首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

2.
 Potentially toxic metals tracked by the Arctic Monitoring and Assessment Program were analysed in sediments from the Svalbard western coastal zone. These include As and Hg found as contaminants in other Arctic seas as well as other elements (e.g. Pb, V, Cu, Zn, Cr, Ni). Svalbard shelf sediments contain average values of 12 ppm As, 12 ppm Pb, 56 ppb Hg and 114 ppm V. These values increase in Isfjorden sediments to 15 ppm As, 28 ppm Pb, 99 ppb Hg and 210 ppm V. Cluster analysis yields a major cluster that is likely related to clay minerals (Al, K, Ti, Mg) and sorption onto them of transition (Cu, V, Cr, Sc) and other elements (Pb, Rb). A second significant cluster includes Ca, Sr and plagioclase. The Svalbard western shelf is a natural geochemical environment. The possible incipient contamination of fjord sediments by As, Pb, Hg and V should be evaluated for possible links to anthropogenic sources. If links are found, remediation must be used to stop the input and preserve a pristine Svalbard fjord environment. Received: 21 December 1998 · Accepted: 15 March 1999  相似文献   

3.
 The major (Al, Ti, Ca, Mg, Fe, Mn, Si) and trace element (Cd, Cr, Cu, Hg, Li, Ni, Pb, V, Zn) concentrations in surficial (<20 cm) sediments from fjords and open coastal waters around Greenland have been determined. Regionally, high concentrations of Fe, Ti, Mg, Cr, Cu, Ni, and V occur in some west and east coast sediments, but they appear to be natural in origin, as there is no indication of anthropogenic influence. Chemical partition indicates that most of the heavy metals are structurally bound in various silicate, oxide, and sulfide minerals. These host minerals occur more or less equally in the coarse and fine sediment fractions (material >63 μm and <63 μm) and have accumulated at the same rate as other detrital clastic material. Provenance and glaciomarine deposition are the main factors controlling the abundance and distribution of the major and trace elements. The chemical composition reflects the mineralogical differences in the provenance of glacial marine material deposited by water and ice adjacent to Greenland. The main source of the sediments enriched in Ti, Fe, Mg, Cr, Cu, Ni, and V appears to be material derived from the volcanic rocks of the Mesozoic-Tertiary Provinces of Greenland by glacial erosion. Received: 26 June 1995 · Accepted: 11 August 1995  相似文献   

4.
 Distribution of the trace elements Cr, Cu, Ni, Pb and Zn in surficial sediments of the river/sea environment in Danang – Hoian area (Vietnam) was investigated to examine the degree of metal pollution caused by anthropogenic activities. Point sources from domestic and industrial wastes are identified as dominant contributors of trace element accumulation. Surficial sediments of Hoian River show extremely high total concentrations of Cu (Average Concentration 295 μg/g), Ni (AC 112 μg/g), Pb (AC 396 μg/g) and Zn (AC 429 μg/g) that exceed assigned safety levels ER-M. Similarly, the sediments of Han River show high Pb (AC 188 μg/g) and Zn (AC 282 μg/g) contents. In marine sediments of Thanhbinh beach Pb is also enriched (138 μg/g) above guideline levels. In contrast the sediments of the Cude River are dominated by trace element concentrations close to background values. Received: 17 December 1998 · Accepted: 6 May 1999  相似文献   

5.
Komatiites are mantle-derived ultramafic volcanic rocks. Komatiites have been discovered in several States of India, notably in Karnataka. Studies on the distribution of trace-elements in the komatiites of India are very few. This paper proposes a simple, accurate, precise, rapid, and non-destructive wavelength-dispersive x-ray fluorescence (WDXRF) spectrometric technique for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in komatiites, and discusses the accuracy, precision, limits of detection, x-ray spectral-line interferences, inter-element effects, speed, advantages, and limitations of the technique. The accuracy of the technique is excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Zr, Nb, Ba, Pb, and Th and very good (within 4%) for Y. The precision is also excellent (within 3%) for Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th. The limits of detection are: 1 ppm for Sc and V; 2 ppm for Cr, Co, and Ni; 3 ppm for Cu, Zn, Rb, and Sr; 4 ppm for Y and Zr; 6 ppm for Nb; 10 ppm for Ba; 13 ppm for Pb; and 14 ppm for Th. The time taken for determining Sc, V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, Pb, and Th in a batch of 24 samples of komatiites, for a replication of four analyses per sample, by one operator, using a manual WDXRF spectrometer, is only 60 hours.  相似文献   

