首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

2.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

3.
Direct measurements of new production and carbon export in the subtropical North Atlantic Ocean appear to be too low when compared to geochemical-based estimates. It has been hypothesized that episodic inputs of new nutrients into surface water via the passage of mesoscale eddies or winter storms may resolve at least some of this discrepancy. Here, we investigated particulate organic carbon (POC), particulate organic nitrogen (PON), and biogenic silica (BSiO2) export using a combination of water column 234Th:238U disequilibria and free-floating sediment traps during and immediately following two weather systems encountered in February and March 2004. While these storms resulted in a 2–4-fold increase in mixed layer NO3 inventories, total chlorophyll a and an increase in diatom biomass, the systems were dominated by generally low 234Th:238U disequilibria, suggesting limited particle export. Several 234Th models were tested, with only those including non-steady state and vertical upwelling processes able to describe the observed 234Th activities. Although upwelling velocities were not measured directly in this study, the 234Th model suggests reasonable rates of 2.2–3.7 m d?1.Given the uncertainties associated with 234Th derived particle export rates and sediment traps, both were used to provide a range in sinking particle fluxes from the upper ocean during the study. 234Th particle fluxes were determined applying the more commonly used steady state, one-dimensional model with element/234Th ratios measured in sediment traps. Export fluxes at 200 m ranged from 1.91±0.20 to 4.92±1.22 mmol C m?2 d?1, 0.25±0.08 to 0.54±0.09 mmol N m?2 d?1, and 0.22±0.04 to 0.50±0.06 mmol Si m?2 d?1. POC export efficiencies (Primary Production/Export) were not significantly different from the annual average or from time periods without storms, although absolute POC fluxes were elevated by 1–11%. This increase was not sufficient, however, to resolve the discrepancy between our observations and geochemical-based estimates of particle export. Comparison of PON export rates with simultaneous measurements of NO3? uptake derived new production rates suggest that only a fraction, <35%, of new production was exported as particles to deep waters during these events. Measured bSiO2 export rates were more than a factor of two higher (p<0.01) than the annual average, with storm events contributing as much as 50% of annual bSiO2 export in the Sargasso Sea. Furthermore it appears that 65–95% (average 86±14%) of the total POC export measured in this study was due to diatoms.Combined these results suggest that winter storms do not significantly increase POC and PON export to depth. Rather, these storms may play a role in the export of bSiO2 to deep waters. Given the slower remineralization rates of bSiO2 relative to POC and PON, this transport may, over time, slowly decrease water column silicate inventories, and further drive the Sargasso Sea towards increasing silica limitation. These storm events may further affect the quality of the POC and PON exported, given the large association of this material with diatoms during these periods.  相似文献   

4.
An extensive 234Th data set was collected at two sites in the North Pacific: ALOHA, an oligotrophic site near Hawaii, and K2, a mesotrophic HNLC site in the NW Pacific as part of the VERTIGO (VERtical Transport In the Global Ocean) study. Total 234Th:238U activity ratios near 1.0 indicated low particle fluxes at ALOHA, while 234Th:238U ~0.6 in the euphotic zone at K2 indicated higher particle export. However, spatial variability was large at both sites—even greater than seasonal variability as reported in prior studies. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. At K2, there was a decrease in export flux and increase in 234Th activities over time associated with the declining phase of a summer diatom bloom, which required the use of non-steady state models for flux predictions. This variability in space and time confounds the use of single profiles of 234Th for sediment trap calibration purposes. High vertical resolution profiles show narrow layers (20–30 m) of excess 234Th below the deep chlorophyll maximum at K2 associated with particle remineralization resulting in a decrease in flux at depth that may be missed with standard sampling for 234Th and/or with sediment traps. Also, the application of 234Th as POC flux tracer relies on accurate sampling of particulate POC/234Th ratios and here the ratio is similar on sinking particles and mid-sized particles collected by in-situ filtration (>10–50 μm at ALOHA and >5–350 μm at K2). To further address variability in particle fluxes at K2, a simple model of the drawdown of 234Th and nutrients is used to demonstrate that while coupled during export, their ratios in the water column will vary with time and depth after export. Overall these 234Th data provide a detailed view into particle flux and remineralization in the North Pacific over time and space scales that are varying over days to weeks, and 10's–100's km at a resolution that is difficult to obtain with other methods.  相似文献   

