首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Excessive degassing of Izu-Oshima volcano: magma convection in a conduit   总被引:2,自引:0,他引:2  
Excess degassing of magmatic H2O and SO2 was observed at Izu-Oshima volcano during its latest degassing activity from January 1988 to March 1990. The minimum production rate for degassed magma was calculated to be about 1×104 kg/s using emission rates of magmatic H2O and SO2, and H2O and S contents of the magma. The minimum total volume of magma degassed during the 27-month period is estimated to be 2.6×108 m3. This volume is 20 times larger than that of the magma ejected during the 1986 summit eruption. Convective transport of magma through a conduit is proposed as the mechanism that causes degassing from a magma reservoir at several kilometers depth. The magma transport rate is quantitatively evaluated based on two fluid-dynamic models: Poiseuille flow in a concentric double-walled pipe, and ascent of non-degassed magma spheres through a conduit filled with degassed magma. This process is further tested for an andesitic volcano and is concluded to be a common process for volcanoes that discharge excess volatiles.  相似文献   

2.
This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (qmax) were calculated as 0.478, 0.358, and 0.280 mmol g?1 for Cu2+, Cd2+, and Pb2+, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L?1 metal concentration was determined as 0.200, 0.167, and 0.155 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively, when initial metal concentration was 0.50 mmol L?1. In the multi‐metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu2+ > Cd2+ > Pb2+. In the presence of 100 mmol L?1 H+ ion, the order of ion‐exchange affinity with H+ was found as Cu2+ > Cd2+ > Pb2+. The adsorption kinetics were also found to be well described by the pseudo‐second‐order and intraparticle diffusion models. Two different rate constants were obtained as ki1 and ki2 and ki1 (first stage) was found to be higher than ki2 (second stage).  相似文献   

3.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   

4.
The extinct Pleistocene volcano Muriah, situated behind the main Pleistocene—Recent Sunda magmatic arc in north-central Java, has erupted at least two contrasted groups of lavas. One group forms a well-defined compositional series (Anhydrous Series) from leucite basanite to tephritic phonolite, with olivine and tschermakitic clinopyroxene the main phenocrysts. The other group, the “Hydrous Series”, includes compositionally variable tephrites and high-K andesites with common plagioclase, biotite and amphibole. Lavas of the Anhydrous Series are much richer in LIL trace elements than the most potassic lavas of neighbouring active volcanoes, but relative HFS element enrichment is less pronounced. REE patterns have almost constant slopes from La (250–600 times chondrites) to Yb (5–10 times chondrites), while those of lavas of active centres are less light-enriched, and show flattening in the heavy REE. Anhydrous Series initial 87Sr/86Sr ratios (0.7043–0.7046) are lower than those of active centres (0.7047–0.7053). Hydrous Series lavas are intermediate in all these geochemical characteristics.The most mafic A-series leucite basanite, with Mg/(Mg + Fe2+) 0.69, 140 ppm Ni and 620 ppm Cr was probably derived from the primary magma for the series by fractionation of only 5 wt.% olivine. Its REE pattern suggests derivation from a garnet-bearing source. Experiments on this basanite, with up to 10% olivine and 20% orthopyroxene added, and in the presence of H2O and H2O/CO2 mixtures, have shown that for all but very high magma water contents, the olivine and garnet liquidus fields are widely separated by fields of phlogopite and clinopyroxene. There is no liquidus field of orthopyroxene. Hence, if magma production involved an equilibrium melting process alone, the most probable sources are of garnet-bearing phlogopite clinopyroxenite type. Alternatively, this magma may represent the end-product of interaction between a low-K basanite magma from a garnet lherzolite source in the asthenosphere and a phlogopite-bearing lherzolite zone in the lower lithosphere. Its production was probably related to crustal doming and extension superimposed on the dominant subduction regime. Hydrous Series magmas may have resulted from mixing between Anhydrous Series magmas and high-K calc-alkaline basaltic to andesitic magmas more directly related to subduction processes.  相似文献   

