首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

2.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

3.
In this study at the Bermuda Atlantic Time-series Study (BATS) site we demonstrate that the polonium–lead disequilibrium system may perform better as a tracer of organic carbon export under low-flux conditions (in this case, <2.5 mmol C m?2 d?1) than under bloom conditions in an oligotrophic setting. With very few exceptions, the POC flux predictions calculated from the water-column 210Po deficit were within a factor of 2 of the POC flux caught in surface-tethered sediment traps. However, we found higher correlation between size-fractionated particulate 210Po activity and POC concentration in November 2006 (r=0.93) than in January (r=0.79) and during the spring bloom in March 2007 (r=0.80). We suggest that this is due to the ability of polonium to distinguish between bulk mass flux and organic carbon export under oligotrophic and lithogenic-driven flux regimes. Further, we found that the POC/Po ratio on particles was largely independent of size class between 10 and 100 μm (P=0.13) during each season, supporting the notion that export in this oligotrophic system is driven by sinking aggregates of smaller cells and not by large, individual cells.  相似文献   

4.
We conducted a multi-year sediment-trap experiment in Saanich and Jervis Inlets, British Columbia, Canada. Moorings with traps positioned at three depths were placed near the mouth and toward the head of each fjord, and deployments were monthly. We present fluxes of total mass, biogenic silica (BSi), particulate organic carbon (POC) and aluminium (Al), as well as the δ13C signal of the POC, and we compare the sediment-trap fluxes to primary-production measurements made during the experiment.Diatomaceous silica and aluminosilicates were the primary components of the settling flux, while organic matter from marine (largely diatoms) and terrestrial sources was occasionally a significant portion of the sinking material. Fluxes of BSi and POC were highest in the spring and summer, tracing maxima in local primary production. These fluxes decreased, increased or remained constant with depth due to water-column remineralisation and variability in processes that cause fluxes to increase with depth. Al fluxes followed local precipitation and river runoff at the landward stations, and with remarkable faithfulness in Saanich Inlet. Near the mouths, there was little seasonality in Al flux, and the increases of flux with depth reveal sedimentary plumes at each fjord’s sill. Tidal and deepwater-renewal components of the plumes are evident, and the plume in Saanich Inlet was particularly intense. Fluxes of Al to deep sediment traps associated with renewal flows were also observed toward the head of each fjord.Marine δ13C endmembers are estimated from relationships between δ13C and BSi concentrations, and measures of soil δ13C from each fjord were available. These endmembers are used with the δ13C record to quantify marine and terrigenous contributions to the POC flux. Marine POC composed 54-72% of the total POC caught by shallow sediment traps in spring and summer, and 36-54% in fall and winter. Primary production and sediment-trap fluxes are used to estimate annually averaged export ratios (shallow-trap flux:autotrophic assimilation) for marine POC and Si. POC export ratios (0.092-0.14) were low for these productive waters, but they compare with other results based on sediment-trap fluxes from coastal waters where terrigenous OC has been subtracted. Export ratios of Si were calculated using an estimated Si:C assimilation ratio and, therefore, are susceptible to error, but the high results (>0.8) suggest that BSi was exported more efficiently than POC. The possibility that POC was preferentially lost after interception by sediment traps is also considered. Primary production and settling fluxes were higher in Saanich Inlet than in Jervis Inlet, while export ratios of OC and Si were similar in both fjords, away from the nepheloid layer near the sill of Saanich Inlet.  相似文献   

5.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   

6.
Time-series sediment traps were deployed in the subtropical oligotrophic northwestern Pacific (SONP) at three depths from August to September 2015 to better understand vertical flux of sinking particles. Sinking particles were collected at 5-day intervals over the sediment trap deployment period. The average total mass flux at water depths of 400 m, 690 m, and 1,710 m was 9.1, 4.4, and 4.1 mg m-2day-1, respectively. CaCO3 materials constituted 50 to 70% of sinking particles while in comparison particulate organic carbon (POC) constituted up to 20%. A synchronous variation of total mass flux was observed at the three depths, indicating that calcite-dominated particles sank from 400 to 1,710 m within a 5-day period. POC flux at these water depths was 2.4, 0.38, and 0.31 mg m-2day-1, respectively. Our results indicate low transfer efficiencies of 16% from 400 to 690 m and 13% for the 400 to 1,710 m depth range. The estimated transfer efficiencies were significantly lower than those observed at the K2 station in the northwest Pacific subarctic gyre, presumably because of a prevalence of pico-cyanobacteria in the SONP. Because cyanobacteria have a semi-permeable proteinaceous shell, they are more readily remineralized by bacteria than are siliceous phytoplankton in the northwest Pacific subarctic gyre. Continued surface water warming and expansion of the SONP will likely have a profound impact on ocean acidification in the northwest Pacific, possibly affecting the transfer efficiency of sinking POC to the deep-sea.  相似文献   

