首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Monthly and inter-annual variation in tropospheric nitrogen dioxide (NO2) have been examined over metropolitan cities (New Delhi, Kolkata, Mumbai and Chennai) and hill stations (Mount Abu, Nainital, Srinagar, Kodaikanal, Dalhousie, Gulmarg, Shimla and Munnar) of India during the period 2004?C2010 using satellite-based SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). It is observed that the monthly variation in NO2 over the metropolitan cities is higher during winter (November?CDecember?CJanuary?CFebruary) months and lower during summer monsoon (June?CJuly?CAugust?CSeptember) months. Lower NO2 in summer monsoon leads to the presence of deep convection and higher in winter leads to calm winds and more residential time of gases. Moreover, rapid industrialization and traffic growth are also responsible for the higher NO2. Mean values of NO2 over New Delhi and Mumbai as well as hill stations, such as Mount Abu, Nainital and Shimla, have exhibited more pollution. Similarly, maximum NO2 occurred over the hill stations during pre-monsoon months (April?CMay) and early part of summer monsoon (June). Higher NO2 values are observed in November?CDecember months. All the hill stations also show increasing trend of NO2 during the period 2004?C2010. Increasing pollution of NO2 over the hill stations might also be due to forest fires, biomass burning and long-range transport. Back trajectory analysis shows that the observed peaks in NO2 are a resultant of the long-range transported component amplified by the local environment. In the northern hill stations, pollution seems transported from west Asian and European countries while in the southern hill stations, pollution is originated from southern Indian Ocean and East Asian countries.  相似文献   

2.
The use of satellite data in combination with ground-based measurements can provide valuable information about atmospheric chemistry and air quality. In this study, ground-based Differential Optical Absorption Spectroscopy (DOAS) measurements of nitrogen dioxide (NO2) conducted in central Mexico are compared with the space-borne Ozone Monitoring Instrument (OMI) dataset of 2006-2011. Ground-based measurements exhibited large day-to-day variations and were on average three times higher than the space-borne derived average over the observation site. This difference is attributed to strong horizontal inhomogeneity of the lower layer of the measured NO2 columns, sampled over a large footprint from the satellite instrument. Also, a reduced sensitivity of the satellite observation near the surface, where the largest concentrations are expected, could be responsible for this large discrepancy. From the analyzed OMI dataset, distribution maps of NO2 above central Mexico were reconstructed, allowing to identify three main areas with increased NO2 column densities: The dominating metropolitan area of Mexico City, the heavily industrialized region of Tula to the north and the Cuernavaca valley to the south. In this analysis, seasonal variability of NO2 columns over central Mexico was detected, finding higher NO2 columns during the dry and cold season, followed by the dry and warm period, and finally the lowest NO2 columns were found during the rainy season. Pollution transport of this gas from Tula into Mexico City, as well as towards the Cuernavaca valley, is evident from this dataset.  相似文献   

3.
Dissolved inorganic nutrient elements were analyzed from the samples collected in the South Passage of the Changjiang (Yangtze River) Estuary in March 2003, including NH4 , NO3-, NO2- and PO43-. The water samples were collected with a Niskin sampler hourly at the near-surface, middle and near-bottom depths at the three stations -A1, A2 and A3-during two complete tidal cycles of neap tide and spring tide. Results showed that 1) the concentrations of NH4 , NO3- and NO2- were a little higher respectively during the neap tide than those during the spring tide, while PO43- showed an opposite trend, and each was higher in the ebb tide than in the flood tide, either for the neap tidal cycle or the spring tidal cycle; 2) higher stratification of the nutrients existed obviously in this area, with the concentrations of which increased from the bottom to the surface, especially for NH4 and NO3-; 3) the coefficient of variation (C.V.) values of all dissolved inorganic nutrients varied from 4.06% to 36.8% beyond different influences of the tidal current and Changjiang runoff; 4) with increasing suspended matter in the water column, the concentrations of PO43- became lower in the filtered water; and 5) the total transport of each tidal cycle was much more in the spring tide than in the neap tide, and the positive values indicated that the nutrients had been exported to the East China Sea. Studies on the variations and net transport of dissolved inorganic nutrients in the South Passage of the Changjiang Estuary will provide the scientific basis for the study of the mechanism of red tide in the East China Sea.  相似文献   

