首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known that construction of large sewers based on consideration of flow with non-deposition without a bed deposit is not economical. Sewer design based on consideration of flow with non-deposition with a bed deposit reduces channel bed slope and construction cost in which the presence of a small depth of sediment deposition on the bed increases the sediment transport capacity of the flow. This paper suggests a new Pareto-optimal model developed by the multigene genetic programming (MGGP) technique to estimate particle Froude number (Frp) in large sewers with conditions of sediment deposition on the bed. To this end, four data sets including wide ranges of sediment size and concentration, deposit thickness, and pipe size are used. On the basis of different statistical performance indices, the efficiency of the proposed Pareto-optimal MGGP model is compared to those of the best MGGP model developed in the current study as well as the conventional regression models available in the literature. The results indicate the higher efficiency of the MGGP-based models for Frp estimation in the case of no additional deposition onto a bed with a sediment deposit. Inasmuch as the Pareto-optimal MGGP model utilizes a lower number of input parameters to yield comparatively higher performance than the conventional regression models, it can be used as a parsimonious model for self-cleansing design of large sewers in practice.  相似文献   

2.
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (σ′v0), soil type, shear wave velocity (Vs) and earthquake parameters such as peak horizontal acceleration (amax) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are σ′v0, soil type, Vs, amax and M. In the other model based on shear wave velocity alone uses Vs, amax and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model.  相似文献   

3.
In this paper, a two-dimensional integrated numerical model is developed to examine the influences of cross-anisotropic soil behaviour on the wave-induced residual liquefaction in the vicinity of a pipeline buried in a porous seabed. In the wave model, the RANS (Reynolds Averaged Navier–Stokes) equation is used to govern the wave motion. In the seabed model, the residual soil response in the vicinity of an embedded pipeline is considered with the 2-D elasto-plastic solution, where the phase-resolved shear stress is used as a source for the build-up of residual pore pressure. Classical Biot׳s consolidation equation is used for linking the solid-pore fluid interaction. The validation of the proposed integrated numerical model is conducted by the comparisons with the previous experimental data. Numerical examples show that the pore pressures can accumulate to a large value, thus resulting in a larger area of liquefaction potential in the given anisotropic soil compared to that with isotropic solution. The influences of anisotropic parameters on the wave-induced residual soil response in the vicinity of pipeline are significant. A high rate of pore pressure accumulation and dissipation is observed and the liquefaction potential develops faster as the anisotropic parameters increase. Finally, a simplified approximation based on a detailed parametric investigations is proposed for the evaluation of maximum liquefaction depth (zL) in engineering application.  相似文献   

4.
The objective of the study presented herein is to develop an understanding of the predictive trends of four different liquefaction severity index frameworks, with emphasis on the utility of the frameworks for assessing liquefaction vulnerability in Christchurch, New Zealand. Liquefaction induced land damage was widespread following the four major earthquakes in Christchurch (Mw 5.9–7.1) between 4 September 2010 and 23 December 2011. As part of the rebuilding effort, a major focus, to date, has been on assessing/developing approaches for evaluating vulnerability to liquefaction induced damage in future events. The four liquefaction severity index frameworks that are evaluated herein are: the one-dimensional volumetric reconsolidation settlement (SV1D), the Liquefaction Potential Index (LPI), and two new liquefaction severity indices developed following the major earthquakes in Christchurch, namely the Ishihara inspired LPI (LPIISH) and the Liquefaction Severity Number (LSN). To assess the predictive trends of the four severity index frameworks, the H1H2 boundary curves developed by Ishihara (1985) are used as a reference of comparison. In large part, the severity index frameworks serve the same purpose as the Ishihara boundary curves, but they alleviate some of the difficulties in implementing the Ishihara boundary curves for assessing the highly stratified soil profiles that underlie much of Christchurch. A parametric study was performed wherein relatively simple soil profiles are evaluated using all the procedures and contour plots of calculated SV1D, LPI, LPIISH, and LSN values were superimposed onto the Ishihara boundary curves. The results indicate that the LPIISH and LSN indices yield similar trends as the Ishihara boundary curves, whereas the SV1D and LPI indices do not. Furthermore, little field data is available to assess the severity indices for the scenarios where the trends in the LPIISH and LSN indices differ.  相似文献   