7.
An extended time series of particle fluxes at 3800 m was recorded using automated sediment traps moored at Ocean Station Papa (OSP, 50°N, 145°W) in the northeast Pacific Ocean for more than a decade (1982–1993). Time-series observations at 200 and 1000 m, and short-term measurements using surface-tethered free-drifting sediment traps also were made intermittently. We present data for fluxes of total mass (dry weight), particulate organic carbon (POC), particulate organic nitrogen (PON), biogenic Si (BSi), and particulate inorganic carbon (PIC) in calcium carbonate. Mean monthly fluxes at 3800 m showed distinct seasonality with an annual minimum during winter months (December–March), and maximum during summer and fall (April–November). Fluxes of total mass, POC, PIC and BSi showed 4-, 10-, 7- and 5-fold increases between extreme months, respectively. Mean monthly fluxes of PIC often showed two plateaus, one in May–August dominated by <63 μm particles and one in October–November, which was mainly >63 μm particles. Dominant components of the mass flux throughout the year were CaCO3 and opal in equal amounts. The mean annual fluxes at 3800 m were 32±9 g dry weight g m−2 yr−1, 1.1±0.5 g POC m−2 yr−1, 0.15±0.07 g PON m−2 yr−1, 5.9±2.0 g BSi m−2 yr−1 and 1.7±0.6 g PIC m−2 yr−1. These biogenic fluxes clearly decreased with depth, and increased during “warm” years (1983 and 1987) of the El Niño, Southern Oscillation cycle (ENSO). Enhancement of annual mass flux rates to 3800 m was 49% in 1983 and 36% in 1987 above the decadal average, and was especially rich in biogenic Si. Biological events allowed estimates of sinking rates of detritus that range from 175 to 300 m d−1, and demonstrate that, during periods of high productivity, particles sink quickly to deep ocean with less loss of organic components. Average POC flux into the deep ocean approximated the “canonical” 1% of the surface primary production.  相似文献   

8.
Particle fluxes to 3100 m depth at 45°50′N, 19°30′W were measured using time-series sediment traps during a 17 month period encompassing 1989 and 1990 JGOFS spring bloom process studies in the northeast Atlantic. There was a marked intra-annual variability in fluxes of mass, particulate inorganic carbon (PIC), particulate organic carbon (POC) and opal, appearing as two major flux events in each year. In 1989, the first flux event represented the settlement of spring bloom-type material, whereas the second, in autumn, was heavily enriched in mucopolysaccharides. In 1990, in contrast, the two flux events comprised spring bloom-type material and arrived at depth at different times relative to the 1989 events. The intra- and interannual variability evident for all three biogenic components was most notable for POC: (i) the autumn 1989 event supplied twice as much POC to 3100 m as the earlier spring bloom settlement—a quite unexpected observation—and (ii) the annual average POC flux in 1989 was 3–4 times more than in 1990. A synthesis of process study datasets with sediment trap data enables an evaluation of the coupling of deep fluxes with surface-water events. Spatial variability of the 1989 deep flux events is assessed by comparing the sediment trap data reported here with those from a second site 100 km away (Honjo and Manganini,Deep-Sea Research II,40, 587–607, 1993). The timing and magnitude of the 1989 spring bloom settlement was indistinguishable in the two datasets, indicating no spatial variability in flux between these sites. In contrast, the autumn 1989 flux event was barely recorded at the second site. Given the biogeochemical importance of this latter event to deep waters, most notable in terms of its contribution to POC flux, this observation of deep-water mesoscale flux variability indicates a significant problem in determining regional carbon budgets. Construction of basin-scale budgets is a central goal of JGOFS and for this to be achieved further studies of mesoscale variability of particle flux are essential.  相似文献   