5.
Pulsating of the generalized ion and neutral polar winds   总被引:1,自引:1,他引:0  
A three-dimensional, time-dependent model of the ion and neutral polar winds was used to study their dynamic evolution during the May 4, 1998 magnetic storm. The simulation tracked the dynamics of five species (O+, H+, Hs, Os, and electrons) and covered a 9-h period. During the storm, Dst decreased to −210 nT, Ap reached 300, and Kp was elevated. The IMF Bz component was southward at the start of the storm and for several hours thereafter and then turned northward. However, the magnetospheric energy input to the ionosphere exhibited a 50-min oscillation, with the plasma convection and particle precipitation patterns expanding and contracting in a periodic manner. As a consequence, the ion and neutral polar winds pulsated with an approximate 50-min period. The H+ and O+ ions displayed cyclic upflows and downflows in the topside ionosphere as well as a highly structured spatial distribution that varied with time. The vertical flux of the neutral Hs atoms was upward at the top of the ionosphere, but the magnitude varied in a cyclic manner in response to the oscillating stormtime energy input. The vertical flux of neutral Os atoms was downward at the top of the ionosphere and varied significantly with the stormtime energy input. For H+, O+, and Hs, the maximum total (integrated) vertical flux during the storm was upward at the top of the ionosphere, with values of 8–9×1025 particles/s for H+, 2–4×1026 particles/s for O+, and 2–3×1027 particles/s for Hs. The corresponding total vertical Os flux was predominately downward, with only localized areas with positive fluxes.  相似文献   

6.
Understanding the processes at the origin of explosive events is crucial for volcanic hazard mitigation, especially during long-lasting eruptions at andesitic volcanoes. This work exposes the case of Tungurahua volcano, whose unrest occurred in 1999. Since this date, the eruptive activity was characterized by low-to moderate explosiveness, including phases with stronger canon-like explosions and regional ash fallout. However, in 2006, a sudden increase of the explosiveness led to pyroclastic flow-forming eruptions on July 14th (VEI 2) and August 16–17th (VEI 3). All magmas emitted from 1999 to 2005, as well as the samples from the 2006 eruptions, have homogeneous bulk-rock andesitic compositions (58–59 wt.% SiO2), and contain the same mineral assemblage consisting of pl + cpx + opx + mag ± ol. However, during the August 16–17th event, the erupted tephra comprise two types of magmas: a dominant, brown andesitic scoria; and scarce, light-grey pumice representing a subordinate, silica-rich juvenile component. For the andesitic magma, thermobarometric data point to magmatic temperatures ranging from 950 to 1015 °C and pressures in the range of 200 to 250 MPa, which corresponds to 7.5–9.5 km below the summit. Disequilibrium textures in plagioclase and pyroxene phenocrysts, particularly thin overgrowth rims, indicate the recharge of this magma body by mafic magma. Between 1999 and 2005, repeated injections from depth fed the intermittent eruptive activity observed while silica-rich melts were produced by in-situ crystallization in the peripheral parts of the reservoir. In April 2006, the recharge of a primitive magma produced strong convection and homogenisation in the reservoir, as well as pressure increase and higher magma ascent rate after seven years of only moderately explosive activity. This work emphasizes the importance of petrological studies in constraining the pre-eruptive magmatic conditions and processes, as a tool for understanding the fundamental causes of the changes in the eruptive dynamism, particularly the occurrence of paroxysmal phases in andesitic systems with open-vent behaviour.  相似文献   

7.
A relation is derived for the calculation of unknown selectivity coefficients from unknown values of tertiary reactions and its validity is proved by experimental investigations of the systems H+/Na+/Ca2+, H+/Na+/Co2+ and H+/Na+/Al3+ at the strongly acid cation exchanger Wofatit KPS.  相似文献   

