首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deltaic environments are commonly assumed to be relatively minor sites of biogenic silica burial because of the small quantities of opaline silica detected by most operational analytical techniques. Rapid conversion of biogenic silica into authigenic silicates is also often discounted as a significant control on oceanic silica budgets. A variety of evidence for extensive early diagenetic alteration of biogenic silica in rapidly accumulating Amazon delta sediments indicates that both of these general assumptions are unjustified. Apparent lack of significant biogenic silica storage in deltaic environments, particularly in the tropics, may be largely an artifact of operational definitions that do not include early diagenetic products of biogenic silica. Biogenic silica particles buried in suboxic Amazon delta deposits can be unaltered, partially dissolved, covered with aluminosilicate or metal-rich coatings, or completely reconstituted into authigenic K-Fe-rich aluminosilicate minerals. Pore water (K, Mg, F, Si) and solid-phase distributions, direct observations of particles, laboratory experiments, and depositional context indicate that authigenic clays form rapidly (<1 yr) in the seasonally reworked surface layer (∼ 0.5-2 m) of the delta topset and are disseminated during sediment remobilization. Fe, Al-oxide rich debris derived from the tropical drainage basin is an abundant reactant, and thus the supply of biogenic silica is a major control on the amount of clay formed.The mild 1% Na2CO3 alkaline leach procedure commonly used to estimate biogenic silica was modified to include an initial mild leach step with 0.1N HCl to remove metal oxide coatings and to activate poorly crystalline authigenic phases for alkaline dissolution. Well-crystallized clays are not significantly affected by this modification nor is bulk Amazon River bed sediment. The two-step procedure indicates that ∼90% of the biogenic silica originally present in deposits is converted to clay or otherwise altered, raising the effective quantity of biogenic silica stored from ∼33 to ∼296 μmol Si g−1 (∼1.8% SiO2). Biogenic Si stored in the delta increases away from the river mouth, across shelf and along the dispersal system where primary production is highest. The K/Si ratio of labile authigenic material is ∼0.19 mol mol−1, far higher than Amazon River suspended matter (∼0.07 mol mol−1). Diagenetic models indicate formation rates in the mobile sediment layer of ∼2.8 μmol K g−1 yr−1 (∼16 μmol Si g−1 yr−1). Inclusion of authigenic alteration products of biogenic silica in estimates of reactive Si burial increases the deltaic storage of riverine Si to ∼22% of the Amazon River input. The rapid formation of aluminosilicates from biogenic SiO2, seawater solutes, and remobilized Fe, Al-oxides represents a form of reverse weathering. Rapid reverse weathering reactions in tropical muds and deltaic deposits, the largest sediment depocenters on Earth, confirms the general importance of these processes in oceanic elemental cycles.  相似文献   

2.
Utilizing a sequential extraction technique this study provides the first quantitative analysis on the abundance of sedimentary phosphorus and its partitioning between chemically distinguishable phases in sediments of the Bering Sea, the Chukchi Sea and the Mackenzie River Delta in the western Arctic Ocean. Total sedimentary phosphorus (TSP) was fractionated into five operationally defined phases: (1) adsorbed inorganic and exchangeable organic phosphorus, (2) Fe-bound inorganic phosphorus, (3) authigenic carbonate fluorapatite, biogenic apatite and calcium carbonate-bound inorganic and organic phosphorus, (4) detrital apatite, and (5) refractory organic phosphorus. TSP concentrations in surface sediments increased from the Chukchi Sea (18 μmol g−1 of dried sediments) to the Bering Sea (22 μmol g−1) and to the Mackenzie River Delta (29 μmol g−1). Among the five pools, detrital apatite phosphorus of igneous or metamorphic origin represents the largest fraction (~43%) of TSP. The second largest pool is the authigenic carbonate fluorapatite, biogenic apatite as well as CaCO3 associated phosphorus (~24% of TSP), followed by the Fe-bound inorganic phosphorus, representing ~20% of TSP. The refractory organic P accounts for ~10% of TSP and the readily exchangeable adsorbed P accounts for only 3.5% of TSP. Inorganic phosphorus dominates all of phosphorus pools, accounting for an average of 87% of the TSP. Relatively high sedimentary organic carbon and total nitrogen contents and low δ13C values in the Mackenzie River Delta together with the dominance of detrital apatite in the TSP demonstrate the importance of riverine inputs in governing the abundance and speciation of sedimentary phosphorus in the Arctic coastal sediments.  相似文献   