9.
Measurements of particle size-fractionated POC/234Th ratios and 234Th and POC fluxes were conducted using surface-tethered, free-floating, sediment traps and large-volume in-situ pumps during four cruises in 2004 and 2005 to the oligotrophic eastern Mediterranean Sea and the seasonally productive western Mediterranean and northwest Atlantic. Analysis of POC/234Th ratios in sediment trap material and 10, 20, 53, 70, and 100 μm size-fractionated particles indicate, for most stations, decreasing ratios with depth, a weak dependence on particle size, and ratios that converge to ~1–5 μmol dpm?1 below the euphotic zone (~100–150 m) throughout the contrasting biogeochemical regimes. In the oligotrophic waters of the Aegean Sea, 234Th and POC fluxes estimated using sediment traps were consistently higher than respective fluxes estimated from water-column 234Th–238U disequilibrium, observations that are attributed to terrigenous particle scavenging of 234Th. In the more productive western Mediterranean and northwest Atlantic, 234Th and POC fluxes measured by sediment trap and 234Th–238U disequilibrium agreed within a factor of 2–4 throughout the water column. An implication of these results is that estimates of POC export by sediment traps and 234Th–238U disequilibrium can be biased differently because of differential settling speeds of POC and 234Th-carrying particles.  相似文献   

10.
《Oceanologica Acta》1998,21(4):521-532
A sediment trap experiment was carried out in the West Caroline Basin, located in the equatorial western Pacific between influences of the Asian monsoon and the open ocean. Annual mass flux at the shallow trap at Site 1 was 57.10 g m-2 yr-1. Generally, the higher flux of organic matter was associated with higher activities of biogenic opal-producing and carbonate-producing plankton communities. In addition, as the organic matter content increases, the organic carbon/carbonate carbon ratio shows a tendency to increase. Carbonate-producing plankton was predominant during periods 1 and 3 (May to July and November to the beginning of December), which could be due to limited silica supply to the euphotic zone. On the other hand, surface sea water was more nutrient-rich during periods 2 and 4 (August to October and the end of December to April) at Site 1. These high total mass fluxes could be stimulated by wind.The amount of biogenic components collected in the sediment traps and the accumulation in surface sediments at Site 1 could be compared with primary productivity values. Carbonate and biogenic opal fluxes were 99% and 90% less, respectively, in the surface sediments compared to those in the shallow sediment trap. This could be due to the reaction of sinking particles with undersaturated deep sea water just above the sea floor, rather than with the water column during sinking. About 20% of the organic matter was decomposed between the shallow and deep sediment traps and more than 98% between the deep sediment trap and final burial in the surface sediments. The relative amount of organic carbon preserved in surface sediments was about 0.10% of annual primary productivity.  相似文献   

11.
The role of zooplankton in the vertical mass flux in the Kara and Laptev seas was studied during cruise 63 of the R/V Akademik Mstislav Keldysh in August–October 2015. Mass fluxes were estimated using sediment trap samples. The maximum values of the total vertical flux (19600 mg m?2 day?1) and particulate organic carbon (POC) flux (464 mg C m?2 day?1) were measured close to the Lena River Delta in the Laptev Sea. In the Kara Sea, the total flux (80–2700 mg m?2 day?1) and the POC flux (17–130 mg C m?2 day?1) were substantially higher than the estimates published earlier. The fecal pellet flux varied from 2 to 92 mg C m?2 day?1 and made up 4–190% of the total organic carbon flux. The mineral composition of fecal pellets largely mirrored that of suspended particulate matter. Clay minerals in the fecal pellets were more abundant than in particulate matter in the areas with noticeable freshwater impact. The flux of zooplankton carcasses varied from 0.1 to 66.4 mg C m?2 day?1 and made up 0.2–72% of total POC flux. The results are discussed in relation to the abundance and composition of zooplankton, the concentration and composition of suspended particulate matter, hydrophysical conditions, and methods of sample preparation for analysis.  相似文献   

