首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present for the first time a three-dimensional reconstruction of the electron density in the corona at distances from 1.5R to 4R using COR1 STEREO observations. The reconstruction is performed using a regularized tomography inversion method for two biweekly periods corresponding to Carrington Rotations 2058 and 2066. Images from the two STEREO spacecraft are used to compare the reconstructed density structures with coronal features located by triangulation. We find that the location of a bright tip of a helmet streamer obtained from the tomographic reconstruction is in good agreement with the location obtained by triangulation. The reconstructed density structure of the equatorial streamer belt is largely consistent with the variation of the current sheet derived from a potential magnetic field extrapolation for most of the equatorial region and for an MHD model of the corona. A zero-value density region in the reconstruction is identified with a low-density region seen in an EUVI image below the reconstruction domain.  相似文献   

2.
Richard Woo 《Solar physics》2007,241(2):251-261
In the absence of magnetic field measurements of the solar corona, the density structure of white-light images has provided important insight into the coronal magnetic field. Recent work sparked by highly sensitive radio occultation measurements of path-integrated density has elucidated the density structure of unprocessed solar eclipse pictures. This paper does the same for processed images that reveal low-contrast small-scale structures, specifically Koutchmy’s edge-enhanced white-light image of the 11 August 1999 solar eclipse. This processed image provides visual evidence for two important results deduced from radio occultation measurements of small-scale density variations. First, in addition to the closed loops readily seen at the base of the corona in high-resolution EUV and soft X-ray images, open filamentary structures permeate the corona including active regions generally thought to be magnetically closed. Observed at the image resolution, the filamentary structures are 1° wide in latitude and an order of magnitude smaller than polar plumes. Second, although inhomogeneities that are convected along with the solar wind are also present, filamentary structures dominate the image because of their steeper density gradients. The quantitative profile of polarized brightness (pB) at the base of the corona shows that the filamentary structures have transverse density gradients that are proportional to their density. This explains why edge-enhanced images, limited in sensitivity to density gradients, tend to detect filamentary structures more readily in high-density regions (e.g., active regions, streamer stalks, and prominences) than in low-density polar coronal holes, and why filamentary structures seem more prevalent in solar eclipse pictures during solar maximum. The pB profile at the base of the corona also fills the gap in Doppler measurements there, reinforcing that open ultra-fine-scale filamentary structures observed by the radio measurements are predominantly radial and that they are an integral part of the radial expansion of the solar wind.  相似文献   

3.
Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. We employed STEREO/COR1 data obtained during a deep minimum of solar activity in February 2008 (Carrington Rotation CR 2066) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R using a tomography method. With this, we qualitatively deduced structures of the coronal magnetic field. The 3D electron-density analysis is complemented by the 3D STEREO/EUVI emissivity in the 195 Å band obtained by tomography for the same CR. A global 3D MHD model of the solar corona was used to relate the reconstructed 3D density and emissivity to open/closed magnetic-field structures. We show that the density-maximum locations can serve as an indicator of current-sheet position, while the locations of the density-gradient maximum can be a reliable indicator of coronal-hole boundaries. We find that the magnetic-field configuration during CR 2066 has a tendency to become radially open at heliocentric distances greater than 2.5 R. We also find that the potential-field model with a fixed source surface is inconsistent with the boundaries between the regions with open and closed magnetic-field structures. This indicates that the assumption of the potential nature of the coronal global magnetic field is not satisfied even during the deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal-field models and test the accuracy of the magnetic-field approximations for coronal modeling.  相似文献   

4.
The electron density distribution of the inner solar corona (r 2 R ) as a function of latitude, longitude, and radial distance is determined from K-coronameter polarization-brightness (pB) data. A Legendre polynomial is assumed for the electron density distribution, and the coefficients of the polynomial are determined by a least-mean-square regression analysis of several days of pB-data. The calculated electron density distribution is then mapped as a function of latitude and longitude. The method is particularly useful in determining the longitudinal extent of coronal streamers and enhancements and in resolving coronal features whose projections on the plane of the sky overlap.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
We present the first quantitative three-dimensional (3D) tomographic reconstructions of electron density from coronagraph measurements of the K-corona’s total brightness (B) made by LASCO-C2 on SOHO. This is possible because new calibrations of the LASCO-C2 images in both polarized brightness (pB) and B have now been made for the entire mission. The B and pB reconstructions are compared, and the differences are explained in terms of line of sight weighting functions in Thomson scattering. We conclude that the LASCO-C2 B archive, which is vastly larger than the pB archive, will be a very valuable resource for determining the 3D electron density throughout the SOHO mission which started taking data in 1996.  相似文献   