4.
Climate effects on hydrology impart high variability to water-quality properties, including nutrient loadings, concentrations, and phytoplankton biomass as chlorophyll-a (chl-a), in estuarine and coastal ecosystems. Resolving long-term trends of these properties requires that we distinguish climate effects from secular changes reflecting anthropogenic eutrophication. Here, we test the hypothesis that strong climatic contrasts leading to irregular dry and wet periods contribute significantly to interannual variability of mean annual values of water-quality properties using in situ data for Chesapeake Bay. Climate effects are quantified using annual freshwater discharge from the Susquehanna River together with a synoptic climatology for the Chesapeake Bay region based on predominant sea-level pressure patterns. Time series of water-quality properties are analyzed using historical (1945–1983) and recent (1984–2012) data for the bay adjusted for climate effects on hydrology. Contemporary monitoring by the Chesapeake Bay Program (CBP) provides data for a period since mid-1984 that is significantly impacted by anthropogenic eutrophication, while historical data back to 1945 serve as historical context for a period prior to severe impairments. The generalized additive model (GAM) and the generalized additive mixed model (GAMM) are developed for nutrient loadings and concentrations (total nitrogen—TN, nitrate?+?nitrate—NO2?+?NO3) at the Susquehanna River and water-quality properties in the bay proper, including dissolved nutrients (NO2?+?NO3, orthophosphate—PO4), chl-a, diffuse light attenuation coefficient (K D (PAR)), and chl-a/TN. Each statistical model consists of a sum of nonlinear functions to generate flow-adjusted time series and compute long-term trends accounting for climate effects on hydrology. We present results identifying successive periods of (1) eutrophication ca. 1945–1980 characterized by approximately doubled TN and NO2?+?NO3 loadings, leading to increased chl-a and associated ecosystem impairments, and (2) modest decreases of TN and NO2?+?NO3 loadings from 1981 to 2012, signaling a partial reversal of nutrient over-enrichment. Comparison of our findings with long-term trends of water-quality properties for a variety of estuarine and coastal ecosystems around the world reveals that trends for Chesapeake Bay are weaker than for other systems subject to strenuous management efforts, suggesting that more aggressive actions than those undertaken to date will be required to counter anthropogenic eutrophication of this valuable resource.  相似文献   

5.
Karst groundwater is a vital resource for drinking, living and irrigation purposes in karst agricultural areas of the world. Due to the vulnerability of karst aquifers, surface pollutants are easily transferred to the subsurface and make karst groundwater be deteriorated, thereby restricting the rational exploitation of karst groundwater resource. In view of this, 49 karst groundwater samples were collected from spring (SW) and underground river (URW) sites in the suburban area of Chongqing City and analyzed for various hydrochemical components. Particularly, the karst groundwater quality was comprehensively uncovered by combining characteristics of hydrogeochemical evolution and health risks caused by nitrate and fluoride. The results revealed that the karst groundwater was slightly alkaline in nature and the water types were mainly characterized by Ca-HCO3 accounting for 93.88% of the total samples due to the heavy dissolution of carbonate rock. The relatively high concentrations of Na+, SO42? and NO3? up to 271.88 mg/L, 277.94 mg/L and 56.94 mg/L were over the corresponding maximum acceptable limits for drinking water, which can be predominately attributed to the emissions of industrial park, dissolution of gypsum and pyrite and excessive application of chemical fertilizers. Although agricultural activities were stopped and chemical fertilizers were no longer applied during the sampling period, long-term application of fertilizers have a persistent adverse effect on the karst groundwater NO3?. The pollution index of the karst groundwater (PIG) revealed that the low pollution and potential pollution zones were noticed in the northwestern parts of the study area. With respect of the SW, all the total hazard index (HI) values were below 1 suggesting no significant health risk. On the contrary, HI values of 0.11–1.16 for adults, 0.15–1.61 for children and 0.17–1.83 for infants in the URW indicated significant noncarcinogenic health risks. Particularly, infants and children were more vulnerable to karst groundwater NO3? than adults. Furthermore, the noncarcinogenic health risks of karst groundwater can be mainly attributed to NO3?, confirmed by the higher contribution ratio (66.55%) to the HI values. Therefore, special and targeted measures need to be taken to decrease the NO3? concentration in agricultural area.  相似文献   

