首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Aparicio  A. J. P.  Lefèvre  L.  Gallego  M. C.  Vaquero  J. M.  Clette  F.  Bravo-Paredes  N.  Galaviz  P.  Bautista  M. L. 《Solar physics》2018,293(12):1-23

The Spectral Irradiance Monitor (SIM) instrument on board the Solar Radiation and Climate Experiment (SORCE) performs daily measurements of the solar spectral irradiance (SSI) from 200 to 2400 nm. Both temporal and spectral corrections for instrument degradation have been built on physical models based on comparison of two independent channels with different solar exposure. The present study derives a novel correction for SIM degradation using the total solar irradiance (TSI) measurements from the Total Irradiance Monitor (TIM) on SORCE. The correction is applied to SIM SSI data from September 2004 to October 2012 over the wavelength range from 205 nm to 2300 nm. The change in corrected, integrated SSI agrees within \(0.1~\mbox{W}\,\mbox{m}^{-2}\) (\(1\sigma\)) with SORCE TIM TSI and independently shows agreement with the SATIRE-S and NRLSSI2 solar models within measurement uncertainties.

  相似文献   

2.
The Solar–Stellar Irradiance Comparison Experiment (SOLSTICE) and the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) both measure the solar ultraviolet irradiance surrounding the Mg II doublet at 280 nm on a daily basis. The SIM instrument's resolution (1.1 nm) is similar to the Solar Backscatter Ultraviolet instruments used to compute the standard NOAA Mg II index, while SOLSTICE's resolution is an order of magnitude higher (0.1 nm). This paper describes the technique used to calculate the index for both instruments and compares the resulting time series for the first 18 months of the SORCE mission. The spectral resolution and low noise of the SOLSTICE spectrum produces a Mg II index with a precision of 0.6%, roughly a factor of 2 better than the low-resolution index measurement. The full-resolution SOLSTICE index is able to measure short-timescale changes in the solar radiative output that are lost in the noise of the low-resolution index.  相似文献   

3.
Regular solar spectral irradiance (SSI) observations from space that simultaneously cover the UV, visible (vis), and the near-IR (NIR) spectral region began with SCIAMACHY aboard ENVISAT in August 2002. Up to now, these direct observations cover less than a decade. In order for these SSI measurements to be useful in assessing the role of the Sun in climate change, records covering more than an eleven-year solar cycle are required. By using our recently developed empirical SCIA proxy model, we reconstruct daily SSI values over several decades by using solar proxies scaled to short-term SCIAMACHY solar irradiance observations to describe decadal irradiance changes. These calculations are compared to existing solar data: the UV data from SUSIM/UARS, from the DeLand & Cebula satellite composite, and the SIP model (S2K+VUV2002); and UV-vis-IR data from the NRLSSI and SATIRE models, and SIM/SORCE measurements. The mean SSI of the latter models show good agreement (less than 5%) in the vis regions over three decades while larger disagreements (10 – 20%) are found in the UV and IR regions. Between minima and maxima of Solar Cycles 21, 22, and 23, the inferred SSI variability from the SCIA proxy is intermediate between SATIRE and NRLSSI in the UV. While the DeLand & Cebula composite provide the highest variability between solar minimum and maximum, the SIP/Solar2000 and NRLSSI models show minimum variability, which may be due to the use of a single proxy in the modeling of the irradiances. In the vis-IR spectral region, the SCIA proxy model reports lower values in the changes from solar maximum to minimum, which may be attributed to overestimations of the sunspot proxy used in modeling the SCIAMACHY irradiances. The fairly short timeseries of SIM/SORCE shows a steeper decreasing (increasing) trend in the UV (vis) than the other data during the descending phase of Solar Cycle 23. Though considered to be only provisional, the opposite trend seen in the visible SIM data challenges the validity of proxy-based linear extrapolation commonly used in reconstructing past irradiances.  相似文献   

4.
Pierrard  Viviane  Lazar  Marian  Štverák  Stepan 《Solar physics》2020,295(11):1-21

An understanding of solar variability over a broad spectral range and broad range of timescales is needed by scientists studying Earth’s climate. The Total and Spectral Solar Irradiance Sensor (TSIS) Spectral Irradiance Monitor (SIM), is designed to measure solar spectral irradiance (SSI) with unprecedented accuracy from 200 nm to 2400 nm. SIM started daily observations in March 2018. To maintain its accuracy over the course of its anticipated 5-year mission and beyond, TSIS SIM needs to be corrected for optical degradation, common for solar viewing instruments. The differing long-term trends of various independent solar-irradiance records attest to the challenge at hand.

The correction of TSIS SIM for optical degradation is based on piecewise linear fits that bring the three instrument channels into agreement. It is fundamentally different to the correction applied to the TSIS SIM predecessor on SORCE. The correction facilitates reproducibility, uncertainty estimation and is measurement-based. Corrected, integrated TSIS SIM SSI agrees with independent observations of total solar irradiance to within 45 ppm as well as various solar-irradiance models. TSIS SIM SSI is available at: http://lasp.colorado.edu/lisird/.

