首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Restoration of horseshoe crab spawning habitats through beach nourishment may be considered as a potential strategy to enhance reproductive success in areas where estuarine beaches have been lost to coastal erosion and development. The US Army Corps of Engineers performed a beach nourishment project at Plumb Beach (Jamaica Bay, Brooklyn, NY) in 2012 to stabilize the shoreline. While the addition of sand was done to protect infrastructure, it created an opportunity to examine the responses of American horseshoe crabs (Limulus polyphemus) to beach nourishment using a BACI (before-after control impact) design. During Spring 2012, before beach nourishment, horseshoe crabs made minimal use of the highly degraded western section of Plumb Beach in comparison to a nearby reference site, as quantified by numbers of spawning adults at high tide and densities of horseshoe crab eggs in core samples. In the first post-nourishment field season (Spring 2013), there was no detectable increase in horseshoe crab spawning activity on the newly restored beach. In 2014 and 2015, the density of spawning females began to increase at the nourished beach, although their numbers and especially the density of horseshoe crab eggs remained much lower than at the reference site. Three years after beach nourishment, differences in sediments texture (mean grain diameter, percent gravel, sorting, skewness, and hardness) were still evident between the nourishment and reference sites. Our results suggest that (1) at this site, beach nourishment appeared to bring about only slow increases in horseshoe crab spawning density after several seasons and (2) subtle differences in beach geomorphology over relatively short distances can be detected by horseshoe crabs and may underlie their selection of specific nesting sites.  相似文献   

2.
Spawning densities, spawning indices, egg densities, size distributions, and movement patterns of horseshoe crabs (Limulus polyphemus) were quantified for four coastal embayments (Monomoy National Wildlife Refuge, Pleasant Bay, Nauset Estuary, and Cape Cod Bay) on Cape Cod, Massachusetts from 2000 to 2002. Spawning activity was highest from mid May through mid June, but densities varied throughout the Cape Cod region. Average spawning densities (male and female crabs combined), measured using 25-m2 quadrats, were lower than 1 crab 25 m?2, although certain locations had consistently higher densities averaging 2 to 3 crabs 25 m?2 with individual survey densities recorded as high as 17 crabs 25 m?2. Spawning densities during night surveys were either similar or slightly higher than day surveys, except at a few sites within Pleasant Bay. Spawning indices were considerably lower ranging from 0 to 1.3 females 25 m?2 throughout the Cape Cod region. Spawning sex ratios varied from 1∶1.6 to 1∶3.1 (females:males) throughout the region, except within Pleasant Bay where highly male skewed ratios were observed (e.g., 1∶5.8, 3-yr average). Egg densities were low overall (<1 egg cm?2) throughout Cape Cod and egg densities tended to be higher in deeper sediments (5–20 cm deep) compared to shallow sediments (0–5 cm deep) at most locations. Over 7,800 horseshoe crabs were tagged on Cape Cod from 2000 to 2002. Average size and size frequency distributions of tagged crabs varied among regions. Larger individuals were observed at Monomoy National Wildlife Refuge while the smallest individuals were from Cape Cod Bay. We documented an overall recapture rate of 6.7% and our tag-recapture data indicated that 62% of crabs were recaptured at the original tagging location and 70% of recaptures traveled less than 2 km from the original tagging location, providing evidence for localized populations on Cape Cod. We have observed that horseshoe crabs differ among embayments within a regional area, suggesting the potential need for management plans specific to embayments or subregions depending on the characteristics of a population.  相似文献   

3.
Populations of the American horseshoe crab (Limulus polyphemus) differ in broad areas of their biology. We observed a non-harvested, marked Florida Gulf coast population during their spring spawning (March–May) in 11 years across a 17-year period (1992–2009). Long-term changes occurred in the number of spawning pairs: the population was stable from 1992 to 2000 but increased markedly after 2000. Short-term variation in numbers of spawning pairs, unpaired females, unpaired males, and operational sex ratios was explained by changes over the season and during each week of spring tides and by differences in actual (not predicted) maximum high tide height. Wind direction strongly affected tidal inundation and the number of spawning horseshoe crabs. Tagging individuals revealed that females returned to the nesting beach less often than males and most females were re-sighted only within 1 week of spring tides. No animals were seen across more than 6 years. Implications for management are discussed.  相似文献   