6.
 The concentrations of N, P and Fe in surface sediments and interstitial and overlying (bottom and surface) waters of the Ashtamudi estuary located in the southwest coast of India are reported along with the various chemical species of N (NO2–N, NO3–N, NH3–N and total N) and P (organic P, inorganic P and total P) in interstitial and overlying waters and discussed in terms of the physico-chemical environment of the system. The interstitial water exhibits higher salinity values compared to bottom and surface waters, indicating the coupled effects of salt-wedge phenomena and gravitational convection of more saline-denser marine water downward through surface sediments. N, P and Fe as well as their chemical forms are enriched in the interstitial water compared to bottom and surface waters. However, the dissolved oxygen (DO) shows an opposite trend. The marked enrichment of NH3–N in the interstitial water and its marginal presence in bottom and surface waters, together with the substantial decrease in the DO concentrations of bottom water and consequent increase in the concentrations of NO2–N and NO3–N in interstitial and bottom waters, points to the nitrification process operating in the sediment-water interface of the Ashtamudi estuary. The enrichment of total N, P and Fe in the interstitial water compared to the overlying counterparts and the positive correlation of sediment N, P and Fe with mud contents as well as organic carbon indicate that these elements are liberated during the early diagenetic decomposition of organic matter trapped in estuarine muds. Received: 5 Oktober 1998 · Accepted: 9 February 1999  相似文献   

7.
The present study research investigation is aimed to assess the groundwater quality for the urban area in Khan Younis City, southern Gaza Strip, for multi-domestic purposes. The physicochemical analysis of the groundwater wells shows the major ions in the order of Na+ > Mg2+ > Ca2+ > B3+ > K+ and Cl? > HCO3 ? > SO4 2? > NO3 2? > F? > PO4 3?. Groundwater quality is classified as very hard-brackish water type. Ninety-five percent of the wells are classified as saline water type with high NO3 2? concentrations. Based on water quality index (WQI), the groundwater falls into one of three categories: fair water (10%), poor water (15%), very poor (45%), and worst (30%). The high WQI values are because of high Na+, Cl?, SO4 2?, and NO3 2? concentrations, while synthetic pollution index (SPI) values indicate that most about 80% of the wells are seriously polluted. Langelier Saturation Index (LSI) indicates that most of data are either slightly scale forming or corrosive water or slightly corrosive but non-scale forming, and 75% of the wells are suitable for construction purposes (have SO4 2? concentrations <300 mg/L). The groundwater reaches alarming situation, where almost chemically unsuitable for drinking purposes and the water to be used after proper treatment such as desalination.  相似文献   

8.
The Guangdong province of China contains the most clearly described high-incidence of hepatocellular carcinoma (HCC) and nasopharyngeal carcinoma (NPC) areas in the world. The geographical heterogeneity of cancer incidence in the region suggests that many carcinogenic risk factors might be present in the regional geochemical environment. This paper presents the concentrations of a wide range of known carcinogens in two high cancer incidence areas in Guangdong and compared them to a low cancer incidence area in the same province. N-Nitrosamines, NO3, NO2, and ammonium were detected in groundwater, surface water, and drinking-water. The concentrations of the 7 trace metal and metalloid elements As, Cd, Ni, Cu, Pb, Zn, and Hg were determined in surface soil samples and all water samples. The results show that, compared with the guidelines or limit values for drinking-water quality in the world, the high cancer incidence areas have hazardous high levels of N-nitrodimethlyamine (NDMA) in all kinds of water. Oppositely, the low cancer incidence area has a safe low level of NDMA in water bodies. The levels of NO3, NO2, and ammonium in water have the same character, although they have different expression between the two high-risk areas. The distribution of the 7 tested trace elements in surface soil has no significant correlation with cancer incidence. On the other hand, high concentrations of carcinogenic N-Nitrosamines in drinking-water and natural water bodies were identified for the first time in the high NPC and HCC incidence area.  相似文献   

