首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mandovi estuary is a tropical estuary strongly influenced by the southwest monsoon. In order to understand, sources and fate of particulate organic nitrogen, suspended particulate matter (SPM) collected from various locations, was analyzed for particulate organic carbon (POC) and particulate organic nitrogen (PON), δ13CPOC, total hydrolysable amino acid enantiomers (l- and d- amino acids) concentration and composition. δ13CPOC values were depleted (−32 to −25‰) during the monsoon and enriched (−29.6 to −21‰) in the pre-monsoon season implying that OM was derived from terrestrial and marine sources during the former and latter season, respectively. The biological indicators such as C/N ratio, d-amino acids, THAA yields and degradation indices (DI) indicate that the particulate organic matter (POM) was relatively more degraded during the monsoon season. Conversely, during the pre-monsoon, the biological indicators indicated the presence of relatively fresh and labile POM derived from autochthonous sources. Amino acids such as alanine, aspartic acid, leucine, serine, arginine, and threonine in monsoon and glutamic acid, glycine, valine, lysine, and isoleucine in pre-monsoon were relatively abundant. Presence of bacterial biomarker, d-amino acids in the SPM of the estuary during both the seasons signifies important contribution of bacteria to the estuarine detrital ON pool. Based on d-amino acid yields, bacterial OM accounted for 16-34% (23.0 ± 6.7%) of POC and 29-75% (47.9 ± 18.7%) of PON in monsoon, and 30-78% (50.0 ± 15%) of POC and 34-79% (51.2 ± 13.3%) of the PON in pre-monsoon in the estuary. Substantial contribution of bacterial-N to PON indicates nitrogen (N) enrichment on terrestrial POM during the monsoon season. Transport of terrestrial POM enriched with bacterial OM to the coastal waters is expected to influence coastal productivity and ecosystem functioning during the monsoon season.  相似文献   

2.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

3.
Human encroachment on the coastal zone has led to concern about the impact of anthropogenic nitrogen (N) on estuarine and continental shelf waters. Western North Atlantic watershed budgets suggest that the export of human-derived N from estuaries to shelf waters off the east coast of the US may be significant; however, models based on water inputs and estimates of upwelling of deepwater nutrients to surface waters of the mid-Atlantic bight indicate that estuarine N may be a relatively minor component of the overall shelf N budget. Stable N isotope ratios could provide a means to assess the relative input of anthropogenic N to shelf waters, particularly since dissolved N from human sources has elevated δ15N values (range: 7–30‰). We collected particulate material from surface shelf waters off the US east coast from 2000 to 2005 at near-shore sample sites proximal to the mouth of six estuaries and corresponding sites farther offshore. Near-shore (mean 33.7 km from estuary mouth) δ15N values ranged from 5.5 to 7.7‰ Offshore values (mean 92.4 km from estuary mouth) were consistently lower than near-shore sites (average 4.7 ± 1.0‰ versus 6.8 ± 1.1‰), suggesting different N sources to near and offshore stations. Near-shore regions are often more productive, as mean monthly chlorophyll-a concentrations from the sea-viewing wide field-of-view sensor (SeaWiFS) were significantly higher at near-shore sites near the mouth of three of the six estuaries. A mass balance using a concentration-dependent mixing model with chlorophyll-a concentrations as a surrogate for dissolved inorganic nitrogen can account for all of the nitrogen at near-shore sites south of Cape Cod with estuarine nitrogen estimated to contribute 45–85% of the nitrogen to the near-shore surface particulate material. Our results support the hypothesis that estuarine nitrogen is influencing continental shelf ecosystems, and also provide preliminary evidence of the spatial extent of its influence on shelf waters in the mid-Atlantic bight.  相似文献   