4.
We assessed the suitability of intertidal habitats for spawning by horseshoe crabs (Limulus polyphemus) at 12 proposed restoration sites identified by the United States Army Corps of Engineers along the shore of Jamaica Bay, a highly developed estuary in New York City. Based on beach geomorphology, we chose to quantify horseshoe crab activity at five of the sites during the May–July 2000 breeding season. Horseshoe crabs spawned intensively on small patches of suitable sand within larger areas of eroding shoreline with bulkheads and rubble fill. Small areas of sand behind grounded barges at Brant Point and Dubos Point had densities of over 100,000 eggs m−2, which was equal to or greater than the egg densities on longer, more natural appearing beaches at Spring Creek and Dead Horse Bay, or at a sand spit at Bayswater State Park. There were no significant differences in the percentage of Jamaica Bay horseshoe crab eggs that completed development when cultured using water from Jamaica Bay or lower Delaware Bay, a less polluted location. Only 1% of the embryos from Jamaica Bay exhibited developmental anomalies, a frequency comparable to a previously studied population from Delaware Bay. We suggest that the distribution and abundance of horseshoe crabs at our study areas in Jamaica Bay is presently limited by the availability of suitable shoreline for breeding, rather than by water quality. Restoration efforts that increase the amount of sandy beach in this urban estuary have a good likelihood of benefiting horseshoe crabs and providing additional value to migrating shorebirds that use horseshoe crab eggs as food.  相似文献   

5.
Concern for the status of horseshoe crab (Limulus polyphemus) has increased as harvest for conch and eel bait has increased and spawning habitat has decreased. In early 1999 a workshop was held at the behest of the Atlantic States Marine Fisheries Commission to design a statistically valid survey of horseshoe crab spawning in Delaware Bay. The survey that resulted was a redesign of a volunteer-based spawning survey that began in 1990, and its network of volunteers was relied on to implement the three-stage sampling design in 1999. During May and June of 1999, 163 participants surveyed during the highest of the daily high tides on 16 beaches (8 on each site of Delaware Bay). During the first half of the spawning season, spawning was associated with lunar phases, but moderated by wave height. Disproportionately more spawning occurred within 3 d of the first new and full moons, and spawning activity (measured by an index of female density) was correlated inversely to the percent of beaches with waves ≥0.3 m. Spawning was heaviest on the Delaware shore around the full moon in May in spite of low waves in New Jersey during the new and full moons in May. Number of beaches sampled was the most important factor in determining the precision of the spawning index and power to detect a decline. Explicit consideration of statistical power has been absent from the current debate on horseshoe crab status and harvest. Those who argue against harvest restrictions because of a lack of statistically significant declines take on a burden to show that the surveys they cite have high statistical power. We show the Delaware Bay spawning survey will achieve high statistical power with sufficient sampling intensity and duration. We recommend that future Delaware Bay spawning surveys sample on 3 d around each new and full moon in May and June and increase the number of beaches to ensure high statistical power to detect trends in baywide spawning activity.  相似文献   

6.
The Great Bay Estuary, New Hampshire, USA is near the northern distribution limit of the American horseshoe crab (Limulus polyphemus). This estuary has few ideal beaches for spawning, yet it supports a modest population of horseshoe crabs. There is no organized monitoring program in the Great Bay Estuary, so it is unclear when and where spawning occurs. In this 2-year study (May through June, 2012 and 2013), >5,000 adult horseshoe crabs were counted at four sites in the estuary. The greatest densities of horseshoe crabs were observed at Great Bay sites in the upper, warmer reaches of the estuary. Peaks of spawning activity were not strongly correlated with the times of the new or full moons, and similar numbers of horseshoe crabs were observed mating during daytime and nighttime high tides. While many environmental factors are likely to influence the temporal and spatial patterns of spawning in this estuary, temperature appears to have the most profound impact.  相似文献   

