Analysis   总被引:1,自引:0,他引:1  
The seismic response of pile foundations is a very complex process involving inertial interaction between structure and pile foundation, kinematic interaction between piles and soils, seismically induced pore-water pressures (PWP) and the non-linear response of soils to strong earthquake motions. In contrast, very simple pseudo-static methods are used in engineering practice to determine response parameters for design. These methods neglect several of the factors cited above that can strongly affect pile response. Also soil–pile interaction is modelled using either linear or non-linear springs in a Winkler computational model for pile response. The reliability of this constitutive model has been questioned. In the case of pile groups, the Winkler model for analysis of a single pile is adjusted in various ways by empirical factors to yield a computational model for group response. Can the results of such a simplified analysis be adequate for design in all situations?The lecture will present a critical evaluation of general engineering practice for estimating the response of pile foundations in liquefiable and non-liquefiable soils during earthquakes. The evaluation is part of a major research study on the seismic design of pile foundations sponsored by a Japanese construction company with interests in performance based design and the seismic response of piles in reclaimed land. The evaluation of practice is based on results from field tests, centrifuge tests on model piles and comprehensive non-linear dynamic analyses of pile foundations consisting of both single piles and pile groups. Studies of particular aspects of pile–soil interaction were made. Piles in layered liquefiable soils were analysed in detail as case histories show that these conditions increase the seismic demand on pile foundations. These studies demonstrate the importance of kinematic interaction, usually neglected in simple pseudo-static methods. Recent developments in designing piles to resist lateral spreading of the ground after liquefaction are presented. A comprehensive study of the evaluation of pile cap stiffness coefficients was undertaken and a reliable method of selecting the single value stiffnesses demanded by mainstream commercial structural software was developed. Some other important findings from the study are: the relative effects of inertial and kinematic interactions between foundation and soil on acceleration and displacement spectra of the super-structure; a method for estimating whether inertial interaction is likely to be important or not in a given situation and so when a structure may be treated as a fixed based structure for estimating inertial loads; the occurrence of large kinematic moments when a liquefied layer or naturally occurring soft layer is sandwiched between two hard layers; and the role of rotational stiffness in controlling pile head displacements, especially in liquefiable soils. The lecture concludes with some recommendations for practice that recognize that design, especially preliminary design, will always be based on simplified procedures.  相似文献   

5.
Observations of pile foundation performance during previous earthquakes have shown that pile failure has been caused by lateral ground movements resulting from soil liquefaction. The recognition that lateral ground movements may play a critical role in pile performance during an earthquake has important implications for design and risk assessment, and requires that analytical models be devised to evaluate these potential problems.In this paper, parametric studies were conducted to estimate the maximum bending moments induced in piles subjected to lateral ground displacement. The results are summarized in charts using dimensionless parameters.The analyses reveal that the existence of a nonliquefiable layer at the ground surface can affect significantly the maximum bending moment of the pile. When a relatively thick nonliquefiable layer exists above a liquefiable layer, neither the material nonlinearity of the soil nor loss of soil stiffness within the liquefiable layer significantly affect the maximum bending moment. When the thickness of the liquefiable soils is greater than about three times that of an overlying intact layer, soil stiffness in the liquefiable layer must be chosen carefully when evaluating the maximum bending moment.  相似文献   

6.
Shaking table tests were conducted by means of a large-scale laminar box with 4 m in length, 2 m in width and 2 m in height in order to investigate behavior of a soil-pile-superstructure system in liquefiable ground. A model two-storey structure, supported by a pile group, was set in a saturated sand deposit, and subjected to a sinusoidal base motion with increasing amplitude. Discussions are focused on the transient behavior until soil liquefaction occurs. Main interests are characteristics of springs used in a sway-rocking model and a multi-freedom lumped mass (MFLM) model that are frequently used in soil–pile interaction analysis. The spring constant in the sway-rocking model is represented by restoring force characteristics at the pile head, and that in the MFLM system is represented by an interaction spring connecting the pile to the free field. The transient state prior to soil liquefaction is shown to be important in the design of a pile because dynamic earth pressure shows peak response in this state. The reduction of the stiffness due to excess porewater generation and strain dependent nonlinear behavior is evaluated.  相似文献   

