首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Statistical bias correction methods for numerical weather prediction (NWP) forecasts of maximum and minimum temperatures over India in the medium-range time scale (up to 5 days) are proposed in this study. The objective of bias correction is to minimize the systematic error of the next forecast using bias from past errors. The need for bias corrections arises from the many sources of systematic errors in NWP modeling systems. NWP models have shortcomings in the physical parameterization of weather events and have the inability to handle sub-grid phenomena successfully. The statistical algorithms used for minimizing the bias of the next forecast are running-mean (RM) bias correction, best easy systematic estimator, simple linear regression and the nearest neighborhood (NN) weighted mean, as they are suitable for small samples. Bias correction is done for four global NWP model maximum and minimum temperature forecasts. The magnitude of the bias at a grid point depends upon geographical location and season. Validation of the bias correction methodology is carried out using daily observed and bias-corrected model maximum and minimum temperature forecast over India during July–September 2011. The bias-corrected NWP model forecast generally outperforms direct model output (DMO). The spatial distribution of mean absolute error and root-mean squared error for bias-corrected forecast over India indicate that both the RM and NN methods produce the best skill among other bias correction methods. The inter-comparison reveals that statistical bias correction methods improve the DMO forecast in terms of accuracy in forecast and have the potential for operational applications.  相似文献   

2.
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.  相似文献   

3.
In this paper, we propose a framework for quantifying risks, including (1) the effects of forecast errors, (2) the ability to resolve critical grid features that are important to accurate site-specific forecasts, and (3) a framework that can move us toward performance-based/cost-based decisions, within an extremely fast execution time. A key element presently lacking in previous studies is the interrelationship between the effects of combined random errors and bias in numerical weather prediction (NWP) models and bias and random errors in surge models. This approach examines the number of degrees of freedom in present forecasts and develops an equation for the quantification of these types of errors within a unified system, given the number of degrees of freedom in the NWP forecasts. It is shown that the methodology can be used to provide information on the forecasts and along with the combined uncertainty due to all of the individual contributions. A potential important benefit from studies using this approach would be the ability to estimate financial and other trade-offs between higher-cost “rapid” evacuation methods and lower-cost “slower” evacuation methods. Analyses here show that uncertainty inherent in these decisions depends strongly on forecast time and geographic location. Methods based on sets of surge maxima do not capture this uncertainty and would be difficult to use for this purpose. In particular, it is shown that surge model bias can play a dominant role in distorting the forecast probabilities.  相似文献   

4.
In the last thirty years great strides have been made by large-scale operational numerical weather prediction models towards improving skills for the medium range time-scale of 7 days. This paper illustrates the use of these current forecasts towards the construction of a consensus multimodel forecast product called the superensemble. This procedure utilizes 120 of the recent-past forecasts from these models to arrive at the training phase statistics. These statistics are described by roughly 107 weights. Use of these weights provides the possibility for real-time medium range forecasts with the superensemble. We show the recent status of this procedure towards real-time forecasts for the Asian summer monsoon. The member models of our suite include ECMWF, NCEP/EMC, JMA, NOGAPS (US Navy), BMRC, RPN (Canada) and an FSU global spectral forecast model. We show in this paper the skill scores for day 1 through day 6 of forecasts from standard variables such as winds, temperature, 500 hPa geopotential height, sea level pressure and precipitation. In all cases we noted that the superensemble carries a higher skill compared to each of the member models and their ensemble mean. The skill matrices we use include the RMS errors, the anomaly correlations and equitable threat scores. For many of these forecasts the improvements of skill for the superensemble over the best model was found to be quite substantial. This real-time product is being provided to many interested research groups. The FSU multimodel superensemble, in real-time, stands out for providing the least errors among all of the operational large scale models.  相似文献   

5.
The output from Global Forecasting System (GFS) T574L64 operational at India Meteorological Department (IMD), New Delhi is used for obtaining location specific quantitative forecast of maximum and minimum temperatures over India in the medium range time scale. In this study, a statistical bias correction algorithm has been introduced to reduce the systematic bias in the 24–120 hour GFS model location specific forecast of maximum and minimum temperatures for 98 selected synoptic stations, representing different geographical regions of India. The statistical bias correction algorithm used for minimizing the bias of the next forecast is Decaying Weighted Mean (DWM), as it is suitable for small samples. The main objective of this study is to evaluate the skill of Direct Model Output (DMO) and Bias Corrected (BC) GFS for location specific forecast of maximum and minimum temperatures over India. The performance skill of 24–120 hour DMO and BC forecast of GFS model is evaluated for all the 98 synoptic stations during summer (May-August 2012) and winter (November 2012–February 2013) seasons using different statistical evaluation skill measures. The magnitude of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) for BC GFS forecast is lower than DMO during both summer and winter seasons. The BC GFS forecasts have higher skill score as compared to GFS DMO over most of the stations in all day-1 to day-5 forecasts during both summer and winter seasons. It is concluded from the study that the skill of GFS statistical BC forecast improves over the GFS DMO remarkably and hence can be used as an operational weather forecasting system for location specific forecast over India.  相似文献   