4.
The concentration of 15 amino acids in hydrolyzed particulate matter from different regions and depths of the Pacific Ocean has been measured by gas—liquid chromatography. The relative composition was similar for all samples in the euphotic zone, where the particulate amino acid (PAA) concentration ranged from 370 to 2260 nmoles/1 in coastal waters and from 90 to 260 nmoles/1 in the open ocean. Total PAA concentration dropped rapidly with depth, levelling off at 10–40 nmoles/1 below 200 m. Glycine, serine, glutamic acid and aspartic acid were the most abundant PAA in deep equatorial water and in deep off-shore California water. The nitrogen content of PAA could often account for 100% of the total particulate organic nitrogen present, while PAA carbon contributed up to 50% of the total particulate organic carbon in euphotic waters and down to 20% in deep waters. The protein equivalent to the total PAA content of particulate matter in near-surface waters amounted to 11–32 μg/1 at oceanic stations and up to 270 μg/1 at coastal stations.  相似文献   

5.
东海陆架典型断面颗粒态氨基酸的分布及控制因素分析   总被引:3,自引:1,他引:2  
采用高效液相色谱法,通过现场调查对东海典型PN断面(文中为C断面)的颗粒态氨基酸(Particulate Amino Acids,PAA)进行了分析,并结合叶绿素a(Chla)、颗粒有机碳(POC)、颗粒有机氮(PON)及颗粒态氨基酸的构型特征(D和L型)等参数探讨了该区颗粒有机氮的来源和降解情况。结果表明,在长江口最大浑浊带,受咸淡水混合和生物现场生产双重作用影响,POC、PON以及PAA的总浓度均达到了极大值,其中,受再悬浮作用影响,底层水体中的有机物呈现高度降解的状态;近岸水华区域的颗粒态氨基酸则更多来源于现场生产,而且POC/Chla质量比值与降解因子DI值的负相关特征表明冲淡水向海洋输送的过程中,现场生产力对颗粒有机碳的贡献比重逐渐增大,悬浮颗粒物也变得越来越新鲜。值得关注的是,一些D型氨基酸[如D型天冬氨酸(D-Asp),D型丙氨酸(D-Ala)]与细菌生物量之间存在良好的正相关性,暗示颗粒态氨基酸在受到物理水团和生物现场生产作用控制的同时,还受控于微微型浮游生物以及异养细菌。  相似文献   

6.
Advances in analytical techniques now allow for the potential analysis of intact peptides and proteins isolated from marine sediments. However, there is no established technique for the extraction of macromolecular materials from marine sediments. Six different methods for extracting the amino acid component from coastal marine sediments were compared to the standard hot acid hydrolysis technique for their percent recovery and amino acid composition. The standard hot acid hydrolysis on dried, whole sediments released the greatest concentration of total amino acids (PS-THAA; 3.52 mg gdwt 1 ± 10% (SMD)), yet this only accounted for 22% of the total nitrogen in Puget Sound sediments (Washington, USA). Repeated hydrolysis of the same samples did not improve the recovery of nitrogen by more than an additional 10%. Base extraction (0.5 N NaOH) was the second best method for recovering amino acid nitrogen, releasing 60% of the Puget Sound total hydrolyzable amino acids (PS-THAA) (corresponding to 13% of the total sedimentary nitrogen), and has the advantage that it does not rely on peptide hydrolysis to free the nitrogenous component from the sediment matrix. The amino acid distribution of the 0.5 N NaOH extract was not significantly different than the initial THAA. Other non-hydrolyzing methods released lower yields of amino acids (Triton X-100 ≥ hot water > 50 mM NH4HCO3 > HF), but might prove to be of use to investigators interested in specific fractions of sedimentary organic nitrogen because these four methods had distinctly different amino acid compositions (enrichments in basic amino acids and depletions in acidic amino acids). Treatments with HF both before and after traditional hydrolysis and/or extractions with base did not release any more of the sedimentary nitrogen. Our results are consistent with the hypothesis that a large fraction of the sedimentary nitrogen (TN) is protected within an organic matrix.  相似文献   