7.
Multi-layered soil profiles, where one or more layers consist of loose liquefiable material, most commonly require pile foundations extending beyond the liquefiable layer to competent material. Under seismic loads, if the loose layer liquefies, then large localized plastic demands may be generated in the piles. To study this behavior and provide detailed data to validate numerical models, a 1-g shaking table experiment was conducted considering a single reinforced concrete pile embedded in a three-layer soil system. The model pile of 25 cm diameter was tested under increasing amplitude earthquake excitation in a sloped laminar soil box. The test specimen was designed at the lower bound of typical design to promote yielding, per ATC-32 (Applied Technology Council, 1996) [1]. The pile penetrated 7D (D=pile diameter) into a multi-layered soil configuration composed of a stiff uppermost crust overlying a saturated loose sand layer and a lower dense layer of sand. Plastic demands in the pile were characterized using curvature profiles coupled with back-calculation of the plastic hinge length and post-test physical observations. Results from this test quantify the post-yield behavior of the pile and serve as a complement to previously conducted centrifuge tests.  相似文献   

8.
Lateral spread of frozen ground crust over liquefied soil has caused extensive bridge foundation damage in the past winter earthquakes. A shake table experiment was conducted to investigate the performance of a model pile in this scenario and revealed unique pile failure mechanisms. The modelling results provided valuable data for validating numerical models. This paper presents analyses and results of this experiment using two numerical modeling approaches: solid-fluid coupled finite element (FE) modeling and the beam-on-nonlinear-Winkler-foundation (BNWF) method. A FE model was constructed based on the experiment configuration and subjected to earthquake loading. Soil and pile response results were presented and compared with experimental results to validate this model. The BNWF method was used to predict the pile response and failure mechanism. A p-y curve was presented for modelling the frozen ground crust with the free-field displacement from the experiment as loading. Pile responses were presented and compared with those of the experiment and FE model. It was concluded that the coupled FE model was effective in predicting formation of three plastic hinges at ground surface, ground crust-liquefiable soil interface and within the medium dense sand layer, while the BNWF method was only able to predict the latter two.  相似文献   

9.
This paper is concerned with application of the h-adaptive finite element method to dynamic analysis of a pile in liquefiable soil considering large deformation. In finite element analysis of pile behavior in liquefiable soil during an earthquake, especially considering large deformation of liquefied ground, error due to discretization in the zone near the pile becomes very large. Our purpose was to refine the approximation of the finite element method. The updated Lagrangian formulation and a cyclic elasto-plastic model based on the kinematic hardening rule were adopted to deal with the nonlinearity of the soil. The mixed finite element and finite difference methods together with the u-p formulation and Biot's two-phase mixture theory were used. To improve the accuracy and increase the efficiency of finite element analysis, an h-adaptive scheme that included a posteriori error estimation and h-version mesh refinement was applied to the analysis. The calculated results of effective stress were smoothed locally by the extrapolation method and smoothed stress was used to calculate the L2 norm of the effective stress error in the last step of the calculation of each time increment. The mesh was refined by a fission procedure based on the indication of the error estimate As a numerical example, a soil–pile interaction system loaded cyclically was analyzed by our method.  相似文献   

10.
<正>This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground.The soil profile,contained in a large-scale laminar shear box,consisted of a horizontally saturated sand layer overlaid with a silty clay layer,with the simulated low-cap pile groups embedded.The container was excited in three E1 Centra earthquake events of different levels.Test results indicate that excessive pore pressure(EPP) during slight shaking only slightly accumulated,and the accumulation mainly occurred during strong shaking.The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased.The acceleration response of the sand was remarkably influenced by soil liquefaction.As soil liquefaction occurred,the peak sand displacement gradually lagged behind the input acceleration;meanwhile,the sand displacement exhibited an increasing effect on the bending moment of the pile,and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top.A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events.It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.  相似文献   