12.
For the first time, a 12-month trap experiment was conducted on both sides of the strait between Crete and Antikythira Island (Eastern Mediterranean Sea) from June 1994 to June 1995 as part of the PELAGOS experiment. Analyses of major chemical constituents, including carbohydrates and stable lead isotopes and Scanning Electron Microscope studies were performed on the trap samples. Total mass fluxes varied between 1 and 1273 mg m−2 d−1. The lowest fluxes observed were in summer and autumn 1994, when stratification of the water column was at its deepest. In general, mass fluxes exhibited very low values throughout this experiment confirming the strong oligotrophy of this area. The mean contents of the major constituents (carbonates, opal, lithogenic fraction) were quite similar during the survey and between traps, with the exception of organic carbon contents, which were highest (7–10%) in summer 1994, i.e. during the period of lowest mass fluxes. During the first 6-month deployment (summer–autumn 1994) there was an important mass flux peak, which was depleted in organic carbon, at the Ionian near-bottom trap. This event coincided with a violent wind episode, which may have caused the resuspension of particles, which were then transported down the steep continental slope on the Ionian side of the strait. A smaller peak in mass flux occurred at the Aegean near-bottom trap, coincident with rainfall. Both these events indicate that environmental factors can control flux variations in an oligotrophic environment. During the second 6-month deployment (winter–spring 1995) there was another important increase in mass fluxes, which occurred at all three traps, although in the Ionian traps mass flux peaks were delayed by one to two sampling intervals. The distance between the two mooring sites gives a rough estimate of a minimum horizontal advection speed of 2 cm s−1 for this particulate transfer from the Aegean to the Ionian area. This estimate is in good agreement with the measured current velocities.  相似文献   

13.
The Northwest Atlantic margin is characterized by high biological productivity in shelf and slope surface waters. In addition to carbon supply to underlying sediments, the persistent, intermediate depth nepheloid layers emanating from the continental shelves, and bottom nepheloid layers maintained by strong bottom currents associated with the southward flowing Deep Western Boundary Current (DWBC), provide conduits for export of organic carbon over the margin and/or to the interior ocean. As a part of a project to understand dynamics of particulate organic carbon (POC) cycling in this region, we examined the bulk and molecular properties of time-series sediment trap samples obtained at 968 m, 1976 m, and 2938 m depths from a bottom-tethered mooring on the New England slope (water depth, 2988 m). Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low Δ14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radiocarbon mass balance, about 30% (±10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of resuspended sediment. A strong correlation between Δ14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles. Our results suggest that lateral transport of organic matter, particularly that resulting from sediment resuspension, should be considered in addition to vertical supply of organic matter derived from primary production, in order to understand carbon cycling and export over continental margins.  相似文献   

14.
We compared in-situ and satellite-derived measures of the biological carbon pump efficiency at the two seemingly similar subtropical North Atlantic gyre time series sites, the Bermuda time series (BATS, Bermuda Atlantic time-series study and OFP, ocean flux program) in the western gyre and the ESTOC time series (European station for time-series in the ocean, Canary Islands) in the eastern gyre. Satellite-derived surface chlorophyll a was slightly lower at Bermuda compared to ESTOC (annual average of 0.10±0.04 vs. 0.14±0.05-mg-m?3), as was satellite-derived primary production (annual average of 380±77 vs. 440±80-mg C-m?2 d?1). However, export production normalized to primary production (export ratio) was higher at Bermuda by a factor of 2–3 when estimated using mesopelagic traps moored at 500-m depth and by a factor of 3–4 when estimated using surface-tethered drifting traps. When averaged seasonally, flux at BATS was highest in spring (March, April, May) at all depths followed by summer (June, July, August) and decreasing towards fall, but this seasonality was less visible at ESTOC. Seasonal comparison showed the fastest flux attenuation at Bermuda in winter and spring, coinciding with the highest POC flux. POC/PIC ratios derived from the moored traps were significantly higher at BATS than at ESTOC in fall and winter, but this difference was not significant in spring (p>0.05). This study shows that while the western and eastern Atlantic subtropical gyres have similar rates of primary production, the biological carbon pump differs between the two provinces. Higher new nutrient input observed at Bermuda compared to ESTOC might explain part of the difference in export ratio but alone is insufficient. Greater winter mixed-layer depths and higher mesoscale eddy activity at Bermuda resulting in pulsed production events of labile organic matter might explain both the higher export flux and export ratios found at Bermuda.  相似文献   