7.
Knowledge of resource-use and movement patterns is a missing component in the development of horseshoe crab (Limulus polyphemus) management strategies. Available evidence indicates the potential for a variety of possible migratory behaviors, but the lack of high-resolution, spatial-temporal data has hindered development of a year-round profile of ranging behavior. This need was addressed in the present study by using acoustic telemetry to track the movements of adult horseshoe crabs in two subembayments (Egypt and Hog Bays) of the Taunton Bay Estuary, Maine, from June 2003 to June 2005. Estimated mean total home range sizes were 64.1 and 61.4 ha for breeding crabs tagged in Egypt and Hog Bays, respectively. We observed no horseshoe crab dispersal to areas outside of the subembayments where they were tagged, so no mixing was observed between Egypt and Hog Bay individuals despite a < 4-km separation. Observed shifts in movement patterns, resource use (subtidal versus intertidal), and vagility facilitated a profile of seasonally partitioned horseshoe crab activity, which included late April to early May post-wintering, June–July breeding, August–September pre-wintering, and October–April wintering, where space usage represented about 10% of the mean total home range size. The apparent isolation of these resident populations implies a heightened vulnerability to overexploitation and large-scale habitat alteration that might be more easily sustained by larger, more vagile populations. This work underscores the need to apply horseshoe crab conservation, research, and management efforts at scales that are appropriate to the ranging patterns of crabs, which first requires application of high-resolution methods to identify those patterns.  相似文献   

8.
Adult horseshoe crabs,Limulus polyphemus, were tagged in the Middle Atlantic Bight area, from New York to Virginia on the continental shelf and within bays, to determine their migratory patterns and longevity. Of 30,432 horreshoe crabs that were tagged during the years 1986–2002, 1,122 were recovered alive, and 1,027 were dead. Many of the live recoveries were observed within 30 d (54.4%) and after years (37.53%) with one tagged animal surviving up to 10 yr. In 9 locations from Great Kills Harbor, New York, to Chesapeake Bay, Maryland, the horseshoe crabs return to their release beach within days during the spawning season. Of the 762 (100%) recoveries from crabs released along the Delaware Bay shoreline, 75.07% traveled 0–20 km, 21.0% traveled 20–50 km, 2.36% traveled 50–100 km, and 1.57% traveled over 100 km. Within Delaware Bay, 327 tagged animals (43.6%) had moved away from the release points to other locations, and 59 of these had moved out of the bay onto the continental shelf along the Mid-Atlantic Bight coastline. Horseshoe crabs migrate into Delaware Bay from waters off Ocean City, Maryland, and adjacent coastal bays. In addition to defining the range of the Delaware Bay spawning populations, 2 neighboring populations were identified by the tagging program. In one, animals tagged in southern New York mingled with those in the Sandy, Hook, New Jersey area, comprising a population that ranged from Raritan Bay across New York Harbor to Jamaica Bay. The second confirmed that a discrete population existed in northern Chesapeake Bay in the general vicinity of the Annapolis Bay Bridge.  相似文献   

9.
Estuarine species with wide geographic distributions often experience tidal regimes that vary significantly throughout their range. Plasticity in behaviors associated with the tide is expected to enable synchronization with local tides. The American horseshoe crabLimulus polyphemus typically inhabits estuaries and coastal areas with pronounced semi-diurnal tides that play a role in synchronizing the timing of spawning and larval hatching, but also lives in areas that lack significant tides and associated synchronization cues. We investigated the spatial and temporal pattern of adult spawning and larval hatching ofL. polyphemus in a microtidal coastal lagoon (Indian River Lagoon, Florida, USA). Spawning activity and larval abundance were monitored weekly February 1998–August 2000 at sites spanning 100 km of the lagoon. To identify possible synchronization cues for spawning and hatching success, the presence of adult and larvalL. polyphemus were related to environmental and hydrologic variables using logistic regression. The presence of spawning adults varied significantly among the sub-basins of the lagoon, with the highest densities occurring in the Banana River. Large spawning aggregations were not observed and densities never exceeded 6 m−2. Spawning occurred year-round but varied seasonally with episodes of increased mating activity in the early spring. The occurrence of mating pairs was episodic and was not synchronized among sites. Larval densities were low (4 m−3) and larvae were present at only 12 of the 21 sites. Hatching success was decoupled temporally from spawning activity, with peaks in larval abundance occurring approximately 8 wk after peaks in spawning. Larval abundance was associated with periods of high water. Reproductive activity of horseshoe crabs in the lagoon differs significantly from populations inhabiting areas with semi-diurnal and diurnal tides. These differences are likely due to the lack of periodic tidally-related synchronization cues and regular beach inundation.  相似文献   