6.
We describe the technique and results of modelling the solar radio emission during the maximum phase of the solar eclipse of March 29, 2006 on the RATAN-600. The aim of modelling is to refine the brightness temperature of the solar corona at the distances up to two solar radii from the center of the optical disk of the Sun. We obtained the distribution of brightness temperature in the vicinity of the coronal hole above the solar North Pole at the wavelength of 13 cm. The results of modelling showed that brightness temperatures of the coronal hole at the distances greater than 1.02 RC (here RC is the radius of the optical disk of the Sun) is substantially lower than the expected average brightness temperature of a typical coronal hole, and that of the quiescent Sun (below 30000 K) at the wavelength of 13 cm. The classical Baumbach-Allen formula for electron density in a spherically symmetric corona agrees with the results of observations starting at distances of (1.4–1.5) RC.  相似文献   

7.
We investigate the possibility of an additional acceleration of the high speed solar wind by whistler waves propagating outward from a coronal hole. We consider a stationary, spherically symmetric model and assume a radial wind flow as well as a radial magnetic field. The energy equation consists of (a) energy transfer of the electron beam which excites the whistler waves, and (b) energy transfer of the whistler waves described by conservation of wave action density. The momentum conservation equation includes the momentum transfer of two gases (a thermal gas and an electron beam). The variation of the temperature is described by a polytropic law. The variation of solar wind velocity with the radial distance is calculated for different values of energy density of the whistler waves. It is shown that the acceleration of high speed solar wind in the coronal hole due to the whistler waves is very important. We have calculated that the solar wind velocity at the earth's orbit is about equal to 670 km/sec (for wave energy density about 10?4 erg cm?3 at 1.1R⊙). It is in approximate agreement with the observed values.  相似文献   

8.
9.
We reexamine the well-known polytropic flow-tube model of the expanding solar corona, and find that as the divergence of the flow tube increases the expansion speed increases throughout the flow, over a stated parameter range. Corresponding to a specified flow-tube geometry the terminal speed of the fluid may be far in excess of the value corresponding to purely spherically symmetric flow. The implications of the results for the modelling of high-speed streams emanating from coronal holes are discussed.  相似文献   

10.
The isothermal solar wind equations are solved for the case where the coronal conditions vary with latitude. It is found that the solutions are not uniquely determined by the base density but require knowledge of the injection angle of the fluid. Even for the case of spherically symmetric density at the corona, the solutions are not unique and form a one parameter set, but the latitude variation decreases rapidly with increasing heliocentric distance.  相似文献   

11.
A detailed photometric analysis has been made of a narrow elongated coronal streamer observed at the 1973 total eclipse. After deriving real intensity distributions, the electron density has been deduced under the assumption that the distribution is axially symmetric and that the decrease in density from the central axis follows the gaussian law. The results show that the gradient of the electron density is much steeper at the lower part, nearest to the solar limb, than those reported previously for larger scale streamers.On leave from the Observatorio de Huancayo, Instituto Geoflsico del Peru as a trainee of the Japan International Cooperation Agency.  相似文献   

12.
The analysis of a storm of type III solar radio bursts observed in August 1968 between 5 and 0.2 MHz by the RAE-1 satellite has yielded the storm morphology, a possible relation to meter and decameter storms, and an average exciter speed of 0.37 c between 10 and 40 R (Fainberg and Stone, 1970a, b). A continuation of the analysis, based on the apparent dependence of burst drift rate on heliographic longitude of the associated active region, now provides a distance scale between plasma levels in the streamer, an upper limit to the scale size of coronal streamer density inhomogeneities, and an estimate of the solar wind speed. By fixing one level the distance scale is utilized to determine the electron density distribution along the streamer between 10 and 40 R . The streamer density is found to be 16 times that expected for the solar minimum quiet solar wind. An upper limit to the scale size of streamer density inhomogeneities is estimated to be of the order of 1 or 2 solar radii over the same height range. From the progressive delay of the central meridian passage (CMP) of the lower frequency emission, a streamer curvature is inferred which in turn implies an average solar wind speed of 380 km/sec between 14 and 36 R within the streamer.  相似文献   