9.
In this study, AERMOD dispersion model has been applied for predicting the values of ambient concentrations of NO2 emissions due to the stacks of fourth gas refinery located in South Pars Gas Complex in Asaluyeh, Iran. First, the values of NO2 emissions from the stacks and the amounts of ambient concentrations of NO2 in nine monitoring stations have been measured in four seasons in 2013. Then, dispersion of NO2 emissions has been predicted by using AERMOD model in the region with the domain area of 10 × 10 km2, in average times of 1 h. Finally, the simulated and observed values of ambient NO2 concentrations in the nine receptors have been compared. Comparison of 1-h concentrations of the observed and predicted results with the international ambient standard levels shows that NO2 concentrations are higher than the standard value. The results show that AERMOD model can be used effectively for predicting the amounts of pollutants’ concentrations in the study area.  相似文献   

10.
Atmospheric dust is considered to be the major cause of poor air quality due to its contribution to high particulate levels, but their interaction with the acidic gases helps in controlling the level of SO2 and NO2 through ambient neutralization reactions. In the present study, the interaction of acidic gases such as SO2 and NO2 with alkaline dust was investigated during October, 2013–July, 2014 at a site named as Babarpur located at the Trans-Yamuna region of Delhi. The concentration of SO2 ranged from 10 to 170 μg/m3 with an average of 36 μg/m3 while that of NO2 ranged from 15 to 54 μg/m3 with an average of 26?±?8 μg/m3. The results were observed to be well within the National Ambient Air Quality Standard (NAAQS) limits prescribed by the Central Pollution Control Board (CPCB). The average concentrations of SO2 during day and night time were recorded as 31?±?18 and 43?±?53 μg/m3 respectively while the mean concentrations of NO2 during day and night time were recorded as 26?±?7 and 27?±?12 μg/m3 respectively. A positive correlation between SO42? and NO3? was also observed indicating their secondary aerosol formation. In aerosol phase, average concentrations of SO42? during day and night time were 3.9?±?0.3 and 6.5?±?2.3 μg/m3 respectively while that of NO3? were 9.5?±?1.5 and 7.3?±?0.5 μg/m3 respectively. Molar ratios of Ca2+/SO42?, NH4+/SO42?, and NH4+/NO3? were observed as 8, 5, and 1.7 during daytime and 1.5, 0.4, and 0.8 during nighttime respectively. Such molar ratios confirmed high concentrations of sulphate (SO4)2? and low concentrations of nitrate (NO3?) during night time, thereby indicating different pathway of aerosol formation during day and night time. Surface morphology and elemental composition of aerosol samples showed various oval, globular, and platy shapes where the diameter varied from few nm to ~5 μm depending on their precursors. There were certain shapes like grossularite, irregular aggregate, grape-like, triangular, and flattened which indicate the crustal origin of aerosols and their possible role in SO2 and NO2 adsorption.  相似文献   

11.
Open burning of scrap (bicycle, motorcycle, car and truck) tyres (OBST) was simulated in the laboratory to investigate their impact on the ambient air quality. The tyre samples were burnt in combustion chamber, and gaseous pollutants (CO, NO2 and SO2) emitted were quantified, while concentrations and elemental compositions of emitted total suspended particulates (TSP) were determined. Emission level of SO2 from all the tyre samples exceeded USEPA allowable (156.74 µg/m3) limit. CO due to car and truck tyres exceeded USEPA allowable (10,285.71 µg/m3) limit, while NO2 concentration was below the allowable limit (56.33 µg/m3) only in bicycle tyre. 25% of all the gaseous pollutants emitted are within the Air Quality Index range of 101–150. TSP concentrations from all the tyre samples were higher than the Federal Ministry of Environment standard (250 µg/m3) for ambient TSP. There is strong correlation (R) of 0.885, 0.949 and 0.802 among all the gaseous (CO/NO2, CO/SO2 and NO2/SO2) pollutants, respectively, while the highest (0.999) and lowest (0.079) positive correlations were observed between Mg and Mn as well as Cd and Zn, respectively. The results of this study show that OBST emits hazardous pollutants, which pose serious threat to human health and environment.  相似文献   