10.
Movements of spawning rainbow smelt, Osmerus mordax, were followed in the Parker River estuary, Massachusetts during 1974 and 1975. Fish marked with vinyl subcutaneous tags (n=1,492) or fin clips (n=577) were recaptured on three separate spawning sites in three different tributaries; the distribution patterns of marked fish indicated a homogeneous spawning stock. Interstream movement may have been facilitated by tidal transport since smelt ascended to the spawning sites on flood tides and moved downstream as tides ebbed. Rates of recapture of fish tagged on the spawning areas were 2.61 and 5.61 times greater for males than females in 1974 and 1975 respectively. Individual tagged males were recovered up to four times during the spawning period; females were recaptured a maximum of once. The proportion of age II and older females sampled from the angling fishery prior to spawning in 1975 (47.38%) was greater than the cumulative proportion sampled on the spawning sites (11.93%) due to longer spawning period of individual males.  相似文献   

11.
The Delaware Bay region is the epicenter of horseshoe crab, Limulus polyphemus, activity, and despite the ecological and commercial importance of this species, few studies have examined the long-term movements of horseshoe crabs in this area and the amount of mixing that takes place between smaller coastal embayments within the region and the Delaware Bay proper, factors that are critical to effective management. To better understand these factors, 5568 crabs were tagged in the Delaware Inland Bays as part of the U.S. Fish and Wildlife Service’s (USFWS) Cooperative Horseshoe Crab Tagging Program in 2002–2016. A high re-sight rate of 20.1% (1123 crabs) was reported to the USFWS. Re-sights suggest that the Delaware Bay population is distributed between coastal New Jersey (south of Barnegat Bay) and coastal Virginia (north of Chincoteague Inlet). There were 90 re-sights in the Inland Bays and 148 re-sights in Delaware Bay, with 320 days or more between tagging and re-sight, showing that substantial interchange between successive spawning seasons occurs. Distance analyses demonstrated that crabs can move between the Inland Bays and other Delaware Bay region waterbodies within a single year. The findings of this study support the current management strategy of splitting the harvest of Delaware Bay crabs between New Jersey, Delaware, Maryland, and Virginia and also demonstrate that the waterbodies within the Delaware Bay region are highly connected. This connectivity supports protecting spawning habitat within the smaller embayments of the Delaware Bay region and including spawning surveys from these systems in future stock assessments.  相似文献   

12.
Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5–9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds.  相似文献   

13.
The effects of wave action and horseshoe crab spawning on the topography and grain-size characteristics on the foreshore of an estuarine sand beach in Delaware Bay, New Jersey, USA were evaluated using data collected over six consecutive high tides. Data were gathered inside and outside a 25 m long exclosure constructed to create a control area free of disturbance by crabs. The density of crabs in the swash zone outside the exclosure was 8·1 organisms m−2. The maximum depth of sediment activation on the upper foreshore where spawning occurred was 0·103 m during periods characterized by low significant wave heights: < 0·08 m. This depth is greater than the depth of activation by waves alone during moderate significant wave heights of 0·16–0·18 m but less than the maximum depth (0·127 m) recorded when spawning occurred during periods of moderate wave heights. Spawning, combined with moderate wave heights, creates a concave upper foreshore that is similar to the type of profile change that occurs during storms, thus lowering the wave-energy threshold for morphological response. Spawning during low wave heights increases the mean grain size and sorting of surface sediments caused by the addition of gravel to the swash. Sedimentological differences are most pronounced on the upper foreshore, and data from this location may be most useful when using grain-size characteristics to interpret the effect of spawning in the sedimentary record. Depths of sediment reworking by horseshoe crabs can be greater than those by subsequent storm waves, so evidence of spawning can be preserved on non-eroding beaches. Greater depth of activation by horseshoe crab spawning than by waves alone, even during moderate-energy conditions, reveals the importance of crab burrowing in releasing eggs to the water column and making them available for shore birds.  相似文献   