13.
It has been realized for some time that the slow solar wind with its embedded heliospheric current sheet often exhibits complex features suggesting at least partially transient origin. In this paper we investigate the structure of the slow solar wind using the observations by the Wind and STEREO spacecraft during two Carrington rotations (2054 and 2055). These occur at the time of minimum solar activity when the interplanetary medium is dominated by recurrent high-speed streams and large-scale interplanetary coronal mass ejections (ICMEs) are rare. However, the signatures of transients with small scale-sizes and/or low magnetic field strength (comparable with the typical solar wind value, ~?5 nT) are frequently found in the slow solar wind at these times. These events do not exhibit significant speed gradients across the structure, but instead appear to move with the surrounding flow. Source mapping using models based on GONG magnetograms suggests that these transients come from the vicinity of coronal source surface sector boundaries. In situ they are correspondingly observed in the vicinity of high density structures where the dominant electron heat flux reverses its flow polarity. These weak transients might be indications of dynamical changes at the coronal hole boundaries or at the edges of the helmet streamer belt previously reported in coronagraph observations. Our analysis supports the idea that even at solar minimum, a considerable fraction of the slow solar wind is transient in nature.  相似文献   

14.
A unique combination of photographic and K-coronameter data were used to study the structure and evolution of two known coronal streamers. In addition, two other K-coronameter enhancements were studied as representing ideal second examples of the known streamers. As a general rule the observations indicate that these features were direct coronal manifestations of photospheric bipolar magnetic regions (BMR) and were of two basic types:active region, by which is meant a coronal streamer which develops radially over a low-latitude active region; andhelmet which denotes a streamer whose structure and development appear to be a consequence of a long-lived complex of activity, composed of both trailing magnetic fields and a parent center of disk activity.The similarity of growth rates during the first solar rotation of life led to derivation of a total streamer density of 4–5 × 108 cm–3 atr = 1.125R . This density may represent a characteristic maximum density at the base of streamers. The intensity gradient of the inner (r1.5R ) corona was used to establish a qualitative evolutionary model of streamers which synthesizes the observations. Briefly, streamers initially develop over active regions; the streamer growth rate may be as rapid as the disk activity, or at worst lags flare activity by solar rotation. The streamer can be the cause of interplanetary and geomagnetic effects at 1 AU within a solar rotation after birth. Thereafter the streamer follows an evolution dictated by the underlying solar magnetic fields. In any case the lowest level of the coronal enhancement has a lifetime not exceeding that of the solar disk activity.  相似文献   

15.
This work extends a previous analysis of helmet streamers into the somewhat higher range of coronal temperature where streamer geometries are shown to be open, in the sense that there is solar wind expansion everywhere. It is shown that, for a given photospheric field distribution, a certain minimum temperature is required for this type of streamer - this minimum temperature coinciding with the maximum temperature compatible with a helmet streamer. Near this minimum temperature, the streamer is very constricted and the critical point in the streamer core lies at the point of minimum cross-section. Hence the throat, under these conditions, becomes a true geometrical throat rather than the conventional gravitational throat. As the temperature is increased, the streamer shape becomes correspondingly more radial and the location of the throat becomes asymptotically more gravitationally determined. Residual manifestations of coronal streamers at large distances are investigated. It is found that lateral density variations at the earth's orbit tend to be small but velocity variations can become appreciable (100–200 km/sec) for streamers originating in regions where the photospheric magnetic field is strong. At large distances, either streamer or interstreamer regions can dominate, the former occurring at high temperature (2 × 106K) and the latter being favored at lower temperature (1.5 × 106K). In all cases the cross-section becomes essentially radial just above the point where it is a minimum. The marked sensitivity of these shapes to coronal temperature is pointed out - computations indicating that streamers can vary from helmet configurations to almost radial filaments for a very slight increase in temperature. This behavior suggests a strong solar cycle influence upon coronal form.  相似文献   

16.
Obtaining reliable measurements of plasma parameters in the Sun’s corona remains an important challenge for solar physics. We previously presented a method for producing maps of electron temperature and speed of the solar corona using K-corona brightness measurements made through four color filters in visible light, which were tested for their accuracies using models of a structured, yet steady corona. In this article we test the same technique using a coronal model of the Bastille Day (14 July 2000) coronal mass ejection, which also contains quiet areas and streamers. We use the coronal electron density, temperature, and flow speed contained in the model to determine two K-coronal brightness ratios at (410.3, 390.0 nm) and (423.3, 398.7 nm) along more than 4000 lines of sight. Now assuming that for real observations, the only information we have for each line of sight are these two K-coronal brightness ratios, we use a spherically symmetric model of the corona that contains no structures to interpret these two ratios for electron temperature and speed. We then compare the interpreted (or measured) values for each line of sight with the true values from the model at the plane of the sky for that same line of sight to determine the magnitude of the errors. We show that the measured values closely match the true values in quiet areas. However, in locations of coronal structures, the measured values are predictably underestimated or overestimated compared to the true values, but can nevertheless be used to determine the positions of the structures with respect to the plane of the sky, in front or behind. Based on our results, we propose that future white-light coronagraphs be equipped to image the corona using four color filters in order to routinely create coronal maps of electron density, temperature, and flow speed.  相似文献   

