首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

The caesium-137 technique affords both an alternative to conventional measurement methods and an effective quantitative estimate of soil redistribution at the basin scale. Among the available calibration relationships which link the degree of increase or depletion of the 137Cs activity relative to the baseline 137Cs input and sediment yield, the mass balance approach has received increased application for its physical basis. First, the applicability of the refined simplified point-based mass balance (RSPMB) model of Zhang et al. (1999) at the scale of the morphological unit is proposed herein. The 137Cs spatial distribution measured in a small Sicilian basin and the spatial distribution of the sediment yield calculated by a sediment delivery distributed approach are used to estimate values of the two key parameters of the RSPMB model, φ1 and φ2, the fraction of 137Cs fallout incorporated into soil and a particle size correction factor, respectively. Finally, the best procedure for experimental testing of a distributed sediment yield model by using caesium-137 measurements is investigated.  相似文献   

3.
《水文科学杂志》2013,58(6):1253-1269
Abstract

Although soil erosion has been recognized worldwide as a threat to the sustainability of natural ecosystems, its quantification presents one of the greatest challenges in natural resources and environmental planning. Precise modelling of soil erosion and sediment yield is particularly difficult, as soil erosion is a highly dynamic process at the spatial scale. The main objective of this study was to simulate soil erosion and sediment yield using two fundamentally different approaches: empirical and process-oriented. The revised form of the Universal Soil Loss Equation (RUSLE), along with a sediment delivery distributed model (SEDD) and the Modified Universal Soil Loss Equation (MUSLE), which are popular empirical models, were applied in a sub-basin of the Mun River basin, Thailand. The results obtained from the RUSLE/SEDD and MUSLE models were compared with those obtained from a process-oriented soil erosion and sediment transport model. The latter method involves spatial disaggregation of the catchment into homogeneous grid cells to capture the catchment heterogeneity. A GIS technique was used for the spatial discretization of the catchment and to derive the physical parameters related to erosion in the grid cells. The simulated outcomes from the process-oriented model were found to be closer to observations as compared to the outcomes of the empirical approaches.  相似文献   

4.
Abstract

Because the properties of eroded soil affect the deposition phenomena and transport capacity of chemical materials by eroded particles, recent research is trying to link the grain-size distribution of the eroded sediment to that of the original soil in order to explain the enrichment of chemical content of the sediment with the respect to the parent soil. In this study, the spatial distribution of nitrogen, phosphorus and total organic carbon was firstly deduced using the measurements carried out in 47 soil samples distributed over a forested basin together with a kriging interpolation method. Then the load of each chemical was calculated at morphological unit and basin scales using the above-mentioned spatial distributions and sediment yield values calculated by the SEDD (SEdiment Delivery Distributed) model, which couples the universal soil loss equation with a spatial disaggregation criterion of sediment delivery processes. Finally, at basin scale, a new expression of the enrichment ratio of a given chemical was applied.  相似文献   

5.
Growing awareness of the wider environmental significance of fine sediment transport by rivers and associated sediment problems linked to sediment–water quality interactions, nutrient and contaminant transfer, and the degradation of aquatic habitats has resulted in the need for an improved understanding of the mobilization and transfer of sediment in catchments to support the development of effective sediment management strategies. The sediment budget provides a key integrating concept for assembling information on the internal functioning of a catchment in terms of its sediment dynamics by providing information on the mobilization, transfer, storage and output of sediment. One key feature of a catchment sediment budget is the relationship between the sediment yield at the catchment outlet and rates of sediment mobilization and transfer within the catchment, which is commonly represented by the sediment delivery ratio. To date, most attempts to derive estimates of this ratio have been based on a comparison of the measured sediment yield from a catchment with an estimate of the erosion occurring within the catchment, derived from an erosion prediction procedure, such as the Universal Soil Loss Equation (USLE) or its revised version, RUSLE. There is a need to obtain more direct and spatially distributed evidence of the erosion rates occurring within a catchment and to characterize the links between sediment mobilization, transfer, storage and output more explicitly. In this context, fallout radionuclides have proved particularly useful as sediment tracers. This paper reports the results of a study aimed at exploring the use of caesium‐137 (137Cs) measurements to establish sediment budgets for three catchments of different sizes and contrasting land use located in Calabria, southern Italy. Long‐term measurements of sediment output were available for the catchments, and, by using the estimates of gross and net rates of soil loss within the catchments provided by 137Cs measurements, it was possible to establish the key components of the sediment budget for each catchment. By documenting the sediment budgets of three catchments of different sizes, the study provides a basis for exploring the effects of scale on catchment sediment budgets and, in particular, the increasing importance of catchment storage as the size of the catchment increases. The results of this study demonstrate a reduction in the sediment delivery ratio from 98 to 2% as catchment area increases from 1·47 ha to 31·2 km2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