14.
Atlantic horseshoe crabs,Limulus polyphemus, are currently harvested for biomedical, scientific, and bait purposes. In recent years, changes in population abundance and magnitude of harvesting have raised concerns about the status of this resource. We found horseshoe crab harvest in Pleasant Bay, Massachusetts, was selective by sex and size. Biomedical harvest preferred larger individuals and females, the scientific harvest preferred smaller individuals and males, and the bait harvest preferred females. Total 2001 harvest for all purposes accounted for the mortality of ∼1–2% the adult population. Biomedical harvest accounted for the greatest loss of horseshoe crabs from Pleasant Bay, ∼1–1.6% of the total population. Although biomedical harvest had the lowest associated mortality rate (∼10–15%), many more crabs were harvested from Pleasant Bay for biomedical purposes than for other uses. The scientific harvest accounted for the mortality of ∼0.4% of the population, and bait harvest accounted for the smallest mortality at ∼0.06% of the population. Harvest mortality rate was estimated to be lower in Pleasant Bay than in other Cape Cod areas and may be lower than natural mortality in the population. This study is the first qualitative investigation of commercial harvest on horseshoe crab populations and emphasizes that harvest pressures on different populations need to be individually evaluated.  相似文献   

15.
Using stationary zooplankton nets that fished the tidal current we measured the daily abundance ofCancer crab megalopae near the mouth of Coos Bay, Oregon, during the 1997 spring settlement season. During the spring of 1997, the coastal waters were dominated by a significant El Niño event. Sea surface temperatures (SST) were higher than normal, upwelling indices were an order of magnitude smaller than during the two previous springs, and upwelling favorable winds were weak. Daily catches ofCancer magister megalopae ranged from 0 to 78 with 61% of the total catch occurring during four pulses. Peak catches tended to occur every 13.6 d close to 13.8 d average period between spring tides. Significant cross correlations were found between the maximum daily tidal range and the catch ofC. magister megalopae; large catches tended to occur 4 to 7 d after the spring tide. Daily catches ofCancer oregonensis andCancer productus ranged from 0 to 307 with catch significantly positively cross correlated to the maximum daily tidal range at a lag of ?5 days suggesting that the largest catches tended to occur after the spring tides. We hypothesize that a tidally-generated phenomenon internal waves, transportedCancer megalopae shoreward and caused the observed variation in their abundance in Coos Bay.  相似文献   

16.
We determined tidal, diel (day-night), and diurnal (day to day) patterns of occurrence for the summer zooplankton assemblage in an intertidal salt marsh basin at North Inlet Estuary, South Carolina. In one time series, 153 μm pump and 365 μm net collections were made every 1–2 h during four consecutive tidal cycles. Taxonomic composition remained unchanged throughout most of the 48-h period, but densities and proportionalities of individual taxa were highly variable. Recurring patterns of abundance were observed and taxon-specific relationships with the tidal and diel cycles were indicated. Zooplankton were not uniformly distributed within flooding-ebbing water masses and distributions could not be explained by simple passive advection with the tides. Diel differences in densities of copepods and bivalves resulted from behavioral responses to changing light conditions. Large pulses of crab and shrimp larvae originating from nocturnal hatching events within the intertidal basin exited but did not return during the next flood tide. Higher densities of postlarval decapods on flood tides indicated settlement and recruitment to the shallow basin. In a second time series, replicated collections of the 153 μm and 365 μm assemblages were made during the daytime ebb tide every 1–3 d from May through October 1991 to determine relationships between diurnal changes in depth, salinity, and temperature and zooplankton composition and abundance. Diurnal variations in densities and proportionalities were less than those observed during the 48-h study and patterns were not regular. For most taxa, relationships between depth and abundance were the same in both time series. During periods of reduced salinity, densities of copepods,Uca zoeae, and barnacle nauplii decreased and densities ofUca megalopae andPenaeus postlarvae increased. However, zoeae emerged and postlarvae recruited throughout the 5-mo period, indicating that considerable flexibility in responses and tolerances existed within the populations. The diversity of life-history strategies and behavioral adaptations found among the zooplankton assures continuous occupation of flooded intertidal habitats. We suspect that the evolution and maintenance of temporally staggered recurring patterns of occurrence results in reductions in the competition for resources.  相似文献   