5.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

6.
《Marine Chemistry》2007,103(1-2):185-196
Large-volume sampling of 234Th and drifting sediment trap deployments were conducted as part of the 2004 Western Arctic Shelf–Basin Interactions (SBI) spring (May 15–June 23) and summer (July 17–August 26) process cruises in the Chukchi Sea. Measurements of 234Th and particulate organic carbon (POC) export fluxes were obtained at five stations during the spring cruise and four stations during the summer cruise along Barrow Canyon (BC) and along a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. 234Th and POC fluxes obtained with in situ pumps and drifting sediment traps agreed to within a factor of 2 for 70% of the measurements. POC export fluxes measured with in situ pumps at 50 m along BC were similar in spring and summer (average = 14.0 ± 8.0 mmol C m 2 day 1 and 16.5 ± 6.5 mmol C m 2 day 1, respectively), but increased from spring to summer at the EHS transect (average = 1.9 ± 1.1 mmol C m 2 day 1 and 19.5 ± 3.3 mmol C m 2 day 1, respectively). POC fluxes measured with sediment traps at 50 m along BC were also similar in both seasons (31.3 ± 9.3 mmol C m 2 day 1 and 29.1 ± 14.2 mmol C m 2 day 1, respectively), but were approximately twice as high as POC fluxes measured with in situ pumps. Sediment trap POC fluxes measured along the EHS transect also increased from spring to summer (3.0 ± 1.9 mmol C m 2 day 1 and 13.0 ± 6.4 mmol C m 2 day 1, respectively), and these fluxes were similar to the POC fluxes obtained with in situ pumps. Discrepancies in POC export fluxes measured using in situ pumps and sediment traps may be reasonably explained by differences in the estimated POC/234Th ratios that arise from differences between the techniques, such as time-scale of measurement and size and composition of the collected particles. Despite this variability, in situ pump and sediment trap-derived POC fluxes were only significantly different at a highly productive station in BC during the spring.  相似文献   

7.
The flux and composition of material caught using two different upper ocean sediment trap designs was compared at the Bermuda Atlantic Time-series Study site (BATS). The standard surface-tethered trap array at BATS was compared to a newly designed neutrally buoyant sediment trap (NBST). Both traps used identical cylindrical collection tubes. Of particular concern was the effect of horizontal flow on trap collection efficiency. In one experiment, mass, particulate organic carbon (POC) and particulate organic nitrogen (PON) fluxes were slightly lower (20–30%) in the NBST than in the standard BATS trap. In contrast, 234Th and fecal pellet fluxes were up to a factor of two to three lower in the NBST. In a second experiment, mass and POC fluxes decreased significantly with depth in the BATS surface-tethered trap, but not in the NBST. Different brine treatments had no measurable effect on collection efficiencies. A striking observation was that the swimmer “flux” was much larger in the standard BATS traps than in the NBST. Overall, these results show that different components of the sinking flux can be collected with differing efficiencies, depending upon how traps are deployed in the ambient environment.  相似文献   

8.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   

9.
234Th was used to quantify sinking fluxes and residence times of particles in surface waters of the north-western Mediterranean Sea. Measurements of dissolved and particulate 234Th were made at the DYFAMED station (43°25′N–7°51′E, JGOFS-France program). Sampling covered 1 year on four cruises in 1994 (February 9, April 29, June 3, October 1) and focused on a transition period in mid-spring with six repeated profiles collected during May 1995. 234Th was nearly in equilibrium with its parent 238U most of the year, except in spring. The intensive sampling in May shows a rapid evolution throughout the month from a moderate 234Th deficit to near-equilibrium values. The time-series of 234Th were treated with steady-state and non-steady-state models. 234Th particulate fluxes clearly indicate large variability in export, with the highest values observed in spring. Particle residence times in the upper 40 m range from <10 to >250 days, and could increase by a factor of 10 within 2 weeks. POC fluxes from the upper 40 m and export ratios (ThE: ratio of 234Th-derived POC export to primary production), derived from the 234Th/238U disequilibrium in the water column and POC/234Th ratio on trapped material, decrease from about 9.5 mmol C m−2 d−1 and >22% in early May to less than 5 mmol C m−2 d−1 and 15% after mid-May. The 234Th-derived information is in agreement with the annual variations in Mediterranean Sea productivity.  相似文献   