7.
The long-term average annual soil loss (A) and sediment yield (SY) in a tropical monsoon-dominated river basin in the southern Western Ghats, India (Muthirapuzha River Basin, MRB; area: 271.75 km2), were predicted by coupling the Revised Universal Soil Loss Equation (RUSLE) and sediment delivery ratio (SDR) models. Moreover, the study also delineated soil erosion risk zones based on the soil erosion potential index (SEPI) using the analytic hierarchy process (AHP) technique. Mean A of the basin is 14.36 t ha?1 year?1, while mean SY is only 3.65 t ha?1 year?1. Although the land use/land cover types with human interference show relatively lower A compared to natural vegetation, their higher SDR values reflect the significance of anthropogenic activities in accelerated soil erosion. The soil erosion risk in the MRB is strongly controlled by slope, land use/land cover and relative relief, compared to geomorphology, drainage density, stream frequency and lineament frequency.  相似文献   

8.
Soil erosion models are essential tools for the successful implementation of effective and adapted soil conservation measures on agricultural land. Therefore, models are needed that predict sediment delivery and quality, give a good spatial representation of erosion and deposition and allow us to account for various soil conservation measures. Here, we evaluate how well a modified version of the spatially distributed multi‐class sediment transport model (MCST) simulates the effectiveness of control measures for different event sizes. We use 8 year runoff and sediment delivery data from two small agricultural watersheds (0·7 and 3·7 ha) under optimized soil conservation. The modified MCST model successfully simulates surface runoff and sediment delivery from both watersheds; one of which was dominated by sheet and the other was partly affected by rill erosion. Moreover, first results of modelling enrichment of clay in sediment delivery are promising, showing the potential of MCST to model sediment enrichment and nutrient transport. In general, our results and those of an earlier modelling exercise in the Belgian Loess Belt indicate the potential of the MCST model to evaluate soil erosion and deposition under different agricultural land uses. As the model explicitly takes into account the dominant effects of soil‐conservation agriculture, it should be successfully applicable for soil‐conservation planning/evaluation in other environments. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
The contributions of sediment from different geomorpholigical units within a small basin in the Loess Plateau have been determined using caesium-137 as a tracer. The mean caesium-137 content of sediment originating from the hill area, where sheet and rill erosion are predominant, was 3–37 Bq kg-1, whereas no caesium-137 was detected in the sediment originating from the gully area where gullying and gravitational erosion are predominant. The mean caesium-137 content of sediment from two flood deposits was 0–23 Bq kg-1 and 0–89 Bq kg-1. The relative contribution from the hill area in the two floods was 7 per cent and 26 per cent, whilst that from the gully area was 93 per cent and 74 per cent.  相似文献   

10.
Abstract

Since eroded sediments are produced from different sources distributed throughout a basin, sediment delivery processes at basin scale have to be modelled by a spatially distributed approach. In this paper a new theoretically based relationship is proposed for evaluating the sediment delivery ratio, SDRi, of each morphological unit, i, into which a basin is divided. Then, using the sediment balance equation written for the basin outlet, a relationship between the basin sediment delivery ratio, SDRW and the SDRi is deduced. This relationship is shown to be independent of the soil erosion model used. Finally, a morphological criterion for estimating a coefficient, β, is proposed.  相似文献   