12.
《Applied Geochemistry》2005,20(9):1626-1636
Isotopic composition of NO3 (δ15NNO3 and δ18ONO3) and B (δ11B) were used to evaluate NO3 contamination and identify geochemical processes occurring in a hydrologically complex Basin and Range valley in northern Nevada with multiple potential sources of NO3. Combined use of these isotopes may be a useful tool in identifying NO3 sources because NO3 and B co-migrate in many environmental settings, their isotopes are fractionated by different environmental processes, and because wastewater and fertilizers may have distinct isotopic signatures for N and B. The principal cause of elevated NO3 concentrations in residential parts of the study area is wastewater and not natural NO3 or fertilizers. This is indicated by some samples with elevated NO3 concentrations plotting along δ15NNO3 and NO3 mixing lines between natural NO3 from the study area and theoretical septic-system effluent. This conclusion is supported by the presence of caffeine in one sample and the absence of samples with elevated NO3 concentrations that fall along mixing lines between natural NO3 and theoretical percolate below fertilized lawns. Nitrogen isotopes alone could not be used to determine NO3 sources in several wells because denitrification blurred the original isotopic signatures. The range of δ11B values in native ground water in the study area (−8.2‰ to +21.2‰) is large. The samples with the low δ11B values have a geochemical signature characteristic of hydrothermal systems. Physical and chemical data suggest B is not being strongly fractionated by adsorption onto clays. δ11B values from local STP effluent (−2.7‰) and wash water from a domestic washing machine (−5.7‰) were used to plot mixing lines between wastewater and native ground water. In general, wells with elevated NO3 concentrations fell along mixing lines between wastewater and background water on plots of δ11B against 1/B and Cl/B. Combined use of δ15N and δ11B in the study area was generally successful in identifying contaminant sources and processes that are occurring, however, it is likely to be more successful in simpler settings with a well-characterized δ11B value for background wells.  相似文献   

13.
Chemical compositions of snow from Mt. Yulong,southeastern Tibetan Plateau   总被引:1,自引:0,他引:1  
The snow and ice in Mt. Yulong offer a unique opportunity to investigate changes in climate and large scale atmospheric circulations over Asia. During February and April 2012, surface snow samples were collected from the Baishui Glacier No. 1 at different altitudes along the eastern slope of Mt. Yulong. Two snowpits were also excavated from Mt. Yulong at altitudes of 4780 and 4730 m a.s.l. in February 2012. The concentrations of inorganic ions were higher at an elevation of 4506 m a.s.l. in the glacier with significant contribution of anthropogenic (mainly NH\(_{4}^{\mathrm {+}}\), SO\(_{4}^{\mathrm {2-}}\), NO\(_{3}^{\mathrm {-}})\) and crustal (mainly Ca 2+) constituents. Concentration of HCOO ? in surface snow exhibited large variability, ranging from 0.04 to 6.8 μeq L ?1, attributed to dominant contribution from biomass burning emissions. Ion balance (ΔC) and Na +/Cl ? calculations indicated an excess of cations (particularly higher Ca 2+ concentrations) and Cl ? in snow, considering the sea-salt ratio, respectively. Monsoon season (June–September) ion concentrations in snowpit samples were generally two-fold lower than in other seasons. Principal component analysis was used to identify different sources of ions. Three main factors, accounting for more than 80% of the total variance, were related to different sources, including agricultural activities, biomass burning, and crustal aerosols.  相似文献   

14.
Radiocarbon measurements of black carbon in aerosols and ocean sediments   总被引:1,自引:0,他引:1  
Black carbon (BC) is the combustion-altered, solid residue remaining after biomass burning and fossil fuel combustion. Radiocarbon measurements of BC provide information on the residence time of BC in organic carbon pools like soils and sediments, and also provide information on the source of BC by distinguishing between fossil fuel and biomass combustion byproducts. We have optimized dichromate-sulfuric acid oxidation for the measurement of radiocarbon in BC. We also present comparisons of BC 14C measurements on NIST aerosol SRM 1649a with previously published bulk aromatic 14C measurements and individual polycyclic aromatic hydrocarbon (PAH) 14C measurements on the same NIST standard.Dichromate-sulfuric acid oxidation belongs to the chemical class of BC measurement methods, which rely on the resistance of some forms of BC to strong chemical oxidants. Dilute solutions of dichromate-sulfuric acid degrade BC and marine-derived carbon at characteristic rates from which a simple kinetic formula can be used to calculate concentrations of individual components (Wolbach and Anders, 1989). We show that: (1) dichromate-sulfuric acid oxidation allows precise, reproducible 14C BC measurements; (2) kinetics calculations give more precise BC yield information when performed on a % OC basis (vs. a % mass basis); (3) kinetically calculated BC concentrations are similar regardless of whether the oxidation is performed at 23°C or 50°C; and (4) this method yields 14C BC results consistent with previously published aromatic 14C data for an NIST standard.For the purposes of intercomparison, we report % mass and carbon results for two commercially available BC standards. We also report comparative data from a new thermal method applied to SRM 1649a, showing that thermal oxidation of this material also follows the simple kinetic sum of exponentials model, although with different time constants.  相似文献   