8.
Three techniques for obtaining soil water solutions (gravitational and matrical waters extracted using both in situ tension lysimeters and in vitro pressure chambers) and their later chemical analysis were performed in order to know the evolution of the soil‐solution composition when water moves down through the soil, from the Ah soil horizon to the BwC‐ or C‐horizons of forest soils located in western Spain. Additionally, ion concentrations and water volumes of input waters to soil (canopy washout) and exported waters (drainage solutions from C‐horizons) were determined to establish the net balance of solutes in order to determine the rates of leaching or retention of ions. A generalized process of sorption or retention of most components (even Cl?) was observed, from the soil surface to the C‐horizon, in both gravitational and matrical waters, with H4SiO4, Mn2+, Na+, and SO42? being the net exported components from the soil through the groundwater. These results enhance the role of the recycling effect in these forest soils. The net percentages of elements retained in these forest soils, considering the inputs and the outputs balance, were 68% K+, 85% Ca2+, 58% Mg2+, 7% Al3+, 5% Fe3+, 34% Zn2+, 57% Cl?, and 20% NO3?, and about 75% of dissolved organic carbon was mineralized. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the chemical and isotopic compositions of escaped gases from the Rehai geothermal area in Tengchong county of Yunnan Province. Results indicate that there is the mantle-derived magmatic intrusion in shallow crust at this area. Modern mantle-derived magmatic volatiles are being released currently in a steady stream by way of active faults. The escaped gases are mostly composed of CO2, together with subordinate amounts of H2S, N2, H2, CH4, SO2, CO and He. At the studied area, the north-south directed fault is the deepest, and it may be interlinked with the deep-seated thermal reservoir that would be directly recharged by the mantle-derived magmatic volatile. The He, C isotopic evidence reveals that the modern active magma beneath Rehai area may originate from the historical mantle-derived magma which caused the latest eruptive activity of volcanoes in that region.  相似文献   

10.
Dajing Cu-Sn-Ag-Pb-Zn ore deposit, in the Inner Mongolia Autonomous Region of China, is a fissure-filling hydrothermal ore deposit. The δD values of quartz-hosted inclusion water are centered at −100%.– −130%.. The δ34S values of sulfide ore minerals and δ13 C values of carbonate gangue minerals vary from −0.3%. to 2.6%. and from −2.9%. to −7.0%., respectively. Integrated isotopic data point to two major contributions to the mineralizing fluid that include a dominant meteoric-derived groundwater, and sulfur and carbon species from hypogene magma. Linear trends are exhibited on the gaseous H2O versus CO2 plot, and plots of CO, N2, CH4, and C2H6. It is shown by quantitative simulation that magma degassing cannot explain the linear trends. Hence, these linear trends are interpreted in terms of mixing of CO2-rich magmatic fluid with meteoric-derived groundwater. The groundwater circulated in Paleozoic sedimentary rocks and absorbed CO, N2, CH4, C2H6 and radiogenic Ar from organic matter. Cooling effects resulting from mixing have caused the precipitation of ore minerals.  相似文献   

11.
At 30 kbar, calcite melts congruently at 1615°C, and grossularite melts incongruently to liquid + gehlenite (tentative identification) at 1535°C. The assemblage calcite + grossularite melts at 1450°C to produce liquid + vapor, with piercing point at about 49 wt.% CaCO3. Vapor phase is present in all hypersolidus phase fields except for those with less than about 7% CaCO3 or 8% Ca3Al2Si3O12. These results, together with known liquidus data for CaO—SiO2—CO2 and inferred results for CaO—Al2O3—CO2 and Al2O3—SiO2—CO2, permit construction of the position of the CO2- saturated liquidus surface in the quaternary system, and estimation of the positions of liquidus field boundaries separating some of the primary crystallization fields on this surface. The field of calcite is separated from those for grossularite and quartz by a field boundary with about 50% dissolved CaCO3. Crystallization paths of silicate liquids in the range Ca2SiO4—Ca3Al2Si3O12—SiO2, with some dissolved CO2, will terminate at a quaternary eutectic on this field boundary, with the precipitation of calcite together with grossularite and quartz, at a temperature below 1450°C. Addition of Al2O3 to CaO—SiO2—CO2 in amounts sufficient to stabilize garnet thus causes little change in the general liquidus pattern as far as carbonates and silicates are concerned. With addition of MgO, we anticipate that silicate liquids with dissolved CO2 will also follow liquidus paths to fields for the precipitation of carbonates; we conclude that similar paths link kimberlite and some carnbonatite magmas.  相似文献   