5.
Shear wave velocity (Vs) measurements from seismic piezocone penetration (SCPTU) soundings have been increasingly used for site characterization and liquefaction potential assessments. Several sites in Tangshan region, China liquefied during the Tangshan earthquake, Mw=7.8 in 1976 and these sites were characterized recently using the SCPTU device. Other sites in the same region where liquefaction was not observed are also included in the present field investigations. Three liquefaction assessment models-based on measured shear wave velocity, shear modulus and tip resistance parameters of SCPTU are evaluated in this paper for their accurate predictions of liquefaction or non-liquefaction at the test sites. Analyses showed that the shear wave velocity—liquefaction resistance model with normalized overburden vertical stress have yielded a success rate of 78% in predicting liquefied site cases and another similar approach with mean stress based normalization has a success rate of 67%. The correlation of qc/Go-CRR7.5 based on geological age has correctly assessed the liquefaction potential at most sites considered in this research. Overall, all three models based on shear wave velocity, shear modulus and cone tip resistance are proven valuable in the assessments of liquefaction at the present test sites in the Tangshan region.  相似文献   

6.
In this work we review earthquakes that happened in Southern Siberia and Mongolia within the coordinates of 42°–62° N and 80°–124° E and first propose relationships between earthquake parameters (a surface-wave earthquake magnitude M s and an epicentral intensity(I 0) based on the MSK-64 scale) and maximal distances from an earthquake epicenter (R e max), hypocenter (R h max), and a seismogenic fault (R f max) to the localities of secondary coseismic effects. Special attention was paid to the study of these relationships for the effects of soil liquefaction. Hence, it was shown that secondary deformations from an earthquake were distributed in space away from an earthquake epicenter, than from an associating seismogenic fault. The effects of soil liquefaction are manifested by several times closer to a seismogenic fault, than all other effects, regardless of the type of tectonic movement in a seismic focus. Within the 40 km zone from an earthquake epicenter 44% of the known manifestations of liquefaction process occurred; within the 40 km zone from a seismogenic fault—90%. We propose the next relationship for effects of soil liquefaction: M s = 0.007 × R e max + 5.168 that increases the limits of the maximum epicentral distance at an earthquake magnitude of 5.2 ≤ M s ≤ 8.1 as compared to the corresponding relationships for different regions of the world.  相似文献   

7.
基于现场开展土体液化问题研究势必成为今后土动力学中的一个重要发展方向。目前人工激振下的现场液化试验方法还不够成熟,尚需进一步探索和发展。本文从试验设备组成、场地地震动激励、试坑布置、饱和砂土模型制备、数据测量与采集等5个方面论述该方法中的主要技术问题。研究表明:动力加载系统激励产生的地震动在0~7m/s2;系统工作频率13~15Hz,饱和砂土模型与基础边缘的距离在0.5~2.5m范围内,更适合进行液化试验;应用水沉法现场制备饱和砂土模型,要重点注意试坑防水和尺寸定位的问题;数据测量与采集中要充分考虑对现场液化问题认识不够这一因素的影响,需对数据测量与采集提出附加要求;试验实例初步表明,该方法可行,适合开展液化问题研究。  相似文献   

8.
The liquefaction potential of soils is traditionally assessed through geotechnical approaches based on the calculation of the cyclical stress ratio (CSR) induced by the expected earthquake and the ‘resistance’ provided by the soil, which is quantified through standard penetration (SPT), cone penetration (CPT), or similar tests. In more recent years, attempts to assess the liquefaction potential have also been made through measurement of shear wave velocity (VS) in boreholes or from the surface. The latter approach has the advantage of being non-invasive and low cost and of surveying lines rather than single points. However, the resolution of seismic surface techniques is lower than that of borehole techniques and it is still debated whether it is sufficient to assess the liquefaction potential.In this paper we focus our attention on surface seismic techniques (specifically the popular passive and active seismic techniques based on the correlation of surface waves such as ReMiTM, MASW, ESAC, SSAP, etc.) and explore their performance in assessing the liquefaction susceptibility of soils. The experimental dataset is provided by the two main seismic events of ML=5.9 and 5.8 (MW=6.1, MW=6.0) that struck the Emilia-Romagna region (Northern Italy) on May 20 and 29, 2012, after which extensive liquefaction phenomena were documented in an area of 1200 km2.The CPT and drillings available in the area allow us to classify the soils into four classes: A) shallow liquefied sandy soils, B) shallow non-liquefied sandy soils, C) deep non-liquefied sandy soils, and D) clayey–silty soils, and to determine that on average class A soils presented a higher sand content at the depth of 5–8 m compared to class B soils, where sand was dominant in the upper 5 m. Surface wave active–passive surveys were performed at 84 sites, and it was found that they were capable of discriminating among only three soil classes, since class A and B soils showed exactly the same VS distribution, and it is possible to show both experimentally and theoretically that they appear not to have sufficient resolution to address the seismic liquefaction issue.As a last step, we applied the state-of-the art CSR–VS method to assess the liquefaction potential of sandy deposits and we found that it failed in the studied area. This might be due to the insufficient resolution of the surface wave methods in assessing the Vs of thin layers and to the fact that Vs scales with the square root of the shear modulus, which implies an intrinsic lower sensitivity of Vs to the shear resistance of the soil compared to parameters traditionally measured with the penetration tests. However, it also emerged that the pure observation of the surface wave dispersion curves at their simplest level (i.e. in the frequency domain, with no inversion) is still potentially informative and can be used to identify the sites where more detailed surveys to assess the liquefaction potential are recommended.  相似文献   