10.
Time-series measurements of 234Th activities and particulate organic carbon (POC) concentrations were made at time-series stations (K1, K2, K3, and KNOT) in the northwestern North Pacific from October 2002 to August 2004. Seasonal changes in POC export fluxes from the surface layer (∼100 m) were estimated using 234Th as a tracer. POC fluxes varied seasonally from approximately 0 to 180 mg C m−2 d−1 and were higher in spring–summer than in autumn–winter. The export ratio (e-ratio) ranged from 6% to 55% and was also higher in spring–summer. Annual POC fluxes were estimated to be 31 g C m−2 y−1 in the subarctic region (station K2) and 23 g C m−2 y−1 in the region between the subarctic and subtropical gyres (station K3). POC fluxes and e-ratios in the northwestern North Pacific were much higher than those in most other oceans. The annual POC flux corresponded to 69% of annual new production estimated from the seasonal difference of the nutrient in the Western Subarctic Gyre (45 g C m−2 y−1). These results indicate that much of the organic carbon assimilated in the surface layer of the northwestern North Pacific is transferred to the deep ocean in particulate form. Our conclusions support previous reports that diatoms play an important role in the biological pump.  相似文献   

11.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

12.
We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (>1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.  相似文献   

13.
Time-series measurements of particulate organic carbon (POC) and particulate nitrogen (PN) fluxes, sediment community composition, and sediment community oxygen consumption (SCOC) were made at the Hawaii Ocean Time-series station (Sta. ALOHA, 4730 m depth) between December 1997 and January 1999. POC and PN fluxes, estimated from sediment trap collections made at 4000 m depth (730 m above bottom), peaked in late August and early September 1998. SCOC was measured in situ using a free vehicle grab respirometer that also recovered sediments for chemical and biological analyses on six cruises during the 1-year study. Surface sediment organic carbon, total nitrogen and phaeopigments significantly increased in September, corresponding to the pulses in particulate matter fluxes. Bacterial abundance in the surface sediment was highest in September with a subsurface high in November. Sediment macrofauna were numerically dominated by agglutinating Foraminifera fragments with highest density in September. Metazoan abundance, dominated by nematodes was also highest in September. SCOC significantly increased from a low in February to a high in September. POC and PN fluxes at 730 m above bottom were significantly correlated with SCOC with a lag time of ⩽14 days, linking pelagic food supply with benthic processes in the oligotrophic North Pacific gyre. The annual supply of POC into the abyss compared to the estimated annual demand by the sediment community (POC:SCOC) indicates that only 65% of the food demand is met by the supply of organic carbon.  相似文献   

14.
The activity of234Th (t 1/2=24.1 days) in dissolved, particulate and sediment trap samples was determined in the water column off southwestern Taiwan during 2–4 October, 1993. Vertical234Th fluxes measured by the free-floating sediment traps ranged from 363 to 2290 dpm m–2 d–1 in the upper 450 m. Th-234 fluxes predicted from the irreversible scavenging model concur with those measured by the sediment traps. Comparison of the residence times of particulate234Th and particulate organic carbon showed that their respective values differ by a factor of approximately 23, which suggests organic carbon is preferentially recycled relative to234Th in the euphotic zone.  相似文献   

15.
1IntroductionThefluxesofcarbon,nutrients,andassoci-atedelementsinvolvedinthebiogeochemicalcyclesoutoftheeuphoticzoneareimportantinthestudyofglobalCO2 change.Someworkershaveproposedthatatthesteadystatethefluxofparticulateorganiccarbonoutoftheeuphoticzoneequalsthenewproduction(EppleyandPe-terson,1979;Eppley,1989).Generallytwometh-odscanbeemployedtoobtainthefluxdata.Oneistousesedimenttrapsintheupperocean(<200m)orfloatingsedimenttraps.Thoughthesedimenttraptechnologyhasshowntobeuse-fulfortimeser…  相似文献   