3.
In the past several decades, the techniques used to discern the different sedimentary fractions of P have been refined. This has allowed for a better understanding of P burial of the different P fractions and diagenetic reactions and, ultimately, the constraining of P residence time in the oceans. P sequential extraction was performed on eight sediment cores (between 16 and 24 cm deep) collected along a salinity gradient from the Ojo de Liebre Lagoon and the salt evaporation saltern of Guerrero Negro, Baja California Sur, Mexico in order to determine, under purely diagenetic conditions (in the absence of anthropogenic activities and biogenic sediment reworking), the fractionation and flux of P to the sediments. The majority of P was found in the authigenic fraction (37 ± 5.4% to 53 ± 8.9%), with P associated to organic matter comprising the overall smallest percentage (0.25 ± 0.43% to 21 ± 6.0%) relative to total P. The average flux of total P to the sediments for all the sites was found to be (451 ± 127) × 10−4 mol m−2 year−1, up to several orders of magnitude greater than those found in other studies. It is concluded that P is most likely transformed from P associated to organic matter to the authigenic mineral phase and that P was retained in the sediments in its mineral form rather than in reactive forms. This particular study area has the ability to retain large quantities of P in the sediments.  相似文献   

4.
Weathering fluxes of arsenic from a small catchment in Slovak Republic   总被引:1,自引:1,他引:0  
Inputs of As to a small catchment due to chemical weathering of bedrock, mechanical weathering of bedrock, and atmospheric precipitation were 71.53, 23.98 and 0.02 g ha−1 year−1, respectively. The output fluxes of As due to mechanical erosion of soil, biological uptake, stream discharge, and groundwater flow were 6.32, 4.77, 0.37 and 0.02 g ha−1 year−1, respectively. The results indicate that arsenic accumulates in soil and regolith with a very high rate. This is attributed to the selective weathering and erosion with respect to arsenic and fixation of arsenic in the secondary solids produced by weathering. The output fluxes of As in stream and groundwater in Vydrica catchment in Slovak Republic (0.39 g ha−1 year−1) based on muscovite–biotite granites and granodiorites were much lower compared to catchments in a gold district in the Czech Republic. These results may be ascribed to the low levels of arsenic pollution measured in Vydrica catchment. The arsenic fluxes were estimated by calculation of mechanical and chemical weathering rates of the bedrocks in Vydrica catchment from mass balance data on sodium and silica. The justification of the steady state of Na and Si is that neither of the elements is appreciably accumulated in plants and in exchangeable pool of ions in soil.  相似文献   

5.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

6.
A study of Halodule wrightii in a shallow subtropical Texas lagoon was performed to obtain seasonal data on its physiological ecology. Leaf production and biomass dynamics of H. wrightii were intensively monitored along with the underwater light environment at a 1.2-m depth study site over a 21-month period from June 1995 to February 1997. The annual photosynthetically active radiation (PAR) flux of 6,764 mol m−2 year−1 was more than twice as high as 2,400 mol m−2 year−1, the minimum annual PAR required for maintenance of growth. As light intensity declined, blade chlorophyll a/b ratios increased suggesting that the plants were photo-adapting. Seasonal trends were evident in shoot growth and biomass. Compared to other Halodule populations in Texas, H. wrightii in LLM displayed slow growth and low biomass, high leaf tissue N content, and low C/N ratio but high N/P ratio of 38 suggesting that the plants were phosphorus-limited.  相似文献   