9.
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V s)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.  相似文献   

10.
Seismic liquefaction potential assessment by using Relevance Vector Machine   总被引:6,自引:2,他引:4  
Determining the liquefaction potential of soil is important in earthquake engineering. This study proposes the use of the Relevance Vector Machine (RVM) to determine the liquefaction potential of soil by using actual cone penetration test (CPT) data. RVM is based on a Bayesian formulation of a linear model with an appropriate prior that results in a sparse representation. The results are compared with a widely used artifi cial neural network (ANN) model. Overall, the RVM shows good performance and is proven to be more accurate than the ANN model. It also provides probabilistic output. The model provides a viable tool for earthquake engineers to assess seismic conditions for sites that are susceptible to liquefaction.  相似文献   

11.
Evaporation, as a major component of the hydrologic cycle, plays a key role in water resources development and management in arid and semi-arid climatic regions. Although there are empirical formulas available, their performances are not all satisfactory due to the complicated nature of the evaporation process and the data availability. This paper explores evaporation estimation methods based on artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. It has been found that ANN and ANFIS techniques have much better performances than the empirical formulas (for the test data set, ANN R2 = 0.97, ANFIS R2 = 0.92 and Marciano R2 = 0.54). Between ANN and ANFIS, ANN model is slightly better albeit the difference is small. Although ANN and ANFIS techniques seem to be powerful, their data input selection process is quite complicated. In this research, the Gamma test (GT) has been used to tackle the problem of the best input data combination and how many data points should be used in the model calibration. More studies are needed to gain wider experience about this data selection tool and how it could be used in assessing the validation data.  相似文献   

12.
Serious damage due to soil liquefaction occurred in a wide area of the Tohoku and the Kanto regions in Japan during 2011 off the Pacific coast of Tohoku Earthquake (MW 9.0). The farthest liquefied site from the epicenter of the 2011 main shock is Ikenouchi, Minamiboso City, whose epicentral distance is approximately 440 km. Evaluation of strong ground motions at Ikenouchi is very important to understand why liquefaction was observed in such a far site. For this purpose, in-situ geotechnical investigations including aftershock observation were carried out at Ikenouchi. Then, the ground motions at Ikenouchi during the 2011 main shock was estimated based on the site-effect substitution method considering the microtremor H/V spectral ratios and the aftershock observation results. Finally, 3-D effective stress analyses were carried out using a FEM code ‘FLIP’ to understand how site-specific characteristics of strong ground motions affected the behavior of the ground including liquefaction. A striking feature of the estimated waveforms at the target site is that the waveforms include a much larger number of cycles compared to the records at permanent observation stations around the target site. Such a site-specific feature of strong ground motions was one of the main causes of the occurrence of liquefaction 440 km away from the epicenter. The result suggests the importance of taking into account not only soil properties but also site-specific characteristics of strong ground motions for a rational assessment of liquefaction for future large earthquakes.  相似文献   

13.
In the present study, an artificial neural network (ANN) model was developed to establish a correlation between soils initial parameters and the strain energy required to trigger liquefaction in sands and silty sands. A relatively large set of data including 284 previously published cyclic triaxial, torsional shear and simple shear test results were employed to develop the model. A subsequent parametric study was carried out and the trends of the results have been confirmed via some previous laboratory studies. In addition, the data recorded during some real earthquakes at Wildlife, Lotung and Port Island Kobe sites plus some available centrifuge tests data have been utilized in order to validate the proposed ANN-based liquefaction energy model. The results clearly demonstrate the capability of the proposed model and the strain energy concept to assess liquefaction resistance (capacity energy) of soils.  相似文献   