12.
The effects of temperature, fO2 and composition on the electrical conductivity of silicate liquids have been experimentally determined from 1200 to 1550°C under a range of fO2 conditions sufficient to change the oxidation state of Fe from predominantly Fe2+ to Fe3+. Oxidation of ferrous to ferric iron in the melt has no measurable effect on the conductivity of melts with relatively low ratios of divalent to univalent cations. Under strongly oxidizing conditions a minor decrease of conductivity is detected inth highΣM2/ΣM+ ratios. It is concluded that for purposes of estimating the conductivity of magmatic liquids, fO2 may be ignored to a first approximation. Both univalent and divalent cation transport is involved in electrical conduction. Melts relying heavily on divalent cations for conduction, i.e. melts with relatively large ΣM2+/ΣM+ ratios, show strong departures from Arrheenius temperature dependence with the apparent activation energies decreasing steadily as the temperature increases. Conductivities dominated by the univalent cations, in melts with relatively small ΣM2+/ΣM+ ratios, show classical Arrhenius temperature dependence. These observations are discussed in terms of the general characteristics of the melt structure.Compositional variations within the magmatic range account for much less than an order of magnitude variation in electrical conductivity at a fixed temperature. This observation, combined with previous measurements of the conductivity of olivine (A. Duba, H.C. Heard and R. Schock, 1974) make it possible to state with reasonable confidence that melts occurring within the mantle will be more conductive by 3–4 orders of magnitude than their refractory residues. Potential applications to geothermometry are discussed.  相似文献   

13.
Stemflow of beech (Fagus sylvatica L.) represents a significant input of water and elements to the soil and might influence the spatial patterns and the rate of seepage fluxes at the stand scale. We investigated the soil solution chemistry at different depths and distances from the stem and the element fluxes with stemflow, throughfall and seepage in proximal and distal stem areas of a 130‐year‐old beech/oak forest in Steigerwald (northern Bavaria, Germany). The proximal stem area (in total 286 m2 ha−1) was defined as a 1 m2, 60 cm deep cylinder around the beech stem. Seepage fluxes were calculated by a soil hydrological model for 1996 using measured soil matrix potentials and tree xylem flow data for calibration. Stemflow represented 6·6% of the annual soil water input. With the exception of H+ fluxes, less than 10% of the total element fluxes with throughfall and stemflow reached the soil via stemflow. The volume‐weighted concentrations of H+, K+ and SO42− in stemflow were higher than those in throughfall, while other elements had similar concentrations. Soil solution K+ concentrations decreased with stem distance, but the Na+, Mg2+, Cl and SO42− concentrations increased. Gradients for other elements were not statistically significant. Stemflow had a strong influence on the spatial patterns of element fluxes with seepage. The water fluxes through the soil of the proximal stem areas at a depth of 60 cm contributed 13·5% to the total seepage at the stand scale. Proximal to the stems about 20% of total seepage for K+, Mn2+, Aln+, dissolved organic N and dissolved organic C were concentrated, but only 8–10% for Na+, Mg2+ and Ca2+. The loss of acid‐neutralizing capacity calculated from the flux balance was about four times higher proximal to the stems compared with distal areas, indicating high rates of soil acidification proximal to the stems. Our results confirm the concept of a microsite around beech stems, characterized by high element and water fluxes in comparison with distal stem areas. Calculations of seepage fluxes and element budgets in beech stands have to consider the spatial heterogeneity of fluxes induced by stemflow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The Pollara tuff-ring resulted from two explosive eruptions whose deposits are separated by a paleosol 13 Ka old. The oldest deposits (LPP, about 0.2 km3) consist of three main fall units (A, B, C) deposited from a subplinian column whose height (7–14 km) increased with time from A to C, as a consequence of the increased magma discharge rate during the eruption (1–8x106 kg/s). A highly variable juvenile population characterizes the eruption. Black, dense, highly porphyritic, mafic ejecta (SiO2=50–55%) almost exclusively form A deposits, whereas grey, mildly vesiculated, mildly porphyritic pumice (SiO2=56–67%) and white, highly vesiculated, nearly aphyric pumice (SiO2=66–71%) predominate in B and C respectively. Mafic cumulates are abundant in A, while crystalline lithic ejecta first appear in B and increase upward. The LPP result from the emptying of an unusual and unstable, compositionally zoned, shallow magma chamber in which high density mafic melts capped low density salic ones. Evidence of the existence of a short crystal fractionation series is found in the mafic rocks; the andesitic pumice results from complete blending between rhyolitic and variously fractionated mafic melts (salic component up to 60 wt%), whereas bulk dacitic compositions mainly result from the presence of mafic xenocrysts within rhyolitic glasses. Viscosity and composition-mixing diagrams show that blended liquids formed when the visosities of the two end members had close values. The following model is suggested: 1. A rhyolitic magma rising through the metamorphic basement enterrd a mafic magma chamber whose souter portions were occupied by a highly viscous, mafic crystal mush. 2. Under the pressure of the rhyolitic body the nearly rigid mush was pushed upwards and mafic melts were squeezed against the walls of the chamber, beginning roof fracturing and mingling with silicic melts. 3. When the equilibrium temperature was reached between mafic and silicic melts, blended liquids rapidly formed. 4. When fractures reached the surface, the eruption began by the ejection of the mafic melts and crystal mush (A), followed by the emission of variously mingled and blended magmas (B) and ended by the ejection of nearly unmixed rhyolitic magma (C).  相似文献   