7.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

8.
The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.  相似文献   

9.
We conducted a study of the biogeochemical cycle of silicon in a rice field in Camargue (France) in order to evaluate the role of biogenic silicon particles (BSi) in the cycle. Opal-A biogenic particles (phytoliths, diatoms…), which dissolve more rapidly than other forms of silicate usually present in soils, are postulated to represent the easiest bioavailable Si for rice. We found 0.03–0.06 wt.% of BSi in soils (mainly phytoliths). This value is lower than other values from the literature. Each year, the exportation of BSi from rice cultivation is 270 ± 80 kg Si ha− 1. We show that BSi input by irrigation is mostly composed of diatoms and we estimate it at 100 kg Si ha− 1 year− 1. This value is more than a third of the annual Si need for rice. The budget of the dissolved silicon (DSi) fluxes gives the following results: the atmospheric and irrigation inputs represents 1% and roughly 10%, respectively, of the annual need for rice; the drainage and infiltration outputs represent 17 ± 14 and 12 ± 9 kg Si ha− 1 year− 1, respectively; the balance of our budget shows that at least 170 kg Si ha− 1 year− 1 are exported from the soil. If we consider the soil BSi as the only source of dissolved silicon, this stock could be exhausted in 5 years.  相似文献   

10.
Gediz Basin is one of the regions where intense agricultural activities take place in Western Turkey. Erosion and soil degradation have long been causing serious problems to cultivated fields in the basin. This work describes the application of two different 137Cs models for estimating soil erosion rates in cultivated sites of the region. Soil samples were collected from five distinct cultivated regions subject to soil erosion. The variations of 137Cs concentrations with depth in soil profiles were investigated. Soil loss rates were calculated from 137Cs inventories of the samples using both proportional model (PM) and simplified mass balance model (SMBM). When PM was used, erosion and deposition rates varied from −15 to −28 t ha−1 year−1 and from +5 to +41 t ha−1 year−1, respectively; they varied from −16 to −33 t ha−1 year−1 and from +5 to +55 t ha−1 year−1 with SMBM. A good agreement was observed between the results of two models up to 30 t ha−1 year−1 soil loss and gain in the study area. Ulukent, a small representative agricultural field, was selected to compare the present data of 137Cs techniques with the results obtained by universal soil loss equation (USLE) applied in the area before.  相似文献   

11.
The qanat water supply technology, which gravity drains mountain aquifers into valleys, is considered as a culturally appropriate and ecological sustainable design to meet northern Cyprus’ drinking water development needs. This research estimates the boundary and water budget for the proposed qanat recharge area of 370 km2, which is in the upper elevations of the limestone dominated Five Finger Mountain Range. The mountain drainage was analyzed using global elevation data from the Shuttle Ranging Topography Mission (SRTM). Efforts to use Tropical Rainfall Measuring Mission (TRMM) annual precipitation for water budget inputs failed due to extreme error when tested against 10–30 years of meteorological station data; TRMM under-estimated depths on the narrow mountain peaks. Gage records, while few in number, were area averaged to set average annual precipitation inputs at 530 mm year−1. Evaporation was estimated using a complementary relationship areal evapotranspiration (CRAE) model, setting average atmospheric outputs at 221 mm year−1. Recharge to the qanat aquifer was set by subtracting evaporation from precipitation, and then allocating 50% of the remaining water to environmental services. At 25% development, the qanat system supplies 14 mm3 year−1 of water, meeting the drinking water deficit of 13 mm3.  相似文献   

12.
The annual and seasonal dust emissions were calculated for eight types of desertified lands at 120 sites in the Heihe River Basin of northwestern China. The results showed that dust emission rates increased from the middle to the lower reaches of the river by a factor of up to 103. There two strongest areas of dust emission are the dried-up Gaxun Lake with a dust emission rate of 1.6 t ha−1 year−1, and the desertified grassland areas around the abandoned Heicheng City, with a dust emission rate of 0.6–0.7 t ha−1 year−1. The total annual dust emissions with their particle diameters less than 50, 30, and 10 μm were 1.71 × 106, 1.11 × 106, and 0.555 × 106 t, respectively. Dust emission rates showed striking seasonal variations, with the maximum value (45%) occurring in spring and the minimum value (13.5%) in summer. The mineral aerosol-size distributions were also measured and the results showed that the size distributions for dust and non-dust events were both trimodal, in contrast with the widely accepted view that primary particles such as aeolian dust are coarse, whereas particles less than 1 μm in diameter are mainly secondary particulate substances such as ammonium nitrate, ammonium sulfate, and organic matter.  相似文献   