15.
Downward fluxes of labile organic matter (lipids, proteins and carbohydrates) at 200 (trap A) and 1515 m depth (trap B), measured during a 12 months sediment trap experiment, are presented, together with estimates of the bacterial and cyanobacterial biomasses associated to the particles. The biochemical composition of the settling particles was determined in order to provide qualitative and quantitative information on the flux of readily available organic carbon supplying the deep-sea benthic communities of the Cretan Sea. Total mass flux and labile carbon fluxes were characterised by a clear seasonality. Higher labile organic fluxes were reported in trap B, indicating the presence of resuspended particles coming from lateral inputs. Particulate carbohydrates were the major component of the flux of labile compounds (on annual average about 66% of the total labile organic flux) followed by lipids (20%) and proteins (13%). The biopolymeric carbon flux was very low (on annual average 0.9 and 1.2 gC m−2 y−1, at trap A and B). Labile carbon accounted for most of the OC flux (on annual average 84% and 74% in trap A and B respectively). In trap A, highest carbohydrate and protein fluxes in April and September, corresponded to high faecal pellet fluxes. The qualitative composition of the organic fluxes indicated a strong protein depletion in trap B and a decrease of the bioavailability of the settling particles as a result of a higher degree of dilution with inorganic material. Quantity and quality of the food supply to the benthos displayed different temporal patterns. Bacterial biomass in the sediment traps (on average 122 and 229 μgC m−2 d−1 in trap A and B, respectively) was significantly correlated to the flux of labile organic carbon, and particularly to the protein and carbohydrate fluxes. Cyanobacterial flux (on average, 1.1 and 0.4 μgC m−2 d−1, in trap A and B, respectively) was significantly correlated with total mass and protein fluxes only in trap A. Bacterial carbon flux, equivalent to 84.2 and 156 mgC m−2 y−1, accounted for 5–6.5% of the labile carbon flux (in trap A and B respectively) and for 22–41% protein pool of the settling particles. These results suggest that in the Cretan Sea, bacteria attached to the settling particles represent a potential food source of primary importance for deep-sea benthic communities.  相似文献   

16.
We examined the impact of a cyclonic eddy and mode-water eddy on particle flux in the Sargasso Sea. The primary method used to quantify flux was based on measurements of the natural radionuclide, 234Th, and these flux estimates were compared to results from sediment traps in both eddies, and a 210Po/210Pb flux method in the mode-water eddy. Particulate organic carbon (POC) fluxes at 150 m ranged 1–4 mmol C m−2 d−1 and were comparable between methods, especially considering differences in integration times scales of each approach. Our main conclusion is that relative to summer mean conditions at the Bermuda Atlantic Time-series Study (BATS) site, eddy-driven changes in biogeochemistry did not enhance local POC fluxes during this later, more mature stage of the eddy life cycle (>6 months old). The absence of an enhancement in POC flux puts a constraint on the timing of higher POC flux events, which are thought to have caused the local O2 minima below each eddy, and must have taken place >2 months prior to our arrival. The mode-water eddy did enhance preferentially diatom biomass in its center, where we estimated a factor of three times higher biogenic Si flux than the BATS summer average. An unexpected finding in the highly depth-resolved 234Th data sets is narrow layers of particle export and remineralization within the eddy. In particular, a strong excess 234Th signal is seen below the deep chlorophyll maxima, which we attribute to remineralization of 234Th-bearing particles. At this depth below the euphotic zone, de novo particle production in the euphotic zone has stopped, yet particle remineralization continues via consumption of labile sinking material by bacteria and/or zooplankton. These data suggest that further study of processes in ocean layers is warranted not only within, but below the euphotic zone.  相似文献   

17.
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m−2 (0–100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m−2 with phytoplankton carbon accounting for 16–85% of total POC. Bacterial carbon was 5% of total POC and mesozooplankton carbon concentrations were equivalent to 9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m−2 day−1. Bacterial consumption accounted for 50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m−2 day−1. while filtration rates suggested that ingestion of phytoplankton carbon was only 0.2 g C m−2day−1, even when phytoplankton constituted 85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.  相似文献   