6.
The recent improvement of numerical weather prediction (NWP) models has a strong potential for extending the lead time of precipitation and subsequent flooding. However, uncertainties inherent in precipitation outputs from NWP models are propagated into hydrological forecasts and can also be magnified by the scaling process, contributing considerable uncertainties to flood forecasts. In order to address uncertainties in flood forecasting based on single-model precipitation forecasting, a coupled atmospheric-hydrological modeling system based on multi-model ensemble precipitation forecasting is implemented in a configuration for two episodes of intense precipitation affecting the Wangjiaba sub-region in Huaihe River Basin, China. The present study aimed at comparing high-resolution limited-area meteorological model Canadian regional mesoscale compressible community model (MC2) with the multiple linear regression integrated forecast (MLRF), covering short and medium range. The former is a single-model approach; while the latter one is based on NWP models [(MC2, global environmental multiscale model (GEM), T213L31 global spectral model (T213)] integrating by a multiple linear regression method. Both MC2 and MLRF are coupled with Chinese National Flood Forecasting System (NFFS), MC2-NFFS and MLRF-NFFS, to simulate the discharge of the Wangjiaba sub-basin. The evaluation of the flood forecasts is performed both from a meteorological perspective and in terms of discharge prediction. The encouraging results obtained in this study demonstrate that the coupled system based on multi-model ensemble precipitation forecasting has a promising potential of increasing discharge accuracy and modeling stability in terms of precipitation amount and timing, along with reducing uncertainties in flood forecasts and models. Moreover, the precipitation distribution of MC2 is more problematic in finer temporal and spatial scales, even for the high resolution simulation, which requests further research on storm-scale data assimilation, sub-grid-scale parameterization of clouds and other small-scale atmospheric dynamics.  相似文献   

7.
An abnormal warming condition with 3?C5?°C rise in temperature above its normal value was observed in the Indian state of Odisha during 12?C16 November 2009. This study aims at examining the impact of additional weather observations obtained from the automatic weather stations (AWS) installed in the recent past on the numerical simulation of such abnormal warming. AWS observations, such as temperature at 2?m (T2m), dew point temperature at 2?m (Td2m), wind vector at 10?m (speed and direction), and sea level pressure (SLP) have been assimilated into the state-of-the-art Weather Research and Forecasting (WRF) model using the three-dimensional variational data assimilation (3DVAR). Six sets of experiments have been conducted here. There is no data assimilation in the control experiment, whereas AWS and radiosonde observations have been assimilated in rest of the five experiments. The model integrations have been made for 72?h in each experiment starting from 0000 UTC November 12 to 0000 UTC November 15, 2009. Assimilation experiments have also been performed to assess the impact of individual surface parameters on the model simulations. Impact of AWS observations on model simulation has been examined with reference to the control simulation and quantified in terms of root-mean-square error and forecast skill score for temperature, sea level pressure, and relative humidity at three selected stations Bonaigarh, Brahmagiri, and Nuapada in Odisha. Results indicate improvements in the surface air temperature and SLP simulations in the timescale of 72?h at all the three stations due to additional weather data assimilation into the model. Improvements in simulation are significant up to 24?h. The assimilation of additional wind fields significantly improved the temperature simulation at all the three stations. The simulated SLP has also improved significantly due to the assimilation of surface temperature and moisture.  相似文献   

8.
In this study it is investigated how uncertainties in the magnitude of the drag coefficient translate into uncertainties in storm surge forecasts in the case of severe weather. A storm surge model is used with wind stress data from a numerical weather prediction (NWP) model, to simulate several recent storms over the North Sea. For a fixed wind speed, the wind stress is linear in the drag coefficient. However, in the NWP model the wind speed is not fixed and increasing the drag in the NWP model results into reduced wind speeds. The results from simulations show that for given increase in the drag coefficient, the weakening of the 10-m wind field reduces the increase in the stress considerably. When the Charnock parameter is increased in the NWP model, the resulting relative changes in the wind stress are almost independent of the wind speed. This is related to the fact that the depth of the surface boundary layer depends on the wind speed. The ratio between relative changes in the wind stress and relative changes in the drag coefficient depends on the wind speed. For 10-m wind speeds larger than 20?m?s?1 the ratio is 0.52; for lower wind speed criteria the ratio is somewhat larger (??0.60). Approximately 36% of the relative change in the drag coefficient translates into a relative change in the surge in stations at the Dutch coast. The relative increase in the storm surge is approximately 68% of the relative increase in the stress.  相似文献   