13.
《Applied Geochemistry》2000,15(4):425-438
The dissolution of silica and diffusion of reactive dissolved Si in the porewaters of river sediments are investigated using sediments of different physical and chemical properties. Three sediments are considered: (a) from sectioned cores taken from a river-bed, (b) fine organic-rich surface sediment (<5 cm depth) installed in a fluvarium channel and, (c) coarse river sediment of low organic matter content also installed in a fluvarium channel. Dissolution rates of silica are measured at 10°C using batches of suspended material. The derived dissolution rate constants show large differences between the sediments. The river bed-sediment cores had vertical concentration profiles of dissolved Si that are consistent with the diffusion and dissolution of biogenic silica. Experiments in a fluvarium channel enabled Si fluxes to be calculated from a mass-balance of the overlying solution. The results are consistent with the attainment of a steady-state concentration profile of dissolved Si in the sediment. There are no discernible effects of water velocity over the sediment between 5 and 11 cm s−1. However, at 20 cm s−1, the flux increases as a result of either entrainment of fine particles at the surface or advective effects in the surface sediment. A fluvarium experiment with the fine sediment (<125 μm) over 61 days, produced a concentration profile with the highest concentration of 1025 μmol dm−3 at a depth of 4–5 cm in the sediment. A FORTRAN program is used to model the results of the increase in dissolved Si in the overlying water and development of a concentration profile in the porewater. This leads to a sediment diffusion coefficient of 1.21×10−9 m2 s−1 at 8.8°C at the beginning of the experiment and rate constant k=13.1×10−7 s−1 at pH=7.82 and average temperature of 7.6°C for the entire experiment. Fluxes measured at the sediment–surface interface and calculated assuming steady-state profiles had developed are typically 0.01–0.04 μmol m−2 (of river bed) s−1. The approach enables the efflux of dissolved Si from bottom-sediments to be estimated from dissolution rates measured using suspensions of bed-sediment.  相似文献   

14.
Soil erosion modeling of a Himalayan watershed using RS and GIS   总被引:5,自引:1,他引:4  
Employing the remote sensing (RS) and geographical information system (GIS), an assessment of sediment yield from Dikrong river basin of Arunachal Pradesh (India) has been presented in this paper. For prediction of soil erosion, the Morgan-Morgan and Finney (MMF) model and the universal soil loss equation (USLE) have been utilized at a spatial grid scale of 100 m × 100 m, an operational unit. The average annual soil loss from the Dikrong river basin is estimated as 75.66 and 57.06 t ha−1 year−1 using MMF and USLE models, respectively. The watershed area falling under the identified very high, severe, and very severe zones of soil erosion need immediate attention for soil conservation.  相似文献   

15.
Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha−1 year−1; MN, 100 kg N ha−1 year−1; LN, 50 kg N ha−1 year−1) on soil respiration compared with non-fertilization (CK, 0 kg N ha−1 year−1), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q 10 varied within 1.70–1.74) but was slightly reduced in MN treatment (Q 10 = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July–September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007–June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m−2 year−1). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July–September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).  相似文献   

16.
In southern California, USA, wildfires may be an important source of mercury (Hg) to local watersheds. Hg levels and Hg accumulation rates were investigated in dated sediment cores from two southern California lakes, Big Bear Lake and Crystal Lake, located approximately 40-km apart. Between 1895 and 2006, fires were routinely minimized or suppressed around Big Bear Lake, while fires regularly subsumed the forest surrounding Crystal Lake. Mean Hg concentrations and mean Hg accumulation rates were significantly higher in Crystal Lake sediments compared to Big Bear Lake sediments (Hg levels: Crystal Lake 220 ± 93 ng g−1, Big Bear Lake 92 ± 26 ng g−1; Hg accumulation: Crystal Lake 790 ± 1,200 μg m−2 year−1, Big Bear 240 ± 54 μg m−2 year−1). In Crystal Lake, the ratio between post-1965 and pre-1865 Hg concentrations was 1.1, and several spikes in Hg levels occurred between 1910 and 1985. Given the remote location of the lake, the proximity of fires, and the lack of point sources within the region, these results suggested wildfires (rather than industrial sources) were a continuous source of Hg to Crystal Lake over the last 150 years.  相似文献   