11.
This study uses evidence for the long-term (35 years) pattern of soil redistribution within two agricultural fields in the UK to identify the relative importance of tillage and overland flow erosion. Spatially distributed long-term total soil redistribution data for the fields (Dalicott Farm and Rufford Forest Farm) were obtained using the caesium-137 (137Cs) technique. These data were compared with predicted patterns of soil redistribution. Recent studies have demonstrated that the redistribution of soil by tillage may be described as a diffusive process. A two-component model was, therefore, developed which accounts for soil redistribution by both overland flow and diffusive processes. Comparison of the predicted patterns of overland flow erosion alone with the observed (137Cs-derived) data indicated a poor agreement (r2 = 0.17 and 0.11). In contrast, a good agreement exists between the predicted pattern of diffusive redistribution and the observed data (r2 = 0.43 and 0.41). These results give a clear indication that diffusive processes are dominant in soil redistribution within these fields. Possible diffusive processes include splash erosion, soil creep and tillage. However, the magnitude of the diffusion coefficients for the optimum predicted pattern (c. 350–400 kg m−1 a−1) demonstrates that tillage is the only process capable of explaining the very significant soil redistribution which is indicated by the 137Cs data. Consideration is given to the implications of these results for both soil erosion prediction and landscape interpretation.  相似文献   