16.
Dynamics of the natural radioactive particle tracer 234Th (half-life: 24.1 days) within the abyssal water column up to 1000 m above bottom and within surface sediments of the northeast Atlantic (Porcupine Abyssal Plain; depth: ≈4845 m) were investigated. Distributions of transmissometer voltages and potential temperature indicated a subdivision of the near-bottom water column into a benthic mixed layer (BML; thickness: ≈10–65 m) and the layer above the BML up to the upper boundary of the bottom nepheloid layer (BNL; thickness: ≈1000 m). Comparison of 234Th fluxes (dpm m−2d−1) in sediment traps, vertical fluxes derived from 234Th/238U-disequilibrium in the near-bottom water column and excess 234Th inventories in the surface sediment provided evidence for lateral advection of 234Th-depleted water and a ‘missing sink’ for 234Th. A simple one-dimensional steady-state box-model approach was applied to investigate 234Th dynamics. Estimated residence times suggest the BML and the resuspension zone of the surface sediment to be highly dynamic systems with respect to particle cycling and sorptive reactions on a time scale of weeks. Model results indicate that, through the chemical forcing of changing particle concentration, a thickening BML results in (1) increasing residence times of particulate 234Th in the BML with respect to the net fluxes across the upper boundary of the BML and into the surface sediment; (2) declining adsorption rate constants in the BML; (3) increasing desorptive fluxes in the BML resulting in (4) enhanced 234Th decay in the BML; (5) decreasing net fluxes of particulate 234Th from the BML to the upper BNL above the BML and to the sediment. Potential consequences for carbon cycling in the water column of the deep ocean are discussed.  相似文献   

17.
The Amazon River Plume delivers freshwater and nutrients to an otherwise oligotrophic western tropical North Atlantic (WTNA) Ocean. Plume waters create conditions favorable for carbon and nitrogen fixation, and blooms of diatoms and their diazotrophic cyanobacterial symbionts have been credited with significant CO2 uptake from the atmosphere. The fate of the carbon, however, has been measured previously by just a few moored or drifting sediment traps, allowing only speculation about the full extent of the plume's impact on carbon flux to the deep sea. Here, we used surface (0.5 m) sediment cores collected throughout the Demerara Slope and Abyssal Plain, at depths ranging from 1800 to 5000 m, to document benthic diagenetic processes indicative of carbon flux. Pore waters were extracted from sediments using both mm- and cm-scale extraction techniques. Profiles of nitrate (NO3) and silicate (Si(OH)4) were modeled with a diffusion-reaction equation to determine particulate organic carbon (POC) degradation and biogenic silica (bSi) remineralization rates. Model output was used to determine the spatial patterns of POC and bSi arrival at the sea floor. Our estimates of POC and Si remineralization fluxes ranged from 0.16 to 1.92 and 0.14 to 1.35 mmol m−2 d−1, respectively. A distinct axis of POC and bSi deposition on the deep sea floor aligned with the NW axis of the plume during peak springtime flood. POC flux showed a gradient along this axis with highest fluxes closest to the river mouth. bSi had a more diffuse zone of deposition and remineralization. The impact of the Amazon plume on benthic fluxes can be detected northward to 10°N and eastward to 47°W, indicating a footprint of nearly 1 million km2. We estimate that 0.15 Tmol C y−1 is remineralized in abyssal sediments underlying waters influenced by the Amazon River. This constitutes a relatively high fraction (~7%) of the estimated C export from the region.; the plume thus has a demonstrable impact on Corg export in the western Atlantic. Benthic fluxes under the plume were comparable to and in some cases greater than those observed in the eastern equatorial Atlantic, the southeastern Atlantic, and the Southern Ocean.  相似文献   

18.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

19.
With the aim of improving the knowledge of the open ocean carbon cycle, we present a budget of particulate organic carbon (POC) fluxes carried out in the deep central part of the Algero-Balearic Basin (ABB) at 2850 m water depth based on a single mooring equipped with five automated sediment traps deployed from April 2001 to May 2002 at depths of 250, 845, 1440, 2145 and 2820 m. Suspended particulate matter (SPM) and superficial sediments were also used as indicators of hydrodynamics and carbon burial, respectively. The data reveal that the fraction of primary production buried in the sediment, which finally leads to the sequestration of carbon dioxide from the atmosphere, is 0.16%, lower than the values found in the nearby continental margin regions such as the Alboran Sea (0.48–0.89%) but of the same order as recorded at other Mediterranean sites at similar depths, such as the Ionian Sea (0.11%). As they sink through the water column, the particles exhibit decreases in flux that are similar to those observed elsewhere, but also show variations that appear to correlate with hydrological features of the water masses present in the basin, as revealed by SPM concentrations and compositions. The input of the tyrrhenian deep water (TDW) into the ABB at 800–1500 m of water depth exhibits low suspended POC concentrations and low sinking POC fluxes were also observed in this depth range. Gulf of Lions water mass formation appears to also contribute to elevated suspended POC concentrations and perhaps POC accumulation in the traps and sediments by spreading of dense cold water along the whole ABB that supplied POC at depths higher than 2000 m.  相似文献   

20.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号