17.
Beach-cast wrack of marine origin is considered a spatial subsidy to the marine-terrestrial transition zone. We found that the wrack line on sand and gravel beaches of Vancouver Island was frequented by intertidal purple shore crabs,Hemigrapsus nudus (Dana 1851) and densely colonized by detritivorous talitrid amphipods. Amphipods spend the day buried in sand and forage on beach wrack during the night.H. nudus were found in supratidal wrack putches immediately after nightly high tides in field censuses, but spent most of the day and ebb tides either submerged subtidally or hidden underneath intertidal rocks and boulders. In feeding trials, intertidal shore crabs were capable of preying on talitrid amphipods. We considerH. nudus an omnivore feeding on both fresh and decaying macroalgae as well as animal prey. Although living supratidally, amphipods were significantly preferred over intertidal littorine snails by foraging shore crabs. Handling time of amphipods was significantly shorter than for littorine snails. While amphipods had a reduced risk of predation byH. nudus when buried in the sand, foraging undern eath wrack patches did not reduce predation pressure on amphipods by shore crabs. Rates of amphipod consumption by shore crabs were higher at darkness than daylight. In addition to an apparent day-night rhythm, tidal height and time elapsed since previous high tide had a significant influence on shore crab density wrack. We conclude that beach-cast wrack acts as a spatial subsidy by virtue of providing a valuable food source to talitrid amphipods, which are in turn consumed by shore crabs that ride the nightly high tide into supratidal wrack patches to reduce the risk of passing bare sand on theiry way to a feeding habitat rich in valuable prey.  相似文献   

18.
The 1977 peak population of spawning horsehoe crabs,Limulus polyphemus, in Delaware Bay, was comprised of about 222,000 males and 51,000 females. This estimate, based upon a shoreline survey of spawning intensity along Delaware and New Jersey beaches at the time of full moon tides in June, was corroborated by a quantification of egg clusters in a beach. Fecundity of gravid females was used, in conjunction with the egg cluster estimate, to approximate the number of females responsible for the observed quantity of eggs. The present spawning population of Delaware Bay is several fold larger than that which existed during the 1960’s. From a longer historical perspective, however, the population is far from approaching the numbers and spawning intensity reported a century ago.  相似文献   

19.
The Delaware Bay contains the world’s largest population of horseshoe crabs, which constitute an ecologically significant component of this estuarine ecosystem. The North Atlantic speciesLimulus polyphemus has an extensive geographical distribution, ranging from New England to the Gulf of Mexico. Recent assessments of the Delaware Bay population based on beach spawning and trawling data have suggested a considerable decrease in the number of adult animals since 1990. Considerable debate has centered on the accuracy of these estimates and their impact on marine fisheries management planning. Compounding this problem is the lack of information concerning the genetic structure of Atlantic horseshoe crab populations. This study assessed patterns of genetic variation within and between the horseshoe crab populations of Delaware Bay and Chesapeake Bay, using both Random Amplification of Polymorphic DNA (RAPD) and DNA sequence analysis of the mitochondrial cytochrome oxidase I gene (COI). We examined 41 animals from Delaware Bay and 14 animals from the eastern shore of Chesapeake Bay. To provide high quality, uncontaminated genomic DNA for RAPD analysis, DNA was isolated from hemocytes by direct cardiac puncture, purified by spin column chromatography, and quantified by agarose gel electrophoresis. RAPD fingerprints revealed a relative paucity of polymorphic fragments, with generally homogeneous banding patterns both within and between populations. DNA sequence analysis of 515 bases of the 5′ portion of the mitochondrial COI gene showed haplotype diversity in the Chesapeake Bay sample to be significantly higher than in the Delaware Bay sample, despite the larger size of the latter. Haplotype analysis indicates minimal contemporary gene flow between Delaware Bay and Chesapeake Bay crab populations, and further suggests that the Delaware Bay population is recovering from a recent population decline.  相似文献   

20.
The dynamic sediment budget on the intertidal face of sandy surf beaches is influenced by interaction of swash/backwash flows with the beach watertable. Watertable height variations are coupled to tides and pass into the beach as a slow wave of diminishing amplitude and increasing lag. High-frequency pulses from the onshore wave train also propagate into the beach. The height at which the watertable outcrops on the beach face is affected by antecedent tide and wave history and influences balance of sand deposition and entrainment during swash and backwash. Experimental lowering of the watertable by pumping an array of wells induces sand deposition. Energy expended in pumping is less than 0.3% of the onshore flux in the wave train.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号