17.
Three-dimensional maps of the distribution of coronal electron density can now be computed with two radial functions in the series expansion for the density (rather than with only one radial function as shown in our previous paper). With the improved maps we can determine the topological variation of the electron density with radial distance, and thus can (1) distinguish coronal condensations from coronal streamers, (2) trace the structure of a streamer as a function of height, and (3) determine the non-radial orientation of a streamer. We summarize the previous work in concise mathematical notation, show examples of the improved maps derived from two radial functions, and discuss in detail the expectations and limitations of the method. Of great utility are computer-simulated pictures showing the solar corona as it would appear if veiwed from above the north (or south) pole.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
The identification of solar-wind sources is an important question in solar physics. The existing solar-wind models (e.g., the Wang–Sheeley–Arge model) provide the approximate locations of the solar wind sources based on magnetic field extrapolations. It has been suggested recently that plasma outflows observed at the edges of active regions may be a source of the slow solar wind. To explore this we analyze an isolated active region (AR) adjacent to small coronal hole (CH) in July/August 2009. On 1 August, Hinode/EUV Imaging Spectrometer observations showed two compact outflow regions in the corona. Coronal rays were observed above the active-region coronal hole (ARCH) region on the eastern limb on 31 July by STEREO-A/EUVI and at the western limb on 7 August by CORONAS-Photon/TESIS telescopes. In both cases the coronal rays were co-aligned with open magnetic-field lines given by the potential field source surface model, which expanded into the streamer. The solar-wind parameters measured by STEREO-B, ACE, Wind, and STEREO-A confirmed the identification of the ARCH as a source region of the slow solar wind. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.  相似文献   

19.
We present a theoretical study of the formation of a coronal cavity and its relation to a quiescent prominence. We argue that the formation of a coronal cavity is initiated by the condensation of plasma which is trapped by the coronal magnetic field in a closed streamer and which then flows down to the chromosphere along the field lines due to lack of stable magnetic support against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength; with low strength, the plasma density is not high enough for condensation to occur. Furthermore, we suggest that prominence and cavity material is supplied from the chromospheric level. Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration; a prominence requires stable magnetic support.We initiate the study by considering the stability of condensation modes of a plasma in the coronal streamer model obtained by Steinolfson et al. (1982) using a 2-D, time dependent, ideal MHD computer simulation; they calculated the dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic field. In the final steady state, they found a density enhancement in the closed field region with the enhancement increasing with increasing strength of the magnetic field. Our stability calculation shows that if the density enhancement is higher than a critical value, the plasma is unstable to condensation modes. We describe how, depending on the magnetic field configuration, the condensation may produce a coronal cavity and/or initiate the formation of a prominence.NRC Research Associate.  相似文献   

20.
ISSAUTIER  K.  MEYER-VERNET  N.  MONCUQUET  M.  HOANG  S. 《Solar physics》1997,172(1-2):335-343
We present new in situ measurements of solar wind electron density as a function of heliolatitude. The data were obtained on Ulysses during its fast transit from south solar pole to north solar pole, at heliocentric distance about 1.5 AU, near the 1996 solar activity minimum. The density is measured accurately using the method of quasi-thermal noise spectroscopy with the Ulysses radio experiment, at a higher time resolution than the particle analysers on board. At low heliolatitudes (22° S to 21° N) the histogram of our data shows three main classes of flows with densities centered at 3.5, 7, and 12 cm-3, close to the values previously found by near-ecliptic space probes, in the region where fast coronal hole wind alternates with slower streamer belt wind. Poleward of 22° latitude where Ulysses encountered fast wind coming from coronal holes, the histogram of our data shows a single class of flow centered at 2.9 cm-3 with a roughly normal distribution. We find a density nearly independent of latitude, with the mean density from the south coronal hole 10% larger than that from the north, which may stem from a genuine north/south asymmetry and/or from the small decrease in solar activity during the time of the observations. We finally compare the data with some analytical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号