6.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

7.
This paper reports a geochemical study of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan province (P. R. China). Trace metals Ba, Bi, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Mo, Cd, Sn, Sb, Pb, Tl, Th, U, Zr, Hf, Nb and Ta were analyzed using ICP-MS, and Pb isotopes of the bulk sediments were measured by MC-ICP-MS. The results show that trace metals Cd, Bi, Sn, Sc, Cr, Mn, Co, Ni, Cu, Zn, Sb, Pb and Tl are enriched in the sediments. Among these metals, Cd, Bi and Sn are extremely highly enriched (EF values >40), metals Zn, Sn, Sb and Pb significantly highly (5 < EF < 20), and metals Sc, Cr, Mn, Co, Ni, Cu and Tl moderately highly (2 < EF < 5) enriched in the river sediments. All these metals, however, are moderately enriched in the lake sediments. Geochemical results of trace metals Th, Sc, Co, Cr, Zr, Hf and La, and Pb isotopes suggest that metals in the river sediments are of multi-sources, including both natural and anthropogenic sources. Metals of the natural sources might be contributed mostly from weathering of the Indosinian granites (GR) and Palaeozoic sandstones (PL), and metals of anthropogenic sources were contributed from Pb–Zn ore deposits distributed in upper river areas. Metals in the lake sediments consist of the anthropogenic proportions, which were contributed from automobile exhausts and coal dusts. Thus, heavy-metal contamination for the river sediments is attributed to the exploitation and utilization (e.g., mining, smelting, and refining) of Pb–Zn ore mineral resources in the upper river areas, and this for the lake sediments was caused by automobile exhausts and coal combustion. Metals Bi, Cd, Pb, Sn and Sb have anthropogenic proportion of higher than 90%, with natural contribution less than 10%. Metals Mn and Zn consist of anthropogenic proportion of 60–85%, with natural proportion higher than 15%. Metals Sc, Cr, Co, Cu, Tl, Th, U and Ta have anthropogenic proportion of 30–70%, with natural contribution higher than 30%. Metals Ba, V and Mo might be contributed mostly from natural process.  相似文献   

8.
Major and trace element composition of the Ordovician Obolus phosphorites and associated Dictyonema shales were determined by ICP-MS and chemical and microchemical elemental analyses. Relative to the phosphorites, the Dictyonema shales are substantially enriched in a variety of trace elements, except for As, Be, Co, Y, REE, Sr, and Pb. The Obolus phosphorites show enrichment of As, Bi, Hg, Mo, La, Y, Pb, and Sr and depletion of Ag, Ba, Be, Cd, Cr, Cu, Hf, Ni, Sc, Sn, U, V, Zn, and Zr relative to the world average phosphorite composition. The average trace element composition of the Dictyonema shales is close to the mean shale composition, except for higher contents of Mo, Hg, Pb, Se, Ta, Te, Th, V, and U and lower contents of Ba, Bi, Cd, Co, Re, Sr, and Zn. The results suggest that the change from phosphate sedimentation in aerated environments to anoxic carbonaceous sedimentation was accompanied by changes in the composition and concentration of trace elements in the sediment. Both facies show similar trends of trace element distribution indicative of the stability of the composition of seawater and terrigenous sediment input.  相似文献   

9.
 Bottom-water data and trace metal concentration of Cu, Cr, Ni, Pb, Co, Zn, and organic matter in surficial sediment samples from 13 sampling stations of Lake Chapala in Mexico were studied. The lake is turbid with a great amount of flocculated sediments as a result of wind mixing, sediment re-suspension, and Lerma River discharges. Al distribution pattern in sediments was used as an indicator of the Lerma River discharges into Lake Chapala. The highest values of Cu (33.27 ppm), Cr (81.94 ppm), Pb (99.8 ppm), and Zn (149.7 ppm) were detected in sediments near the lake outlet. The bioavailable metal fraction is low for all metals except Pb, which shows 65–93% of the total metal concentration in bioavailable form. The minimum energy zone in the lake was related to organic matter concentration and was located in the SE part of the lake. An analysis of the studied parameters shows two zones: eastern zone (fluvio-deltaic) and central-western zone (lacustrine). Received: 9 September 1998 · Accepted: 16 November 1998  相似文献   