7.
The phase partitioning of 234Th between dissolved (<10-kiloDalton, kD), colloidal (10 kD—0.4 μm), and particulate (⩾0.5 μm) matter across a horizontal transect, from a coastal station to the deep Canada Basin, and a vertical profile in the deep Canada Basin of the western Arctic Ocean was investigated. Concentrations of suspended particulate matter (SPM), dissolved, colloidal and particulate organic carbon, particulate organic nitrogen and nutrients (silicate, phosphate and nitrate) were also measured to assess transport and scavenging processes.Total 234Th (colloidal+particulate+dissolved) indicated deficiencies relative to secular equilibrium with its parent, 238U in the upper 100 m, which suggests active scavenging of 234Th onto particle surfaces. In contrast, at depths >200 m, general equilibrium existed between total 234Th and 238U. The inventory of SPM and the specific activity of particulate 234Th in the Canada Basin was about an order of magnitude higher than the profile reported for the Alpha Ridge ice camp station. This higher concentration of SPM in the southwestern Canada Basin is likely derived from ice-rafted sedimentary particles. Inventories of nutrients, and dissolved organic carbon and nitrogen in the upper 100 m of the Canada Basin are comparable to the other estimates for the central Arctic Ocean. Comparison of the mass concentrations of colloidal and filter-retained particulate matter as well as the activity of 234Th in these phases indicates that only a very small component of the colloidal material is actively involved in Th scavenging. Lower values of the conditional partition coefficient between the colloidal and dissolved phase indicate that the Arctic colloids are less reactive than colloidal material from other regions. The conditional partition coefficient between the filter-retained and dissolved phases (Kf) is generally higher than that for other regions, which is attributed to the higher complexation capacity of glacio-marine sedimentary particles in these waters. The 234Th-derived export of POC for the shelf and deep Canada Basin ranges between 5.6 and 6.5 mmol m−2 d−1, and is in agreement with other estimates reported for the central Arctic Ocean and Beaufort Sea.  相似文献   

8.
The relationships existing between the protein-containing fraction of particulate matter and amino acids dissolved in seawater were studied in the Gulf of Marseille at different periods of the year. The concentration of particulate proteins was almost zero in February and attained maximum values during April and May, the average concentrations of dissolved amino acids (total) varied between 900 and 1200 nmole l?1 but larger variations were encountered at the surface and in the vicinity of the sediment. The influence of meteorological conditions and the effect of the sediment on the distribution of nitrogenous substances were taken into account. Combined dissolved amino acids were more abundant than free dissolved amino acids in 90% of the cases. The concentrations of dissolved amino acids observed in a zone bordering the North Mediterranean are comparable to those found in other regions of the world.  相似文献   

9.
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.  相似文献   

10.
To investigate organic matter source and reactivity in the Zhujiang River (Pearl River)Estuary and its adjacent areas, particulate organic carbon (POC), particulate hydrolysable amino acids (PHAA), and Chl a during two cruises in July 1999 and July 2000 were measured. The highest POC and PHAA concentration was observed in the waters with maximum Chl a. The spectra distribution,relative content (dry weight in milligram per gram), PHAA-C% POC and other indicators such as the ratios of amino acids vs. amino sugars (AA/AS) and glucosamine vs. galactosamine (Glum/Gal) suggested that particulate amino acids in the water column and sediments in the Zhujiang River Estuary were mainly derived from biogenic processes rather than transported from terrestrial erosion. In inner estuary where high turbidity was often observable, organic matter was mainly contributed by re-suspension of bottom sediments with revealed zooplankton, microbial reworked characteristics, which suggest that these organic matters were relatively “old“. In the estuarine brackish region, organic matter in water column is mainly contributed by relatively fresh, easily degradable phytoplankton derived organic matter.During physical - biological processes within the eastuary, organic matter derived from phytoplankton was subjected to alteration by zooplankton grazing and bacterial reworking.  相似文献   

11.
The concentrations of carbohydrates, including uronic acids, in dissolved (≤0.45μm) and colloidal (1 kDa—0.45 μm) phases were measured in estuarine waters of Galveston Bay, TX, in order to study their role in heavy metal detoxification. The concentrations of dissolved monosaccharides (MCHO) in Galveston Bay ranged from 13 to 62 μM-C, and those of dissolved polysaccharides (PCHO) ranged from 10 to 42 μM-C. On average, MCHO and PCHO contributed about 11% and 7% to dissolved organic carbon (DOC), respectively. The colloidal carbohydrates (CCHO) in Galveston Bay varied from 7 to 54 μM-C, and accounted for 9% to 24% of the colloidal organic carbon (COC), with an average value of 17%, suggesting that CCHO is abundant in the high molecular weight (HMW) fraction of DOC. The concentration of CCHO is generally significantly higher than that of PCHO. This result is attributed to entrainment of low molecular weight (LMW) carbohydrates into the retentate fraction during ultrafiltration. The concentration of total dissolved uronic acids (DUA) in the same samples varied from 1.0 to 8.3 μM-C, with an average value of 6.1 μM-C, while the colloidal uronic acids (CUA) ranged from 0.8 to 6.4 μM-C, with an average value of 4.8 μM-C. The concentrations of DUA are higher than the previously reported values in coastal waters. Furthermore, CUA represent a dominant component of DUA in Galveston Bay waters. More importantly, significant correlations of PCHO and DUA to dissolved Cu concentrations (≤0.45 μm) were found, suggesting that acid polysaccharides were produced in response to trace metal stressors.  相似文献   