11.
A continuum model for the interaction analysis of a fully coupled soil–pile–structure system under seismic excitation is presented in this paper. Only horizontal shaking induced by harmonic SH waves is considered so that the soil–pile–structure system is under anti‐plane deformation. The soil mass, pile and superstructure were all considered as elastic with hysteretic damping, while geometrically both pile and structures were simplified as a beam model. Buildings of various heights in Hong Kong designed to resist wind load were analysed using the present model. It was discovered that the acceleration of the piled‐structures at ground level can, in general, be larger than that of a free‐field shaking of the soil site, depending on the excitation frequency. For typical piled‐structures in Hong Kong, the amplification factor of shaking at the ground level does not show simple trends with the number of storeys of the superstructure, the thickness and the stiffness of soil, and the stiffness of the superstructure if number of storeys is fixed. The effect of pile stiffness on the amplification factor of shaking is, however, insignificant. Thus, simply increasing the pile size or the superstructure stiffness does not necessarily improve the seismic resistance of the soil–pile–structure system; on the contrary, it may lead to excessive amplification of shaking for the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Raked piles are believed to behave better than vertical piles in a laterally flowing liquefied ground. This paper aims at numerically simulating the response of raked pile foundations in liquefying ground through nonlinear finite element analysis. For this purpose, the OpenSees computer package was used. A range of sources have been adopted in the definition of model components whose validity is assessed against case studies presented in literature. Experimental and analytical data confirmed that the backbone force density–displacement (p–y) curve simulating lateral pile response is of acceptable credibility for both vertical and raked piles. A parametric investigation on fixed-head piles subject to lateral spreading concluded that piles exhibiting positive inclination impart lower moment demands at the head while those inclined negatively perform better at liquefaction boundaries (relative to vertical piles). Further studies reveal substantial axial demand imposed upon negatively inclined members due to the transfer of gravity and ground-induced lateral forces axially down the pile. Extra care must be taken in the design of such members in soils susceptible to lateral spreading such that compressive failure (i.e. pile buckling) is avoided.  相似文献   

13.
Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with uP formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class ‘B’ analysis of a centrifuge experiment is performed to simulate the dynamic response of level ground sites. The results of the numerical analyses demonstrate the capability of the critical sate two-surface plasticity model in producing pore pressures that are consistent with observations of the behavior of liquefiable sand in the centrifuge test.  相似文献   

14.
In this study the efficacy of various ground motion intensity measures for the seismic response of pile foundations embedded in liquefiable and non-liquefiable soils is investigated. A soil-pile-structure model consisting of a two-layer soil deposit with a single pile and a single degree-of-freedom superstructure is used in a parametric study to determine the salient features of the seismic response of the soil-pile-structure system. A suite of ground motion records scaled to various levels of intensity are used to investigate the full range of pile behaviour, from elastic response to failure. Various intensity measures are used to inspect their efficiency in predicting the seismic demand on the pile foundation for a given level of ground motion intensity. It is found that velocity-based intensity measures are the most efficient in predicting the pile response, which is measured in terms of maximum curvature or pile-head displacement. In particular, velocity spectrum intensity (VSI), which represents the integral of the pseudo-velocity spectrum over a wide period range, is found to be the most efficient intensity measure in predicting the seismic demands on the pile foundation. VSI is also found to be a sufficient intensity measure with respect to earthquake magnitude, source-to-site distance, and epsilon, and has a good predictability, thus making it a prime candidate for use in seismic response analysis of pile foundations.  相似文献   

15.
桩-液化土相互作用p-y关系分析   总被引:2,自引:0,他引:2  
基于多工况的桩-液化土体动力相互作用振动台试验,研究地震荷载作用下液化土层中桩土间侧向相互作用力p与桩身和土体间侧向相对位移y之间的关系。将试验得到的实际p-y曲线与采用拟静力法和以API规范为基础的折减系数法计算出的p-y曲线进行对比,结果表明:(1)液化土层中试验得到的桩真实p-y响应及由拟静力法和折减系数法得到的结果都呈非线性变化,三者极限状态有接近一致的趋势,但变化过程差异明显;(2)采用拟静力法和折减系数法都会使液化土层桩基础侧向反力迅速增长,很快达到屈服极限,远远超过实际情况,会导致相当保守的结果;(3)液化进程中控制桩p-y响应的是土体位移而非惯性力,因而拟静力法和折减系数法的原理不适合桩-液化土体动力相互作用分析,不能用于液化土层中桩基础地震响应的计算。  相似文献   