10.
Coastal uses and other human activities have inevitably impinged on the Gulf environment; therefore, these regions require continuous monitoring. The investigated area covered the maximum fragments of Dubai coastal region in the Arabian Gulf. The determination of major oxides and trace metal concentrations in Dubai sediments revealed three heavily and moderately contaminated regions. One is in the far northeastern part at Al-Hamriya Sts 1–3 and contaminated by Fe, Cu, Pb, and Zn; the second is in the mid-northeastern part at Dry Docks and contaminated by Cu, Ni, Pb, and Zn; and finally, the third is in the near southwestern part at Dubal and contaminated by Fe, Mg, Cr, Ni, and Zn. Al-Hamriya St 3 represented the highest values of Cu, Pb, and Zn, whereas Dubal exhibited the maximum values of Fe, Mg, Ba, Cr, Mn, Ni, and V. The anthropogenic discharge and natural deposits are the main sources of contamination. In general, all trace and major elements showed the minimal levels at Jebel Ali Sanctuary (Sts 11, 12, 13) except for Sr and Ca, which showed their maximum values. The highest concentrations of Ca and Sr are mainly attributed to carbonate gravel sands and sands, which cover most stations. Each of V and Ni showed negative correlation with TPH, which may be indicated that the source of oil contamination in the region is not related to crude oil but mostly attributable to anthropogenic sources. The significant positive correlation, which was found between trace metals and TOC indicates that organic matter plays an important role in the accumulation of trace metals in case of Cu, Zn, and Pb.  相似文献   

11.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

12.
 The concentrations of various metals (Cr, Cu, Co, Fe, Mn, Ni, Pb, Zn, and Cd) were determined in recently deposited surface sediments of the Gomati River in the Lucknow urban area. Markedly elevated concentrations (milligrams per kilogram) of some of the metals, Cd (0.26–3.62), Cu (33–147), Ni (45–86), Pb (25–77), and Zn (90–389) were observed. Profiles of these metals across the Lucknow urban stretch show a progressive downstream increase due to additions from 4 major drainage networks discharging the urban effluents into the river. The degree of metal contamination is compared with the local background and global standards. The geoaccumulation index order for the river sediments is Cd>Zn>Cu>Cr>Pb. Significant correlations were observed between Cr and Zn, Cr and Cu, Cu and Zn and total sediment carbon with Cr and Zn. This study reveals that the urbanization process is associated with higher concentrations of heavy metals such as Cd, Cu, Cr, Pb, and Zn in the Gomati River sediments. To keep the river clean for the future, it is strongly recommended that urban effluents should not be overlooked before their discharge into the river. Received: 16 February 1996 · Accepted: 29 February 1996  相似文献   

13.
 Sediments from stormdrain catchments and outlets in Wellington city and sediment traps from Wellington Harbour were sampled for trace metal content. Samples were analysed for total metal content using XRF and ICP-MS. High values of Pb and Zn were found in stormdrain catchments and outlets, decreasing to elevated background rock levels in the harbour. Maximum values were recorded in an inner city stormdrain catchment, with levels of Pb (4605 ppm), Cu (2981 ppm) and Zn (3572 ppm) all higher than the biological probable effects levels (PEL). Concentrations of As, Cr, Cu, Pb, Ni and Zn concentrations in all harbour sediment trap samples were below the PEL. The mean values for each harbour sediment trap sample can be used as an accurate historical baseline in future studies. Stormdrain samples with high trace metal levels were close to industrial and construction sites. The proximity of these outlets to recreational areas should be of concern to local authorities. Received: 28 August 1997 · Accepted: 15 December 1997  相似文献   

14.
Four overbank profiles from the three terraces of different age were sampled in 10 to 20 cm intervals for the bulk content of major and minor (Ca, Mg, Fe, Ti, Al, Na, K and P) and trace (Mo, Cu, Pb, Zn, Ni, Co, Mn, As, U, Th, Sr, Cd, Sb, V, La, Cr, Ba, W, Zr, Ce, Sn, Y, Nb, Ta, Sc, Li, Rb and Hf) elements in the minus 0.125 mm fraction. Univariate statistics together with analysis of variance discriminated between the lower-lying carbonate (CA) population dominantly composed of carbonates and the overlying silicate (SI) population being dominantly of silicate mineralogy. This stratified pattern resulted from the intensive erosive action of melting glaciers exerted on limestones and dolomites in the alpine region, followed by local inputs mainly of silicate composition. Elements exhibiting the greatest between-population variability are Ca and Mg being enriched in the CA population and Fe, Mn, P, Sr, Al, Na, K, Li, Rb, Y, Zr, Ni, Cr and Ti being enriched in the SI population. Anomalously high Hg, Pb and Ba concentrations (maximum values: 6,500±2,860 ppb, 225±13 ppm and 1,519±91 ppm, respectively) in the lowermost part of the profile S7, which is nearest to the Croatian-Slovenian border, derive from the mineralized Slovenian catchment area. This profile also contains trimodal frequency distributions of Fe, Mn and P whose highest concentrations coincide with increased values of Zn and Cu which are bimodally distributed. Geochemical patterns of majority of elements in all four profiles consistently reflect the average compositions of the upstream drainage basins.  相似文献   