12.
P. I. A. Kinnell 《水文研究》2008,22(16):3168-3175
The Universal Soil Loss Equation (USLE) or the revised USLE (RUSLE) are often used together with sediment delivery ratios in order to predict sediment delivery from hillslopes. In using sediment delivery ratios for this purpose, it is assumed that the sediment delivery ratio for a given hillslope does not vary with the amount of erosion occurring in the upslope area. This assumption is false. There is a perception that hillslope erosion is calculated on the basis that hillslopes are, in effect, simply divided into 22·1 m long segments. This perception fails to recognize the fact the inclusion of the 22·1 m length in the calculation has no physical significance but simply produces a value of 1·0 for the slope length factor when slopes have a length equal to that of the unit plot. There is a perception that the slope length factor is inappropriate because not all the dislodged sediment is discharged. This perception fails to recognize that the USLE and the RUSLE actually predict sediment yield from planar surfaces, not the total amount of soil material dislocated and removed some distance by erosion within an area. The application of the USLE/RUSLE to hillslopes also needs to take into account the fact that runoff may not be generated uniformly over that hillslope. This can be achieved by an equation for the slope length factor that takes account of spatial variations in upslope runoff on soil loss from a segment or grid cell. Several alternatives to the USLE event erosivity index have been proposed in order to predict event erosion better than can be achieved using the EI30 index. Most ignore the consequences of changing the event erosivity index on the values for the soil, crop and soil conservation protection factors because there is a misconception that these factors are independent of one another. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Contemporary patterns in river basin sediment dynamics have been widely investigated but the timescales associated with current sediment delivery processes have received much less attention. Furthermore, no studies have quantified the effect of recent land use change on the residence or travel times of sediment transported through river basins. Such information is crucial for understanding contemporary river basin function and responses to natural and anthropogenic disturbances or management interventions. To address this need, we adopt a process‐based modelling approach to quantify changes in spatial patterns and residence times of suspended sediment in response to recent agricultural land cover change. The sediment budget model SedNet was coupled with a mass balance model of particle residence times based on atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, excess 210Pb and 137Cs). Mean annual fluxes of suspended sediment were simulated in seven river basins (38–920 km2) in south‐west England for three land cover surveys (1990, 2000 and 2007). Suspended sediment flux increased across the basins from 0.5–15 to 1.4–37 kt y‐1 in response to increasing arable land area between consecutive surveys. The residence time model divided basins into slow (upper surface soil) and rapid (river channel and connected hillslope sediment source area) transport compartments. Estimated theoretical residence times in the slow compartment decreased from 13–48 to 5.6–14 ky with the increase in basin sediment exports. In contrast, the short residence times for the rapid compartment increased from 185–256 to 260–368 d as the modelled connected source area expanded with increasing sediment supply from more arable land. The increase in sediment residence time was considered to correspond to longer sediment travel distances linked to larger connected source areas. This novel coupled modelling approach provides unique insight into river basin responses to recent environmental change not otherwise available from conventional measurement techniques. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
Modelling mean annual sediment yield using a distributed approach   总被引:3,自引:0,他引:3  
In this paper a spatially distributed model for the calculation of sediment delivery to river channels is presented (SEDEM: SEdiment DElivery Model). The model consists of two components: (1) the calculation of a spatial pattern of mean annual soil erosion rates in the catchment using a RUSLE (Revised Soil Erosion Equation) approach; and (2) the routing of the eroded sediment to the river channel network taking into account the transport capacity of each spatial unit. If the amount of routed sediment exceeds the local transport capacity, sediment deposition occurs. An existing dataset on sediment yield for 24 catchments in central Belgium was used to calibrate the transport capacity parameters of the model. A validation of the model results shows that the sediment yield for small and medium sized catchments (10–5000 ha) can be predicted with an average accuracy of 41 per cent. The predicted sediment yield values with SEDEM are significantly more accurate than the predictions using a lumped regression model. Moreover a spatially distributed approach allows simulation of the effect of different land use scenarios and soil conservation techniques. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Predicting sediment yield at the catchment scale is one of the main challenges in geomorphologic research. The application of both physics‐based models and regression models has until now not provided very satisfying results for prediction of sediment yield for medium to large sized catchments (c. >50 km2). The explanation for this lies in a combination of the large data requirements of most models and a lack of knowledge to describe all processes and process interactions at the catchment scale. In particular, point sources of sediment (e.g. gullies, mass movements), connectivity and sediment transport remain difficult to describe in most models. From reservoir sedimentation data of 44 Italian catchments, it appeared that there was a (non‐significant) positive relation between catchment area and sediment yield. This is in contrast to what is generally expected from the theory of decreasing sediment delivery rates with increasing catchment area. Furthermore, this positive relation suggests that processes other than upland erosion are responsible for catchment sediment yield. Here we explore the potential of the Factorial Scoring Model (FSM) and the Pacific Southwest Interagency Committee (PSIAC) model to predict sediment yield, and indicate the most important sediment sources. In these models different factors are used to characterize a drainage basin in terms of sensitivity to erosion and connectivity. In both models an index is calculated that is related to sediment yield. The FSM explained between 36 and 61 per cent of the variation in sediment yield, and the PSIAC model between 57 and 62 per cent, depending on the factors used to characterize the catchments. The FSM model performed best based on a factor to describe gullies, lithology, landslides, catchment shape and vegetation. Topography and catchment area did not explain additional variance. In particular, the addition of the landslide factor resulted in a significantly increased model performance. The FSM and PSIAC model both performed better than a spatially distributed model describing water erosion and sediment transport, which was applied to the same catchments but explained only between 20 and 51 per cent of the variation in sediment yield. Model results confirmed the hypothesis that processes other than upland erosion are probably responsible for sediment yield in the Italian catchments. A promising future development of the models is by the use of detailed spatially distributed data to determine the scores, decrease model subjectivity and provide spatially distributed output. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Cultivated fields have been shown to be the dominant sources of sediment in almost all investigated UK catchments, typically contributing 85 to 95% of sediment inputs. As a result, most catchment management strategies are directed towards mitigating these sediment inputs. However, in many regions of the UK such as the Nene basin there is a paucity of sediment provenance data. This study used the caesium‐137 (137Cs) inventories of lake and floodplain cores as well as the 137Cs activities of present day sediment to determine sediment provenance. Sediment yields were also reconstructed in a small lake catchment. Low 137Cs inventories were present in the lake and floodplain cores in comparison to the reference inventory and inventories in cores from other UK catchments. Caesium‐137 activities in the present day sediments were low; falling close to those found in the channel bank catchment samples. It was estimated that 60 to 100% of the sediment in the Nene originated from channel banks. Pre‐1963 sediment yields were approximately 11.2 t km?2 yr?1 and post‐1963 was approximately 11.9 t km?2 yr?1. The lack of increased sediment yield post‐1963 and low sediment yield is unusual for a UK catchment (where a yield of 28 to 51 t km?2 yr?1 is typical for a lowland agricultural catchment), but is explained by the low predicted contribution of sediment from agricultural topsoils. The high channel bank contribution is likely caused by the river being starved of sediment from topsoils, increasing its capacity to entrain bank material. The good agreement between the results derived using cores and recently transported sediments, highlight the reliability of 137Cs when tracing sediment sources. However, care should be taken to assess the potential impacts of sediment particle size, sediment focusing in lakes and the possible remobilization of 137Cs from sedimentary deposits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The spatially distributed soil erosion and sediment delivery model WATEM/SEDEM was used to simulate the impact of riparian vegetated filter strips (RVFSs) on river sediment delivery at different spatial scales. For a field plot with a straight slope, sediment reduction by the RVFSs is comparable to results obtained through experimental set‐ups elsewhere (i.e. >70%). However, at the scale of an entire catchment, sediment reduction is much less (i.e. ±20%) due to (1) overland flow convergence, which reduces the sediment trapping efficiency of an RVFS, and (2) because part of the sediment bypasses the RVFSs through ditches, sewers and road surfaces. These results suggest that, at the catchment scale, RVFSs should be accompanied with other conservation techniques that are more appropriate for reducing river sediment loads, and that also reduce on‐site soil erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
To analyse suspended sediment sources in unmanaged Japanese cypress plantation watersheds, field measurements and fingerprinting of the suspended sediment was conducted in the Shimanto River basin in southern Japan. For sediment fingerprinting, 137Cs and 210Pbex were detected by means of gamma‐ray spectrometry in the surface soil of the forest floor, stream bank and truck trail and mobilized sediment by interrill erosion. The 137Cs and 210Pbex activities associated with the forest floor materials were considerably higher than those of the stream bank and truck trail. The 137Cs and 210Pbex activities associated with the suspended sediment were found to vary with the sampling period. Evidently, the suspended sediment can comprise materials generated from the forest floor by interrill erosion and those from the truck trail and/or stream bank. The multivariate sediment‐mixing model using 137Cs and 210Pbex showed that the contribution of the forest floor varied periodically, ranging from 23–56% in the Hinoki 156 subwatershed and from 18–85% in the Hinoki 155 subwatershed. The difference in the average contribution of the forest floor between Hinoki 156 (46%) and Hinoki 155 (69%) may relate to the presence of truck trail networks in the watershed. The truck trail network can play roles of sediment source and pathway for sediment from forest floor to stream channel due to the concentrated overland flow on the truck trail during heavy rainfall events. These results indicate that the forest floor should be recognized as a major source of suspended sediment in unmanaged Japanese cypress plantation watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   