9.
One very specific operational requirement of the Tropical Cyclone (TC) Programme of the Regional Specialized Meteorological Centre, New Delhi is to provide 12-hourly forecasts valid up to 48 h (preferably 72 h) on the intensity of cyclones over the southern Indian Seas. In this paper, a simple empirical model for predicting the intensity of TCs occurring in the Bay of Bengal is proposed. The model parameter has been determined from a database assembled on 30 recent cyclones, and the model itself is based on the assumption that a TC intensifies exponentially. A method for correcting the forecast during subsequent observation hours (6- or 12-h intervals) is also presented. The results show that the forecast skill for forecasts of up to 48 h is reasonably good. The absolute mean errors are less than 12 knots for 48-h forecasts, with the forecast skill decreasing with time. With the incorporation of a correction procedure based on the latest observations, some improvement in the forecast skill can be obtained. The model is expected to be useful to operational forecasters.  相似文献   

10.
A number of physical factors have been introduced to improve limited area model forecasts. The factors include land surface fluxes, shallow convection and radiation. The model including these additional physical factors (modified physics) is run for five cases of monsoon depression which made landfall over the Indian coast, and the results are compared with those of the control run. The forecasts are verified by computing the root mean square and mean errors. The differences in these skill scores between the two model runs are tested for their statistical significance. It is found that the modified physics has a statistically significant effect on the model skill with the maximum impact on the mean sea level pressure and the temperature. Detailed analyses of mean sea level pressure, wind, rainfall and temperature further confirm that the modified physics has maximum impact on mean sea level pressure and temperature and marginal impact on wind and rainfall. Furthermore, analyses of some model parameters related to physics at a grid point for one case of depression were done. The results show that the inclusion of the land surface physics, shallow convection and radiative processes have produced a better precipitation forecast over the grid point.  相似文献   

11.
针对两个最新换代的季度集合预测系统对中国季度降水预测中存在的系统缺陷,应用改进的贝叶斯联合概率模型(BJP)加以订正。对订正后的单一模式概率预测应用一种混合模型贝叶斯模型平均(BMA)方法加以集成,以综合各模式的优势来提高中国季度降水预测技巧。结果表明:BJP模型可有效地消除集合模式预测的系统偏差,同时大幅提高了概率预测的可靠性。经过订正的欧洲中尺度天气预报中心的 System4预测在许多季度在中国的很大区域范围内都显示出了一定的预测技巧;而澳洲气象局的POAMA2.4预测只在个别季度局部范围内具有技巧。使用BMA对订正后的单一模式预测进行集成可显著提高对中国季度降水预测的精度,相比单一模式预测,技巧得分为正值的网格百分率分别提高了13.3%和20.0%。  相似文献   

12.
Performance of a hybrid assimilation system combining 3D Var based NGFS (NCMRWF Global Forecast System) with ETR (Ensemble Transform with Rescaling) based Global Ensemble Forecast (GEFS) of resolution T-190L28 is investigated. The experiment is conducted for a period of one week in June 2013 and forecast skills over different spatial domains are compared with respect to mean analysis state. Rainfall forecast is verified over Indian region against combined observations of IMD and NCMRWF. Hybrid assimilation produced marginal improvements in overall forecast skill in comparison with 3D Var. Hybrid experiment made significant improvement in wind forecasts in all the regions on verification against mean analysis. The verification of forecasts with radiosonde observations also show improvement in wind forecasts with the hybrid assimilation. On verification against observations, hybrid experiment shows more improvement in temperature and wind forecasts at upper levels. Both hybrid and operational 3D Var failed in prediction of extreme rainfall event over Uttarakhand on 17 June, 2013.  相似文献   