15.
The Ambassador U and multi-element deposit occurs on the SW margin of the Gunbarrel Basin, Western Australia. Low-grade, flat-lying U mineralization averaging about 2 m thick at 0.03% U occurs in lignites at the redox front at the base of the weathering profile within a laterally extensive palaeochannel network. Uranium is principally associated with organic matter within the lignitic matrix, although rare discrete U minerals, such as coffinite and uraninite, are also present. The lignite is also enriched in a suite of other elements, principally base metals and sulphur, with concentrations of 0.3 ≥ 1% Cu, Pb, Ni, Co, Zn and total rare earth elements (REE) in some samples. Other element enrichments include: Cr, Cs, Sc, Se, Ta, Ti, Th, V and Zr as detrital heavy minerals of Zr, Ti and REE (oxides and silicates) or authigenic minerals of Cu, Bi, Pb, Zn, Ni, Se, Hg, Ti, Cr, Tl, V, U and REE (sulphides, vanadates, selenides, oxides, chlorides and native metals) and diffuse lignite impregnations. The Ambassador deposit probably formed from the convergence of redox-active weathering processes to unique source/host rocks, constrained within the palaeochannel. A proximal source of U and trace elements of lamproite/carbonatite origin is probable, as constrained by U–Pb isotope and U–Th disequilibria studies. Uranium and other metals were precipitated syngenetically with organic matter as it was deposited during a humid phase in the Late Eocene. Remobilization subsequently concentrated the metals in the upper 2 m of the lignite. This may have occurred during one or more periods of weathering and associated diagenesis, with the latest episode in the last 300,000 years.  相似文献   

16.
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O3T suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C–S–Fe relationship owing to authigenic precipitation of Fe–Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.  相似文献   

17.
Vertical profiles of trace metal (Cd, Pb, Zn, Cu, Ni) concentrations, organic matter content, carbonate content and granulometric composition were determined in two sediment cores from the submarine pit Dragon Ear (Middle Adriatic). Concentrations of the analyzed metals (Cd: 0.06–0.12 mg kg−1, Pb: 28.5–67.3 mg kg−1, Zn: 17.0-65.4 mg kg−1, Cu: 21.1–51.9 mg kg−1, Ni: 27.8–40.2 mg kg−1) were in usual range for Adriatic carbonate marine sediments. Nevertheless, concentrations of Cu, Zn, and especially Pb in the upper layer of sediments (top 12 cm) were higher than in bottom layer, while Cd and Ni concentration profiles were uniform. Regression analysis and principal component analysis were used to interpret distribution of trace metals, organic matter and carbonate content in sediment cores. Results of both analysis showed that concentrations of all trace metals in the core below the entrance to the pit were significantly positively correlated with organic matter and negatively correlated with carbonate, while in the core more distant from the entrance only Pb showed significant positive correlation with organic matter. Obtained results indicated that, except for lead which was enriched in surface sediment, in the time of sampling (before the building of the nautical marina) investigated area belonged to unpolluted areas.  相似文献   

18.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

19.
The fate of trace elements in a large coal-fired power plant   总被引:5,自引:1,他引:5  
 A quick approach is proposed to evaluate the environmental fate of trace elements in coal-fired power plants. It is based on the analysis of feed coal and solid combustion by-products, together with the leachates of the latter. The application of this method in a 1050 MW power plant from NE Spain shows that: (1) Ba, Ce, Co, Cs, Cu, Dy, Ga, Ge, La, Lu, Mn, Ni, Rb, Sr, Tb, Th, Y, Yb, Zn and Zr were retained in the solid wastes; (2) As, B, Be, Cd, Cr, Li, Mo, Pb, Sb, Sn, Ta, Tl, U, V and W were only partially retained in the solid wastes; and (3) Hg and Se were primarily emitted to the atmosphere. Received: 2 February 2000 · Accepted: 18 May 2000  相似文献   

20.
New major and trace element analyses are presented for 7 kaersutites from basic alkaline rocks. K/Rb ratios lie between 1209 and 4276. Rb is low, averaging 6 ppm. Sr ranges from 532 to 1060 ppm and Ba from 181 to 701 ppm. Zr averages 109 ppm, Nb 44 ppm and V 390 ppm. There is a moderate enrichment in light REE. Zn correlates with FeO + Fe2O3 but the concentrations of Ni, Co, Cr, Cu and Pb are variable. Large variations in trace element concentration in kaersutites reflect only small variations in the melt when the distribution coefficient for a given element strongly favours the amphibole.Kaersutite is significant in the petrogenesis of alkaline rocks as a possible accessory phase in the upper mantle source regions, and as an important phase in the fractionation of basic alkaline liquids over a wide range of pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号