20.
Glacier recessions caused by climate change may uncover pro‐glacial lakes that form important sedimentation basins regulating the downstream sediment delivery. The impact of modern pro‐glacial lakes on fluvial sediment transport from three different Norwegian glaciers: Nigardsbreen, Engabreen and Tunsbergdalsbreen, and their long‐term development has been studied. All of these lakes developed in modern times in overdeepened bedrock basins. The recession of Nigardsbreen uncovered a 1.8 km long and on average 15 m deep pro‐glacial lake basin during 1937 to 1968. Since then the glacier front has been situated entirely on land, and the sediment input and output of the lake has been measured. The suspended sediment transport into and out of the lake averaged 11 730 t yr?1 and 2340 t yr?1 respectively. Thus, 20% remained in suspension at the outlet. The measured mean annual bedload supplied to the lake was 11 800 t yr?1, giving a total transport of 23 530 t yr?1 which corresponds to a specific sediment yield of 561 t km?2 yr?1. A 1.9 km long and up to 90 m deep pro‐glacial lake basin downstream from Engabreen glacier was uncovered during 1890 to 1944. The average suspended sediment load delivered from the glacier during the years 1970–1981 amounted to 12 375 t yr?1and the transport out of the lake was 2021 t yr?1, giving an average of 16% remaining in suspension. The mean annual bedload was 8000 t yr?1, thus the total transport was 20 375 t yr?1, giving a specific sediment yield of 566 t km?2 yr?1. For Tunsbergdalsbreen glacier, measurements in the early 1970s indicated that the suspended sediment transport was on average 44 000 t yr?1. From 1987 to 1993 the recession of the glacier uncovered a small pro‐glacial lake, 0.3 km long and around 9 m deep. Downstream from this, the suspended sediment load measured in 2009 was 28 000 t yr?1, indicating that as much as 64% remained in suspension. Flow velocity, grain size of sediment, and morphology of the lake are important factors controlling the sedimentation rate in the pro‐glacial lakes. A survey of the sub‐glacial morphology of Tunsbergdalsbreen revealed that there are several overdeepened basins beneath the glacier. The largest is 4 km long and 100 m deep. When the glacier melts back they will become lakes and act as sedimentation basins. Despite an expected increase in sediment yield from the glacier, little sediment will pass these lakes and downstream sediment delivery will be reduced markedly. Beneath Nigardsbreen there was only a small depression that may form a lake and the sediment delivery will not be significantly affected. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号