15.
Seasonal patterns of aboveground and belowground biomass, leaf chlorophyll (chl) content, and in situ differences in photosynthetic parameters were examined in the shoal grass Halodule wrightii along an estuarine gradient in the western Gulf of Mexico. Continuous measurements of biomass were collected over a 5-yr period (1989–1994) with respect to several abiotic factors in three estuarine systems that were characterized by significant differences in salinity and ambient dissolved inorganic nitrogen (DIN; NO2 ?+NO3 ?) regimes that ranged from 5–25‰ (0–80 μM DIN) in the Guadalupe estuary to 35–55‰ (0–9 μM DIN) in the upper Laguna Madre, Photosynthesis versus irradiance (P vs. I) parameters, measured from December 1989 to April 1991, showed no significant differences among the three sites, and there were no significant differences in leaf chlorophyll content and chl a:b ratios among sites over the entire 5-yr period. Saturation irradiance in Halodule wrightii is estimated at 319 μmoles photons m?2 s?1 based on measurements collected at the three sites over a 2-yr period. No strong seasonal variations were observed in total plant biomass, but root:shoot ratios (RSR) showed a clear pattern of maximum RSR values in winter and minimum values in summer. There were no significant differences in RSR among sites, and no consistent correlations could be established between plant parameters and sediment porewater NH4 +, salinity, or temperature. Sediment porewater NH4 + values generally ranged from 50 μM to 400 μM (average 130–150 μM) but could not be correlated with significant differences in sediment composition between the sites. The high productivity of Halodule wrightii under a variety of light, nutrient, and salinity conditions explains its ubiquitous distribution and opportunistic strategy as a colonizing species. However, the persistence of a dense algal bloom in Laguna Madre coincident with low DIN levels (<5 μM) contradicts previously accepted relationships on nutrient stimulation of algal growth, and provides strong evidence that water quality parameters for estuarine seagrasses are decidedly estuarine-specific. Consequently, a knowledge of the long-term history of estuarine systems is critical to habitat managers, who are required to establish minimum water quality criteria for the protection of submerged aquatic vegetation in estuarine systems. *** DIRECT SUPPORT *** A01BY074 00028  相似文献   

16.
We monitored wetland biomass, decomposition, hydrology, and soil porewater chemistry at the Breton Sound estuary, which receives Mississippi River water from the Caernarvon river diversion structure. The estuary was in the direct path of hurricane Katrina in 2005, which caused a dramatic loss of wetlands in the upper basin. From March 2006 to October 2007, we made duplicate measurements at three distance classes from the diversion structure along the estuarine gradient as well as at a reference area, designated Near (N1&2), Mid (M1&2), Far (F1&2), and Ref (R1&2). Above- and belowground live biomass, porewater nutrients (NOx, NH4, and PO4), salinity, sulfide, and soil Eh were measured every 2 months. Water level was monitored with gauges. Above- and belowground decomposition was measured using the litterbag (both) and cotton strip (belowground only) methods. Analysis of porewater parameters showed that stress factors affecting biomass production (porewater salinity, sulfide, flooding, and redox potential) were generally low to moderate, while measurable porewater nutrient concentrations occurred at all sites. Aboveground end of season live (EOSL) standing crop in October ranged from 423 g/m2 at site M2 to 1,515 at site F1, and was significantly greater at site N1 than at sites N2, M1, or M2. Aboveground EOSL biomass during this study was significantly lower than previously measured in 1999, 2000, and 2001. Peak belowground biomass ranged from 8,315 g/m2 at site R2 to 17,890 g/m2 at site N1, which is among the highest reported in the literature, and there were significant increases throughout the study, suggesting recovery from hurricane Katrina. The decomposition bag data did not indicate any significant differences; however, the cotton strip decomposition rate was significantly lower at the lowest depth. Wetland surface vertical accretion ranged from 0.49 cm/year at N2 to 1.24 cm/year at N1, with site N1 significantly greater than N2, M1, F2, and R1, and site N2 significantly less than all other sites except site R1. These findings show that marsh productivity and stability is related to a number of factors and no one factor can explain the impacts of the hurricanes.  相似文献   