14.
ABSTRACT

A forecasting model is developed using a hybrid approach of artificial neural network (ANN) and multiple regression analysis (MRA) to predict the total typhoon rainfall and groundwater-level change in the Zhuoshui River basin. We used information from the raingauge stations in eastern Taiwan and open source typhoon data to build the ANN model for forecasting the total rainfall and the groundwater level during a typhoon event; then we revised the predictive values using MRA. As a result, the average accuracy improved up to 80% when the hybrid model of ANN and MRA was applied, even where insufficient data were available for model training. The outcome of this research can be applied to forecasts of total rainfall and groundwater-level change before a typhoon event reaches the Zhuoshui River basin once the typhoon has made landfall on the east coast of Taiwan.  相似文献   

15.
The liquefaction database describing the response of the Christchurch area in the 2010–2011 Canterbury Earthquake Sequence (CES) provides a unique basis for evaluating the regional application of various liquefaction analysis procedures, from liquefaction triggering analyses through to liquefaction vulnerability parameters. This database was used to compare the Robertson and Wride [17], Moss et al. [15] and Idriss and Boulanger [7] liquefaction triggering procedures as well as evaluate the impact of the 2014 versus 2008 Cone Penetration Test (CPT)-based liquefaction triggering procedure by Idriss and Boulanger on four liquefaction vulnerability parameters (SV1D, LPI, LPIISH and LSN), the correlation of those parameters with observed liquefaction-induced damage patterns in the CES, and the mapping of expected damage levels for 25, 100 and 500 year return period ground motions in Christchurch. The effects on SV1D, LPI, LPIISH and LSN were small relative to other sources of variability for the majority of the affected areas, particularly where liquefaction was clearly severe or clearly not. Nonetheless, considering the separation of the land damage populations as well as consistency between the events, the the IB-2008 liquefaction triggering procedures appears to give a slightly better fit to the mapped liquefaction-induced land damage for the regional prediction of liquefaction vulnerability for the Christchurch soils. The Boulanger and Idriss [1] triggering procedure produces improved agreement between the liquefaction vulnerability parameters and observations of damage for: areas south of the Central Business District (CBD) where there tends to be higher soil Fines Content (FC), and localized areas that experienced liquefaction during the smaller Magnitude (M) earthquake events. Implementation of the 2014 liquefaction triggering procedure for mapping of expected liquefaction-induced damage at 25, 100 and 500 year return period ground motions is shown to require use of representative Peak Ground Acceleration (PGA)-M values consistent with the de-aggregation of the seismic hazard. Use of equivalent magnitude-scaled PGA-M7.5 pairs, where the equivalency relates to previously published MSF relationships, with the 2014 liquefaction triggering procedure is shown to be unconservative for certain situations.  相似文献   

16.
Abstract

Time-domain reflectometry (TDR) is an electromagnetic technique for measurements of water and solute transport in soils. The relationship between the TDR-measured dielectric constant (Ka ) and bulk soil electrical conductivity ([sgrave]a) to water content (θW) and solute concentration is difficult to describe physically due to the complex dielectric response of wet soil. This has led to the development of mostly empirical calibration models. In the present study, artificial neural networks (ANNs) are utilized for calculations of θw and soil solution electrical conductivity ([sgrave]w) from TDR-measured Ka and [sgrave]a in sand. The ANN model performance is compared to other existing models. The results show that the ANN performs consistently better than all other models, suggesting the suitability of ANNs for accurate TDR calibrations.  相似文献   

17.
A series of undrained cyclic direct simple shear tests, which used a soil container with a membrane reinforced with stack rings to maintain the K0 condition and integrated bender elements for shear wave velocity measurement, were performed to study the liquefaction characteristics of gap-graded gravelly soils with no fines content. The intergrain state concept was employed to categorize gap-graded sand–gravel mixtures as sand-like, gravel-like, and in-transition soils, which show different liquefaction characteristics. The testing results reveal that a linear relationship exists between the shear wave velocity and the minor fraction content for sand–gravel mixtures at a given skeleton void ratio of the major fraction particles. For gap-graded gravelly sand, the gravel content has a small effect on the liquefaction resistance, and the cyclic resistance ratio (CRR) of gap-graded gravelly sands can be evaluated using current techniques for sands with gravel content corrections. In addition, the results indicate that the current shear wave velocity (Vs) based correlation underestimates the liquefaction resistance for Vs values less than 160 m/s, and different correlations should be proposed for sand-like and gravel-like gravelly soils. Preliminary modifications to the correlations used in current evaluations of liquefaction resistance have thus been proposed.  相似文献   