15.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

16.
This petrologic analysis of the Negra Muerta Volcanic Complex (NMVC) contributes to understanding the magmatic evolution of eruptive centres associated with prominent NW-striking fault zones in the southern Central Andes. Specifically, the geochemical characteristics and magmatic evolution of the two eruptive episodes of this Complex are analysed. The first one occurred as an explosive eruption at 9 Ma and is represented by a strongly welded, fiamme-rich, andesitic to dacitic ignimbrite deposit. The second commenced with an eruption of a rhyolitic ignimbrite at 7.6 Ma followed by effusive discharge of hybrid lavas at 7.3 Ma and by emplacement of andesitic to rhyodacitic dykes and domes. Both explosive and effusive eruptions of the second episode occurred within a short time span, but geochemical interpretations permit consideration of the existence of different magmas interacting in the same magma chamber. Our model involves an andesitic recharge into a partially cooled rhyolitic magma chamber, pressurising the magmatic system and triggering explosive eruption of rhyolitic magma. Chemical or mechanical evidence for interaction between the rhyolitic and andesitic magma in the initial stages are not obvious because of their difference in composition, which could have been strong enough to inhibit the interaction between the two magmas. After the initial explosive stages of the eruption at 7.6 Ma, the magma chamber become more depressurised and the most mafic magma settled in compositional layers by fractional crystallisation. Restricted hybridisation occurred and was effective between adjacent and thermally equivalent layers close to the top of the magma chamber. At 7.3 Ma, increments of caldera formation were accompanied by effusive discharge of hybrid lavas through radially disposed dykes whereby andesitic magma gained in importance toward the end of this effusive episode in the central portion of the caldera. Assimilation during turbulent ascent (ATA) is invoked to explain a conspicuous reversed isotopic signature (87Sr/86Sr and 143Nd/144Nd) in the entire volcanic series. Therefore, the 7.6 to 7.3 Ma volcanic rocks of the NMVC resulted from synchronous and mutually interacting petrological processes such as recharge, fractional crystallization, hybridisation, and Assimilation during Turbulent Ascent (ATA).Geochemical characteristics of both volcanic episodes show diverse type and/or depth in the sources and variable influence of upper crustal processes, and indicate a recurrence in the magma-forming conditions. Similarly, other minor volcanic centres in the transversal volcanic belts of the Central Andes repeated their geochemical signatures throughout the Miocene.  相似文献   