18.
Settling particles play an important role in transporting organic carbon from the surface to the deep ocean. It is known that major components of settling particles are biogenic silicates (opal), biogenic carbonate (CaCO3), lithogenic clays and organic matter. Since each component aggregates and/or takes in organic carbon, all of these components have the ability to transport particulate organic carbon (POC) to the interior of the ocean. In this study, sediment trap experiments were carried out in four areas of the western North Pacific (including a marginal sea). Factors are proposed that correlate the composition of settling particles with POC flux. Annual mean organic carbon fluxes at 1 km depth in the western North Pacific Basin, Japan Sea, Hidaka Basin and northern Japan Trench were found to be 14.9, 18.1, 13.0 and 6.6 mg/m2/day, respectively. Organic carbon flux in the western North Pacific was greater than that in the Eastern North Pacific (7.4), the Equatorial Pacific (4.2), the Southern Ocean (5.8) and the Eastern North Atlantic (1.8). In the western North Pacific, it was calculated that 52% of POC was carried by opal particles. Opal is known to be a major component even in the Eastern North Pacific and the Southern Ocean, and the opal fluxes in these areas are similar to those in the western North Pacific. However, the organic carbon flux that was carried by opal particles (OCopalflux) in the western North Pacific was greater than that in the Eastern North Pacific and the Southern Ocean. These results indicate that the ability of opal particles to transport POC to the deep ocean in the western North Pacific is greater than that in the other areas.  相似文献   

19.
Investigations of lithogenic and biogenic particle fluxes using long-term sediment traps are still very rare in the northern high latitudes and are restricted to the arctic marginal seas and sub-arctic regions. Here data on the variability of fluxes of lithogenic matter, CaCO3, opal, and organic carbon and biomarker composition from the central Arctic Ocean are presented for a 1-year period. The study was carried out on material obtained from a long-term mooring system equipped with two multi-sampling traps, at 150 and 1550 m depth, and deployed on the southern Lomonosov Ridge close to the Laptev Sea continental margin from September 1995 to August 1996. In addition, data from surface sediments were included in the study. Annual fluxes of lithogenic matter, CaCO3, opal, and particulate organic carbon were 3.9, 0.8, 2.6, and 1.5 g m−2 y−1, respectively, in the shallow trap and 11.3, 0.5, 2.9, and 1.05 g m−2 y−1, respectively, in the deep trap.Both the shallow and the deep trap showed significant variations in vertical flux over the year. Higher values were found from mid-July to the end of October (total mass flux of 75–130 mg m−2 d−1 in the shallow trap and 40–225 mg m−2 d−1 in the deep trap). During all other months, fluxes were fairly low in both traps (most total mass flux values <10 mg m−2 d−1). The interval of increased fluxes can be separated into (1) a mid-July/August maximum caused by increased primary production as documented in high abundances of marine biomarkers and diatoms and (2) a September/October maximum caused by increased influence of Lena River discharge indicated by maximum lithogenic flux and large amounts of terrigenous/fluvial biomarkers in both traps. During September/October, total mass fluxes in the deep trap were significantly higher than in the shallow trap, suggesting a lateral sediment flux at greater depth. The lithogenic flux data also support the importance of sediment input from the Laptev Sea for the sediment accumulation on the Lomonosov Ridge on geological time scales, as indicated in sedimentary records from this region.  相似文献   

20.
An array of sediment traps was deployed for the analysis of the pattern of particulate organic carbon (POC) supply to the sea bottom in April, May and July 1988 at the mouth of Otsuchi Bay (about 80 m depth), Northeastern Japan.On the basis of a simple two-component mixing model using stable carbon isotope ratios, the POC flux was separated into marine planktonic and terrestrial components. Both the planktonic and terrestrial POC fluxes had maximum values at 30 m above the sea bottom throughout the three experiments. The planktonic POC flux showed a significant decrease with depth between 30 m and 10 m or 5 m above the bottom. Vertical supply of the planktonic POC and supply of the resuspended planktonic POC were estimated on the basis of regression lines between water depth and the planktonic POC flux in the depth range where the flux decreases with depth.Vertical supply of the planktonic POC and supply of the resuspended planktonic POC to the sea bottom were largest in May (52.1 mgC m–2 d–1 and 19.5 mgC m–2 d–1 at 5 m above the sea bottom), and horizontal supplies of the terrestrial POC were almost constant (31.9±3.5 mgC m–2 d–1 at 5 m above the bottom) throughout the three experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号