12.
A time-series sediment trap was used to collect material for organic geochemical analyses as part of the Sediment Trap Intercomparison Experiment. The flux of particulate matter was more likely related to a change in current direction during the course of the experiment than to small-scale changes in surface productivity. Of the compounds measured, the n-alkanes reflected this change most dramatically, decreasing with the change in current direction.Amino acid and lipid components were measured in the samples. Amino acids made up 15–35% of the total organic carbon flux and 35–75% of the total organic nitrogen flux collected in the traps. Specific amino acids indicative of bacterial biomass or activity suggested that microbial growth occurred in the traps, probably as a result of incomplete poisoning by NaN3. However, the effect of this growth on the bulk composition of particulate matter appeared to be minimal.The amino acid distribution of particulate organic material collected by large volume filtration (LVF) was not significantly different from the sediment trap material, except that the LVF material did not appear to be affected by bacterial growth.  相似文献   

13.
The inner part of the Ariake Sea is one of the most productive estuarine systems in Japan. To examine potential food items for estuarine organisms, we conducted monthly observations of the dynamics of particulate organic matter along the macrotidal Chikugo River estuary in 2005 and 2006. In the neighboring macrotidal Midori and Kuma River estuaries, comparative observations were made. High turbidity and strong vertical mixing were observed only at low salinities (<10) in the Chikugo River estuary. In contrast, the Midori and Kuma River estuaries were characterized by less turbid and less mixed waters. Concentrations of particulate organic carbon often exceeded 5?mg?l?1 in or close to the estuarine turbidity maximum (ETM) of the Chikugo River estuary. However, such high concentrations were rarely observed in the other two estuaries. The observed differences could be attributable to different hydrodynamic processes related to the different lengths of tidal reaches: 23, 8, and 6?km in the Chikugo, Midori, and Kuma Rivers, respectively. In the Chikugo River estuary, spatiotemporal changes of chlorophyll a suggested that phytoplankton occurred abundantly up- and/or downstream from the ETM especially during the warm season. In contrast, pheophytin (i.e., plant detritus) always accumulated in or close to the ETM. Carbon stable isotope ratios and carbon to nitrogen ratios indicated that the plant detritus was derived from phytoplankton and terrestrial plants. The Chikugo River estuary has a high potential to support the production of estuarine organisms through abundant plant detritus in the well-developed ETM all the year round.  相似文献   

14.
Purine and pyrimidine bases in marine environmental particles collected in Harima-Nada, the Seto Inland Sea, Japan, were investigated by high performance liquid chromatography.Purines and pyrimidines concentrations varied from 0.3 to 9.3 μg l−1 (n=20) for suspended matter, and 0.3 to 0.6 mg g−1 (n=10) for sinking particles. A good correlation was found between chlorophyll a and purine+pyrimidine bases in suspended matter, indicating that these bases contained in suspended matter originated from phytoplankton.A comparison between several compositional data of the suspended matter and the sinking particles, namely CN ratio, composition of purines and pyrimidines, and percentages of the nitrogen bases relative to total particulate organic nitrogen, demonstrates that the sinking particles were different from suspended matter. Also, from the variety of purine and pyrimidine concentrations of marine particle samples, it was estimated that the decomposition rate of these bases seemed more rapid than decomposition rates of amino acids reported in our earlier study.  相似文献   