17.
The petrology of the highly phyric two-pyroxene andesitic to dacitic pyroclastic rocks of the November 13, 1985 eruption of Nevado del Ruiz, Colombia, reveals evidence of: (1) increasingly fractionated bulk compositions with time; (2) tapping of a small magma chamber marginally zoned in regard to H2O contents (1 to 4%), temperature (960–1090°C), and amount of residual melt (35 to 65%); (3) partial melting and assimilation of degassed zones in the hotter less dense interior of the magma chamber; (4) probable heating, thermal disruption and mineralogic and compositional contamination of the magma body by basaltic magma “underplating”; and (5) crustal contamination of the magmas during ascent and within the magma chamber. Near-crater fall-back or “spill-over” emitted in the middle of the eruptive sequence produced a small pyroclastic flow that became welded in its central and basal portions because of ponding and thus heat conservation on the flat glaciated summit near the Arenas crater. The heterogeneity of Ruiz magmas may be related to the comparatively small volume (0.03 km3) of the eruption, nearly ten times less than the 0.2 km3 of the Plinian phase of Mount St. Helens, and probable steep thermal and PH2O gradients of a small source magma chamber, estimated at 300 m long and 100 m wide for an assumed ellipsoidal shape.  相似文献   

18.
The continuous measurement of molecular hydrogen (H2) emissions from passively degassing volcanoes has recently been made possible using a new generation of low-cost electrochemical sensors. We have used such sensors to measure H2, along with SO2, H2O and CO2, in the gas and aerosol plume emitted from the phonolite lava lake at Erebus volcano, Antarctica. The measurements were made at the crater rim between December 2010 and January 2011. Combined with measurements of the long-term SO2 emission rate for Erebus, they indicate a characteristic H2 flux of 0.03?kg s–1 (2.8?Mg? day–1). The observed H2 content in the plume is consistent with previous estimates of redox conditions in the lava lake inferred from mineral compositions and the observed CO2/CO ratio in the gas plume (~0.9 log units below the quartz–fayalite–magnetite buffer). These measurements suggest that H2 does not combust at the surface of the lake, and that H2 is kinetically inert in the gas/aerosol plume, retaining the signature of the high-temperature chemical equilibrium reached in the lava lake. We also observe a cyclical variation in the H2/SO2 ratio with a period of ~10?min. These cycles correspond to oscillatory patterns of surface motion of the lava lake that have been interpreted as signs of a pulsatory magma supply at the top of the magmatic conduit.  相似文献   

19.
The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and ?11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.  相似文献   

20.
Equilibrium reversals of Fe2+Mg distribution between the M1 and M2 sites of an orthopyroxene from the Johnstown meteorite were achieved at several temperatures between 700 and 1000°C. One single crystal was used for the whole thermal treatment and for collecting all the X-ray data after quenching. The intracrystalline ion exchange for the bulk chemical composition: (Mg1.453Fe0.441Cr0.024Ca0.054Mn0.015Fe0.005Ti0.003Al0.005)(Si1.960Al0.040)O6 is given by: ln KD = −3027(±39)/T(K) + 0.872(±0.013)> where KD is the distribution coefficient for the reaction: FeM22+ + MgM1 = MgM2 + FeM12+.A transmission electron microscopy (TEM) study of part of the crystal showed the presence of very thin augite lamellae and Guinier-Preston zones indicating a relatively rapid cooling of the host rock at temperatures close to 1000°C. The new temperature scale yields a relatively high quenching temperature of 379 (±8)°C for the pyroxene which appears consistent with a rapid cooling (estimated few degrees per hundred years) of a magmatic cumulate excavated by an impact on its parental body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号