17.
Natural variations in the ratios of nitrogen isotopes in biomass reflect variations in nutrient sources utilized for growth. In order to use δ15N values of chloropigments of photosynthetic organisms to determine the corresponding δ15N values of biomass - and by extension, surface waters - the isotopic offset between chlorophyll and biomass must be constrained. Here we examine this offset in various geologically-relevant taxa, grown using nutrient sources that may approximate ocean conditions at different times in Earth’s history. Phytoplankton in this study include cyanobacteria (diazotrophic and non-diazotrophic), eukaryotic algae (red and green), and anoxygenic photosynthetic bacteria (Proteobacteria), as well as environmental samples from sulfidic lake water. Cultures were grown using N2, NO3, and NH4+ as nitrogen sources, and were examined under different light regimes and growth conditions. We find surprisingly high variability in the isotopic difference (δ15Nbiomass − δ15Nchloropigment) for prokaryotes, with average values for species ranging from −12.2‰ to +11.7‰. We define this difference as εpor, a term that encompasses diagenetic porphyrins and chlorins, as well as chlorophyll. Negative values of εpor reflect chloropigments that are 15N-enriched relative to biomass. Notably, this enrichment appears to occur only in cyanobacteria. The average value of εpor for freshwater cyanobacterial species is −9.8 ± 1.8‰, while for marine cyanobacteria it is −0.9 ± 1.3‰. These isotopic effects group environmentally but not phylogenetically, e.g., εpor values for freshwater Chroococcales resemble those of freshwater Nostocales but differ from those of marine Chroococcales. Our measured values of εpor for eukaryotic algae (range = 4.7-8.7‰) are similar to previous reports for pure cultures. For all taxa studied, values of εpor do not depend on the type of nitrogen substrate used for growth. The observed environmental control of εpor suggests that values of εpor could be useful for determining the fractional burial of eukaryotic vs. cyanobacterial organic matter in the sedimentary record.  相似文献   

18.
Three geothermal systems, Montevago, Castellammare-Alcamo and Sciacca, are located along the main seismogenetic structures in Western Sicily. Concentrations of dissolved species including the gases CO2, N2, He and the results of stable isotope measurements δ18O, δD and δ13CTDIC in water samples collected from six thermal springs and 28 cold discharges were used to characterise their feeder aquifers and to reveal the relationships between water chemistry and regional seismicity. The Sciacca thermal springs differ chemically and isotopically from those of Montevago and the Castellammare-Alcamo areas. The inferred deep end-members of the thermal waters of Montevago and Castellammare-Alcamo are almost similar, suggesting that both systems are fed by carbonate waters and selenite waters. A slight contribution (1–3%) of seawater, during groundwater ascent it is also present. The Sciacca thermal springs are fed by a deep reservoir comprising a mixture of 50% carbonate water and 50% seawater. During ascent towards the surface, these waters interact with NaCl-rich evaporite layers. By combination of published and present data significant temporal variations of temperature and some chemical parameters in the thermal waters of Western Sicily have been recorded. These variations were mostly between 1966 and 1969. Although the data are discontinuous it is still possible to reveal a direct link between physico–chemical changes in the Acqua Pia and Terme Selinuntine springs and the 1968 Belice Valley earthquake. Within the studied springs, two kinds of geochemical behaviour have been recognised. The chemistry of the Montevago thermal springs was permanently changed in response to changes in the groundwater system. Water temperature and dissolved SO4, Cl, Na, and TDS showed minimum values before the earthquake and maximum values after the event. Almost constant values substantially higher than before, were recorded after the seismic event. Conversely, the temporal variations observed in the waters of the Terme Selinuntine spring, from 1965 to 1991, exhibit a transient increase most probably caused by a temporary contribution of deep CO2-rich fluids caused by the strain release during the 1968 earthquake.  相似文献   