17.
Water column and seabed samples were obtained from 92 stations on the Amazon continental shelf during October of 1979. Uptake of silica near and southeast of the river mouth began at a salinity of 8%. and accounted for 17% of the riverine silica flux to this region. Uptake northwest of the river mouth began at a salinity of 20%. and resulted in 33% removal of the riverine silica flux. Examination of filtered suspended solids revealed abundant diatoms in the surface waters, including Coscinodiscus. Skeletonema, Synedra. and Thalassiosira. The biological uptake of silica appears to be dependent on three factors: turbidity, turbulence, and nutrient availability. There was no evidence of abiological removal of silica in the Amazon estuary. 75 to 88% of the silica removed from surface waters by diatoms dissolves prior to accumulation in the seabed. Based on the mean biogenic silica content of shelf sediment (0.25%) and estimates of rates of sediment accumulation, the biogenic silica accumulation rate on the shelf is 2 × 1012 g/yr, which represents only 4% of the dissolved silica supplied by the Amazon River. Biological uptake of silica in estuarine surface waters may not accurately reflect permanent removal of biogenic silica to the seabed because of dissolution which occurs in bottom waters and near the sediment-water interface.  相似文献   

18.
The accepted standard state entropy of titanite (sphene) has been questioned in several recent studies, which suggested a revision from the literature value 129.3 ± 0.8 J/mol K to values in the range of 110–120 J/mol K. The heat capacity of titanite was therefore re-measured with a PPMS in the range 5 to 300 K and the standard entropy of titanite was calculated as 127.2 ± 0.2 J/mol K, much closer to the original data than the suggested revisions. Volume parameters for a modified Murgnahan equation of state: V P,T  = V 298° × [1 + a°(T − 298) − 20a°(T − 298)] × [1 – 4P/(K 298 × (1 – 1.5 × 10−4 [T − 298]) + 4P)]1/4 were fit to recent unit cell determinations at elevated pressures and temperatures, yielding the constants V 298° = 5.568 J/bar, a° = 3.1 × 10−5 K−1, and K = 1,100 kbar. The standard Gibbs free energy of formation of titanite, −2456.2 kJ/mol (∆H°f = −2598.4 kJ/mol) was calculated from the new entropy and volume data combined with data from experimental reversals on the reaction, titanite + kyanite = anorthite + rutile. This value is 4–11 kJ/mol less negative than that obtained from experimental determinations of the enthalpy of formation, and it is slightly more negative than values given in internally consistent databases. The displacement of most calculated phase equilibria involving titanite is not large except for reactions with small ∆S. Re-calculated baric estimates for several metamorphic suites yield pressure differences on the order of 2 kbar in eclogites and 10 kbar for ultra-high pressure titanite-bearing assemblages.  相似文献   

19.
We investigated seasonal variability in organic carbon (OC) budgets using a physical-biological model for the Mississippi River turbidity plume. Plume volume was calculated from mixed layer depth and area in each of four salinity subregions based on an extensive set of cruise data and satellite-derived suspended sediment distributions. These physical measurements were coupled with an existing food web model to determine seasonally dependent budgets for labile (reactive on time scales of days to weeks) OC in each salinity subregion. Autochthonous gross primary production (GPP) equaled 1.3×1012 g C yr−1 and dominated labile OC inputs (88% of the budget) because riverine OC was assumed mostly refractory (nonreactive). For perspective, riverine OC inputs amounted to 3.9×1012 g C yr−1, such that physical inputs were 3 times greater than biological inputs to the plume. Annually, microbial respiration (R) accounted for 65% of labile OC losses and net metabolism (GPP—R) for the entire plume was, autotrophic, equaling 5.1×1011 g C yr−1. Smaller losses of labile OC occurred via sedimentation (20%), advection (10%), and export to higher trophic levels (5%). In our present model, annual losses of labile OC are 10% higher than inputs, indicating future improvements are required. Application of our model to estimate air-sea carbon dioxide (CO2) fluxes indicated the plume was a net sink of 2.0×109 mol CO2 yr−1, of which 90% of the total drawdown was from biotic factors. In all seasons, low salinity waters were a source of CO2 (pCO2=560–890 μatm), and intermediate to high salinity waters were a sink of CO2 (pCO2=200–370 μatm). Our model was also used to calculate O2 demand for the development, of regional hypoxia, and our spring and early summer budgets indicated that sedimentation of autochthonous OC from the immediate plume contributed 23% of the O2 demand necessary for establishment of hypoxia in the region.  相似文献   

20.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号