13.
An objective NWP-based cyclone prediction system (CPS) was implemented for the operational cyclone forecasting work over the Indian seas. The method comprises of five forecast components, namely (a) Cyclone Genesis Potential Parameter (GPP), (b) Multi-Model Ensemble (MME) technique for cyclone track prediction, (c) cyclone intensity prediction, (d) rapid intensification, and (e) predicting decaying intensity after the landfall. GPP is derived based on dynamical and thermodynamical parameters from the model output of IMD operational Global Forecast System. The MME technique for the cyclone track prediction is based on multiple linear regression technique. The predictor selected for the MME are forecast latitude and longitude positions of cyclone at 12-hr intervals up to 120 hours forecasts from five NWP models namely, IMD-GFS, IMD-WRF, NCEP-GFS, UKMO, and JMA. A statistical cyclone intensity prediction (SCIP) model for predicting 12 hourly cyclone intensity (up to 72 hours) is developed applying multiple linear regression technique. Various dynamical and thermodynamical parameters as predictors are derived from the model outputs of IMD operational Global Forecast System and these parameters are also used for the prediction of rapid intensification. For forecast of inland wind after the landfall of a cyclone, an empirical technique is developed. This paper briefly describes the forecast system CPS and evaluates the performance skill for two recent cyclones Viyaru (non-intensifying) and Phailin (rapid intensifying), converse in nature in terms of track and intensity formed over Bay of Bengal in 2013. The evaluation of performance shows that the GPP analysis at early stages of development of a low pressure system indicated the potential of the system for further intensification. The 12-hourly track forecast by MME, intensity forecast by SCIP model and rapid intensification forecasts are found to be consistent and very useful to the operational forecasters. The error statistics of the decay model shows that the model was able to predict the decaying intensity after landfall with reasonable accuracy. The performance statistics demonstrates the potential of the system for improving operational cyclone forecast service over the Indian seas.  相似文献   

14.
Weather forecasting is based on the use of numerical weather prediction (NWP) models that are able to perform the necessary calculations that describe/predict the major atmospheric processes. One common problem in weather forecasting derives from the uncertainty related to the chaotic behaviour of the atmosphere. A solution to that problem is to perform in addition to “deterministic” forecasts, “stochastic” forecasts that provide an estimate of the prediction skill. A computationally feasible approach towards this aim is to perform “ensemble forecasts”. Indeed, in the frame of SEE-GRID-SCI EU funded project a Regional scale Multi-model, Multi-analysis ensemble forecasting system (REFS) was built and ported on the Grid infrastructure. REFS is based on the use of four limited area models (namely BOLAM, MM5, ETA, and NMM) that are run using a multitude of initial and boundary conditions over the Mediterranean. This paper presents the tools and procedures followed for developing this application at a production level.  相似文献   

15.
A statistical model for predicting the intensity of tropical cyclones in the Bay of Bengal has been proposed. The model is developed applying multiple linear regression technique. The model parameters are determined from the database of 62 cyclones that developed over the Bay of Bengal during the period 1981–2000. The parameters selected as predictors are: initial storm intensity, intensity changes during past 12 hours, storm motion speed, initial storm latitude position, vertical wind shear averaged along the storm track, vorticity at 850 hPa, Divergence at 200 hPa and sea surface temperature (SST). When the model is tested with the dependent samples of 62 cyclones, the forecast skill of the model for forecasts up to 72 hours is found to be reasonably good. The average absolute errors (AAE) are less than 10 knots for forecasts up to 36 hours and maximum forecast error of order 14 knots occurs at 60 hours and 72 hours. When the model is tested with the independent samples of 15 cyclones (during 2000 to 2007), the AAE is found to be less than 13 knots (ranging from 5.1 to 12.5 knots) for forecast up to 72 hours. The model is found to be superior to the empirical model proposed by Roy Bhowmik et al (2007) for the Bay of Bengal.  相似文献   

16.
In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1 °C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1 °C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87 °C for day-one to 1.27 °C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2 °C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.  相似文献   

17.
A new model has been developed for track prediction of Indian Ocean cyclones. The model utilizes environmental steering flow using the forecasts from a high-resolution global model and the effect due to earth??s rotation (the beta-effect) to determine the future movement of cyclone. A new approach based on vertical profile of potential vorticity is used to determine weights for different vertical levels for computation of mean steering current. Despite the fact that the model is based on the dynamical framework, the operational cost and time for running the model is only a fraction of what is needed by a normal numerical weather prediction model. This new approach will enhance flexibility in defining the initial position of the cyclone in the model, and also, it is possible to create a large ensemble of predicted tracks to assess the impact of the uncertainty of initial cyclone position on the predicted tracks. The performance of the model for ten cyclones, viz. GONU (02?C08 Jun, 2007), SIDR (11?C16 November, 2007), NARGIS (27 Apr?C04 May, 2008), RASHMI (25?C27 October, 2008) KHAI-MUK (14?C16 November, 2008), NISHA (25?C27 November, 2008), SEVEN (04?C08 December, 2008), BIJLI (14?C18 April, 2009), AILA (23?C26 May, 2009), and PHYAN (09?C11 November, 2009), have been tested in the present study. The forecast errors of the present model have been computed with respect to the Joint Typhoon Warning Center best track analysis positions. The forecast skill improvement (mean of ten cyclones) of the model with respect to the Climatology and Persistence (CLIPER) statistical model varies from 7 to 67?% between 12 and 72?h.  相似文献   