18.
This paper presents the constitutive relations and the simulative potential of a new plasticity model developed mainly for the seismic liquefaction analysis of geostructures. The model incorporates the framework of critical state soil mechanics, while it relies on bounding surface plasticity with a vanished elastic region to simulate the non-linear soil response. Key constitutive ingredients of the new model are: (a) the inter-dependence of the critical state, the bounding and the dilatancy (open cone) surfaces on the basis of the state parameter ψ, (b) a (Ramberg–Osgood type) non-linear hysteretic formulation for the “elastic” strain rate, (c) a discontinuously relocatable stress projection center related to the “last” load reversal point, which is used for mapping the current stress point on model surfaces and as a reference point for introducing non-linearity in the “elastic” strain rate and finally (d) an empirical index of the directional effect of sand fabric evolution during shearing, which scales the plastic modulus. In addition, the paper outlines the calibration procedure for the model constants, and exhibits its accuracy on the basis of a large number of laboratory element tests on Nevada sand. More importantly, the paper explores the potential of the new model by presenting simulations of the VELACS centrifuge tests of Models No 1 and 12, which refer to the free-field liquefaction response of Nevada sand and the seismic response of a rigid foundation on the same sand, respectively. These simulations show that the new model can be used successfully for the analysis of widely different boundary value problems involving earthquake soil liquefaction, with the same set of model constants calibrated on the basis of laboratory element tests.  相似文献   

19.
The present work deals with 1D and 2D ground response analysis and liquefaction analysis of alluvial soil deposits from Kanpur region along Indo-Gangetic plains. Standard penetration tests and seismic down hole tests have been conducted at four locations namely IITK, Nankari village, Mandhana and Bithoor at 1.5 m interval up to a depth of 30 m below the ground surface to find the variation of penetration blows and the shear wave velocity along the depth. From the selected sites undisturbed as well as representative soil samples have been collected for detailed soil classification. The soil profiles from four sites have been considered for 1D and 2D ground response analysis by applying the free field motions of three Himalayan earthquakes namely Chamba earthquake (Mw—5.1), Chamoli earthquake (Mw—6.4) and Uttarkashi earthquake (Mw—6.5). An average value of Peak Ground Acceleration (PGA) obtained from 1D and 2D analysis is considered for liquefaction analysis and post-liquefaction settlement. The excess pore water pressure ratio is greater than 0.8 at a depth of 24 m from ground surface for IITK, Nankari village, Bithoor sites. More than 50% of post liquefaction settlement is contributed by layers from 21–30 m for all sites. In general, the soil deposits in Kanpur region have silty sand and sand deposits and are prone to liquefaction hazards due to drastic decrease of cyclic resistance ratio (CRR) at four chosen sites in Kanpur.  相似文献   

20.
The liquefaction behavior and cyclic resistance ratio (CRR) of reconstituted samples of non-plastic silt and sandy silts with 50% and 75% silt content are examined using constant-volume cyclic and monotonic ring shear tests along with bender element shear wave velocity (Vs) measurements. Liquefaction occurred at excess pore water pressure ratios (ru) between 0.6 and 0.7 associated with cumulative cyclic shear strains (γ) of 4% to 7%, after which cyclic liquefaction ensued with very large shear strains and excess pore water pressure ratio (ru>0.8). The cyclic ring shear tests demonstrate that cyclic resistance ratio of silt and sandy silts decreases with increasing void ratio, or with decreasing silt content at a certain void ratio. The results also show good agreement with those from cyclic direct simple shear tests on silts and sandy silts. A unique correlation is developed for estimating CRR of silts and sandy silts (with more than 50% silt content) from stress-normalized shear wave velocity measurements (Vs1) with negligible effect of silt content. The results indicate that the existing CRR–Vs1 correlations would underestimate the liquefaction resistance of silts and sandy silt soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号