15.
Over 50 seawater samples from two different sites—Barcelona (Spain) and Banyuls-sur-Mer (France)—were analyzed in order to study the extent and postulate the processes driving the enrichment of hydrophobic organic pollutants in the sea surface microlayer (SML). A number of individual polychlorinated biphenyl (PCB) congeners (41) were measured to study their partitioning between the particulate (fraction > 0.7 μm) and the dissolved + colloidal phases (fraction < 0.7 μm), with the latter being differentiated into estimated dissolved and colloidal phases. In addition, several organochlorine pesticides were also measured, namely, HCB, α-HCH, γ-HCH, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT. The presence of PCB congener profiles found in the SML suggests a dynamic coupling with the atmosphere in Banyuls sampling site, whereas offshore Barcelona the presence of highly chlorinated congeners was due to persistent sediment resuspension. The average PCB concentration in the SML dissolved + colloidal phase were higher in Banyuls (7.8 ng L 1) than in Barcelona (3.6 ng L 1) samples, but in the particulate phase concentrations were higher in Barcelona (3.2 ng L 1) to that of Banyuls (1.4 ng L 1). However, PCB concentrations in the SML generally also showed large variability. Enrichment factors of PCBs and other organochlorine compounds in the SML with respect to the underlying water column ranged from 0.2 to 7.4. This may be explained for both the dissolved + colloidal and particulate phases by the enrichment in the SML of organic carbon (OC) as discerned from particle–water and colloid–water partitioning.  相似文献   

16.
Because organic matter originating in the euphotic zone of the ocean may have a distinctive nitrogen isotope composition (15N/14N), as compared to organic matter originating in terrestrial soils, it may be used to evaluate the relative nitrogen contribution to marine and estuarine sediment. The nitrogen isotope ratios of 42 sediment samples of total nitrogen and 38 dissolved pore-water ammonium samples from Santa Barbara Basin sediment cores were measured. The range of δ15N values for total nitrogen was +2.89 – +9.4‰ with a mean of +6.8‰ and for pore water ammonium, +8.2 – +12.4‰ with a mean of 10.2‰.The results suggest that the dissolved ammonium in the pore water is produced from bacterial degradation of marine organic matter. The range of δ15N values for total nitrogen in the sediment is interpreted as resulting from an admixture of nitrogen derived from marine (+10‰) and terrestrial (+2‰ marines. The marine component of this mixture, composed principally of calcium carbonate with smaller amounts of opal and organic matter, contains ~ 1.0% nitrogen. The terrestrial component, which comprises over 80% of the sediment, contains ~ 0.1% organically bound nitrogen and accounts for > 25% of the total nitrogen in Santa Barbara Basin sediment.  相似文献   

17.
Particulate samples were collected from the Changjiang river system during a flood period, in May 1997, and POC, stable isotope and lipids associated with particles were examined. Results showed the decrease (0.84% ~ 1.88%) of organic carbon content from the upper reaches to the estuary.δ13C values of particulate organic carbon was in the range of -24.9×10-3 to -26.6×10-3, which were close to the isotopic signature of continental C3 vegetation. Total particulate n-alkanes concentrations varied from 1.4 to 10.1μg/dm3,or from 23.7 to 107μg/g of total suspended matter. Fatty acids were present in all the samples, from 1.4 to 5.4μg/dm3, with saturated and unsaturated straight-chain and branched compounds in the carbon number range from C12 to C30. Both δ13C and the ratio of carbon content to nitrogen content indicate the predominance of terrestrial inputs (soil organic matter) among the particles. The biomarker approach has been used to identify the relative portion of terrigenous and autochthonous fraction in the particulate samples. The distribution of fatty acids suggests a striking phytoplanktonic and microbial signal in most particle samples. The terrestrial alkanes are used to estimate the contribution of terrestrial inputs along the mainstream.  相似文献   

18.
In this study, the 14N:15N ratio of suspended particulate material collected from the Tamar river estuary, south-west England, is described. Three populations of particles, distinguishable by their 15N content, were observed. This investigation has shown that populations of estuarine particles are generated by biological transformations in situ and that the 15N content of estuarine particles does not merely reflect hydrodynamic mixing of the freshwater and seawater source particulate material.  相似文献   

19.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   

20.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号