18.
The three dimensional variational data assimilation scheme (3D-Var) is employed in the recently developed Weather Research and Forecasting (WRF) model. Assimilation experiments have been conducted to assess the impact of Indian Space Research Organisation’s (ISRO) Automatic Weather Stations (AWS) surface observations (temperature and moisture) on the short range forecast over the Indian region. In this study, two experiments, CNT (without AWS observations) and EXP (with AWS observations) were made for 24-h forecast starting daily at 0000 UTC during July 2008. The impact of assimilation of AWS surface observations were assessed in comparison to the CNT experiment. The spatial distribution of the improvement parameter for temperature, relative humidity and wind speed from one month assimilation experiments demonstrated that for 24-h forecast, AWS observations provide valuable information. Assimilation of AWS observed temperature and relative humidity improved the analysis as well as 24-h forecast. The rainfall prediction has been improved due to the assimilation of AWS data, with the largest improvement seen over the Western Ghat and eastern India.  相似文献   

19.
In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the FSUGSM and FSUNRSM and were compared with the observed fields (analysis) obtained from the European Center for Medium Range Weather Forecasts (ECMWF). The impact of physical initialization (a procedure that assimilates observed rain rates into the model atmosphere through a set of reverse algorithms) on rainfall forecasts was examined in detail. A very high nowcasting skill for precipitation is obtained through the use of high-resolution physical initialization applied at the regional model level. Higher skills in wind and precipitation forecasts over the Indian summer monsoon region are achieved using this version of the regional model with physical initialization. A relatively new concept, called the ‘multimodel/multianalysis superensemble’ is described in this paper and is applied for the wind and precipitation forecasts over the Indian subcontinent. Large improvement in forecast skills of wind at 850 hPa level over the Indian subcontinent is shown possible through the use of the multimodel superensemble. The multianalysis superensemble approach that uses the latest satellite data from the Tropical Rainfall Measuring Mission (TRMM) and the Defense Meteorological Satellite Program (DMSP) has shown significant improvement in the skills of precipitation forecasts over the Indian monsoon region.  相似文献   

20.
The present study describes an analysis of Asian summer monsoon forecasts with an operational general circulation model (GCM) of the European Centre for Medium Range Weather Forecasts (ECMWF), U.K. An attempt is made to examine the influence of improved treatment of physical processes on the reduction of systematic errors. As some of the major changes in the parameterization of physical processes, such as modification to the infrared radiation scheme, deep cumulus convection scheme, introduction of the shallow convection scheme etc., were introduced during 1985–88, a thorough systematic error analysis of the ECMWF monsoon forecasts is carried out for a period prior to the incorporation of such changes i.e. summer monsoon season (June–August) of 1984, and for the corresponding period after relevant changes were implemented (summer monsoon season of 1988). Monsoon forecasts of the ECMWF demonstrate an increasing trend of forecast skill after the implementation of the major changes in parameterizations of radiation, convection and land-surface processes. Further, the upper level flow is found to be more predictable than that of the lower level and wind forecasts display a better skill than temperature. Apart from this, a notable increase in the magnitudes of persistence error statistics indicates that the monsoon circulation in the analysed fields became more intense with the introduction of changes in the operational forecasting system. Although, considerable reduction in systematic errors of the Asian summer monsoon forecasts is observed (up to day-5) with the introduction of major changes in the treatment of physical processes, the nature of errors remain unchanged (by day-10). The forecast errors of temperature and moisture in the middle troposphere are also reduced due to the changes in treatment of longwave radiation. Moreover, the introduction of shallow convection helped it further by enhancing the vertical transports of heat and moisture from the lower troposphere. Though, the hydrological cycle in the operational forecasts appears to have enhanced with the major modifications and improvements to the physical parameterization schemes, certain regional peculiarities have developed in the simulated rainfall distribution over the monsoon region. Hence, this study suggests further attempts to improve the formulations of physical processes for further reduction of systematic forecast errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号