19.
Seasonal phosphorus limitation occurs on the Louisiana continental shelf as a result of high nitrogen loads in the spring and early summer. Prior studies have assessed such nutrient limitation by laborious and time-consuming nutrient analyses, enzyme assays, and nutrient addition bioassays. We undertook surface (0.5–1 m) mapping of fast repetition rate fluorescence (FRRF) parameters to assess nutrient limitation in real time on the Louisiana continental shelf and Mississippi River plume from 29 June to 08 July, 2002 in an effort to further understand phytoplankton productivity in this region, as well as to better inform effective nutrient management strategies. Surface nutrient concentrations (NO3, NO2, NH4+, PO43−), chlorophyll a biomass, alkaline phosphatase (AP) activity, and four FRRF parameters: the maximum quantum yield of photochemistry (F v /F m ), the functional absorption cross section for PSII, the time constant for Q A reoxidation, and the connectivity factor, were measured during continuous underway mapping. Results from traditional methods to assess phytoplankton nutrient stress indicated widespread phosphorus limitation from the Mississippi River plume to the Atchafalaya River, manifested as high inorganic N/P ratios and elevated AP activities associated with phytoplankton biomass. The FRRF data indicated complex patterns of phytoplankton physiology that were likely driven by the rapidly changing conditions in local surface waters and heterogeneous phytoplankton community structure. Correlations of nutrient data and enzyme assays with FRRF parameters were significant but low, potentially due to differences in the manner and time scale with which nutrient limitation affects the different techniques used, indicating that further work is needed to interpret FRRF parameters in large, heterogeneous environments such as estuaries and continental shelves.  相似文献   

20.
Meiliang Bay and Gonghu Bay, in the north of Taihu Lake, are important water sources for the city of Wuxi, and increased eutrophication now threatens the safety of drinking water. The distribution of nitrogen (N) speciation and source of N in the surface waters in the north of Taihu Lake is studied, which was an important first step in controlling N pollution. The result shows that the average concentration of ammonia (NH4 +) and nitrate (NO3 ?) of surface water in Meiliang Bay was 0.32 and 0.35 mg/L, while 0.21 and 0.74 mg/L of Gonghu Bay, in which both bays had serious nitrate pollution. The concentrations of NH4 + and NO3 ? in the surface water of the two bays had a trend of gradual decrease from north to south. The maximum concentrations of NH4 + and NO3 ? of two bays were observed near the inflowing rivers, and the maximum concentrations of NH4 + in surface water of two bays were 0.49 and 0.61, and 0.77 and 1.38 mg/L of NO3 ?. The concentration of NH4 + in the interstitial water of the two bays had a trend of gradual decrease from west to east, but NO3 ? had the opposite tendency. The maximum concentrations of NH4 + in the interstitial water of the two bays were 5.88 and 4.64, and 3.58 and 7.18 mg/L of NO3 ?. The exchangeable NH4 + content in the sediment of Meiliang Bay had a trend of gradual decrease from north to south, but Gonghu Bay showed the reverse. The exchangeable NO3 ? content in the sediment of Meiliang Bay had a trend of gradual decrease from east to west, but a decreasing trend from north to south was observed in Gonghu Bay. The maximum concentrations of exchangeable NH4 + were determined, and the values were 96.25 and 74.90 mg/kg, as well as NO3 ? with the values of 12.06 and 7.08 mg/kg. Chemical fertilizer and domestic sewage were the major sources of nitrate in surface water of Gonghu Bay, contributing 39.16 and 47.79%, respectively. Domestic sewage was the major source of nitrate in Meiliang Bay, contributing 84.79%. The denitrification process in Gonghu Bay was more apparent than in Meiliang Bay. Mixing and dilution processes had important effects on changing the concentration of nitrate transportation in the two bays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号