16.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   

17.
The evaluation of seismic pile response is particularly useful for geotechnical engineers involved in the design of foundations in liquefying site. Shake table testing was performed to study the dynamic interactive behavior of soil–pile foundations in liquefying ground under different shaking frequency and amplitude. The soil profile consisted of a clayey layer over liquefiable sand over clay. The model was tested with a series of El Centro earthquake motions with peak accelerations ranging from 0.15g to 0.50g, and time step from 0.006 to 0.02 s. Representative data, including time histories of accelerations and excess pore pressure ratios that characterize the important aspects of soil–pile interaction in liquefying ground are presented. The shaking frequency has no significant effect on the magnitudes of excess pore pressure ratio, ground and pile accelerations and pile bending moments. Excess pore pressure ratio, ground acceleration and pile acceleration, and pile bending moment largely depend on the shaking amplitude.  相似文献   

18.
基于u-p有限元公式模拟饱和砂土中水和土颗粒完全耦合效应,建立液化侧向流场地群桩动力反应分析的三维数值模型。模型中,砂土采用多屈服面弹塑性本构模型模拟、黏土采用多屈服面运动塑性模型模拟,群桩在计算过程中保持线弹性状态;采用20节点的六面体单元和考虑孔压效应的20-8节点分别划分黏土层和饱和砂层;选用剪切梁边界处理计算域的人工边界,模拟地震过程中土层的剪切效应;应用瑞利阻尼考虑体系的阻尼效应。随后对比分析2×2群桩中各单桩的地震反应规律,结果表明,各单桩的弯矩、位移时程规律基本一致,峰值弯矩及峰值位移出现时刻滞后于输入加速度峰值时刻,上坡向桩的弯矩和位移峰值大于下坡向的桩的反应值。接着通过改变桩间距研究群桩效应,随着桩间距增加,群桩中各单桩的弯矩最大值均出现在土层分界处,且各单桩的弯矩、桩顶位移逐渐增大。最后给出液化侧向流场地群桩效应的基本原因,得出该类场地群桩抗震设计的基本认识。  相似文献   

19.
This paper presents the results of in situ measurements during dynamic pile testing at a construction site in Louvain-la-Neuve. Main objectives are the investigation of the pile response and the free field vibrations due to low strain dynamic loading on a single cast in situ pile with a 5.5 kg hammer impact on the pile head. Whereas low strain testing is usually performed to assess the integrity of the pile as a structural member, this study focuses on both pile and ground vibrations. The pile head response and ground motions are measured with accelerometers during different blows with the impact hammer. The dynamic characteristics of the soil are determined with a SASW test. Experimental results are compared with predictions obtained with a coupled finite element–boundary element model. The computed pile head and free field response show a good correspondence with the measured response. In addition, the static stiffness of the pile estimated by means of the mobility function shows a very good agreement with the value calculated by an analytical formulation.  相似文献   

20.
This paper presents the results of a large-scale shake table test at E-Defense facility on a pile group located adjacent to a gravity-type quay wall and were subjected to liquefaction-induced large ground displacements. Extensive liquefaction-induced large ground lateral spreading displaced the quay wall about 2.2 m and damaged the pile foundation. The pile foundation consisted of a six-pile group which supported a footing and a superstructure model. Large lateral soil displacements were measured by several sensors such as inclinometers and the results favorably agreed with the directly observed deformations. Soil lateral displacement decreased as the distance from the quay wall increased landward. The piles were densely instrumented and the measured bending strain records were able to explain the damage to the piles. Lateral pressures of the liquefied soil exerted on the piles were measured using earth pressure (EP) sensors. The application of two design guidelines (JRA [1] and JSWA [2]) for estimation of liquefaction-induced lateral pressure on piles is discussed and their advantages and shortcomings are addressed. Furthermore, two simplified methods (Shamoto et al. [3] and Valsamis et al. [4]) are employed to predict the extent of liquefaction-induced large ground displacements and they are compared to the measured deformations. Finally, their accuracy for predicting the liquefaction-induced lateral displacements is evaluated and practical recommendations are made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号