  相似文献   

5.
The Spectral Irradiance Monitor (SIM) on board the NASA SORCE satellite (Solar Radiation and Climate Experiment) was launched on 25 January 2003 and has been making twice-daily measurements of solar variability in the 220 to 1630 nm range and daily measurements in the 1600 to 2400 nm range. This study presents preflight and postlaunch calibration activities of the SIM instrument and its flight spare components as well as in-flight comparisons with the ATLAS 3 composite spectrum (Atmospheric Laboratory for Applications and Science) in the ultraviolet (UV), visible, and near infrared (NIR) as well as comparisons with the SOLSTICE (Solar Stellar Irradiance Comparison Experiment) in the UV. In the 258 to 1350 nm range, the SIM agrees with ATLAS 3 with a fractional difference of ?0.021±0.021 (k=1, estimated standard deviation) and with the additional corrections discussed herein the agreement improves to ?0.008±0.021 (k=1). In the ultraviolet (220–307 nm) the agreement between all the instruments in this study is better than 5%, but fractional differences reveal other instrument- and calibration-related differences. In the 1350 to 2400 nm range the agreement between SIM and ATLAS 3 is about 8%, so these SIM data are corrected to agree with ATLAS 3 in this range.  相似文献   

6.
The Solar–Stellar Irradiance Comparison Experiment II (SOLSTICE II) is one of four experiments launched aboard the Solar Radiation and Climate Experiment (SORCE) on 25 January, 2003. Its principal science objectives are to measure solar spectral irradiance from 115 to 320 nm with a spectral resolution of 1 nm, a cadence of 6 h, and an accuracy of 5% and to determine solar variability with a relative accuracy of 0.5% per year during a 5-year long nominal mission. SOLSTICE II meets these objectives using a pair of identical scanning grating monochromators that can measure both solar and stellar irradiance. Instrument radiometric responsivity was calibrated to ∼3% absolute accuracy before launch using the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute for Standards and Technology (NIST) in Gaithersburg, MD. During orbital operations, SOLSTICE II has been making daily measurements of both the Sun and an ensemble of bright, stable, main-sequence B and A stars. The stellar measurements allow the tracking of changes in instrument responsivity with a relative accuracy of 0.5% per year over the life of the mission. SOLSTICE II is an evolution of the SOLSTICE i instrument that is currently operating on the Upper Atmosphere Research Satellite (UARS). This paper reviews the basic SOLSTICE concept and describes the design, operating modes, and early performance of the SOLSTICE II instrument.  相似文献   

7.
This paper presents and interprets observations obtained by the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) over a time period of several solar rotations during the declining phase of solar cycle 23. The time series of visible and infrared (IR) bands clearly show significant wavelength dependence of these variations. At some wavelengths the SIM measurements are qualitatively similar to the Mg II core-to-wing ratio, but in the visible and IR they show character similar to the Total Solar Irradiance (TSI) variations. Despite this overall similarity, different amplitudes, phases, and temporal features are observed at various wavelengths. The TSI can be explained as a complex sum of the various wavelength components. The SIM observations are interpreted with the aid of solar images that exhibit a mixture of solar activity features. Qualitative analysis shows how the sunspots, faculae, plage, and active network provide distinct contributions to the spectral irradiance at different wavelengths, and ultimately, how these features combine to produce the observed TSI variations. Most of the observed variability appears to be qualitatively explained by solar surface features related directly to the magnetic activity.  相似文献   

8.
As part of a program to estimate the solar spectrum back to the early twentieth century, we have generated fits to UV spectral irradiance measurements from 1 – 410 nm. The longer wavelength spectra (150 – 410 nm) were fit as a function of two solar activity proxies, the Mg ii core-to-wing ratio, or Mg ii index, and the total Ca ii K disk activity derived from ground based observations. Irradiance spectra at shorter wavelengths (1 – 150 nm) where used to generate fits to the Mg ii core-to-wing ratio alone. Two sets of spectra were used in these fitting procedures. The fits at longer wavelengths (150 to 410 nm) were derived from the high-resolution spectra taken by the Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) on the Upper Atmospheric Research Satellite (UARS). Spectra measured by the Solar EUV Experiment (SEE) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite were used for the fits at wavelengths from 1 to 150 nm. To generate fits between solar irradiance and solar proxies, this study uses the above irradiance data, the NOAA composite Mg ii index, and daily Ca ii K disk activity determined from images measured by Big Bear Solar Observatory (BBSO). In addition to the fitting coefficients between irradiance and solar proxies, other results from this study include an estimated relationship between the fraction of the disk with enhanced Ca ii K activity and the Mg ii index, an upper bound of the average solar UV spectral irradiance during periods where the solar disk contains only regions of the quiet Sun, as was believed to be present during the Maunder Minimum, as well as results indicating that slightly more than 60% of the total solar irradiance (TSI) variability occurs between 150 and 400 nm.  相似文献   

9.
Owens  Mathew  Lang  Matthew  Barnard  Luke  Riley  Pete  Ben-Nun  Michal  Scott  Chris J.  Lockwood  Mike  Reiss  Martin A.  Arge  Charles N.  Gonzi  Siegfried 《Solar physics》2020,295(3):1-15

Solar radiation variability spans a wide range in time, ranging from seconds to decadal and longer. The nearly 40 years of measurements of solar irradiance from space established that the total solar irradiance varies by \(\approx 0.1\%\) in phase with the Sun’s magnetic cycle. Specific intervals of the solar spectrum, e.g., ultraviolet (UV), vary by orders of magnitude more. These variations can affect the Earth’s climate in a complex non-linear way. Specifically, some of the processes of interaction between solar UV radiation and the Earth’s atmosphere involve threshold processes and do not require a detailed reconstruction of the solar spectrum. For this reason a spectral UV index based on the (FUV-MUV) color has been recently introduced. This color is calculated using SORCE SOLSTICE integrated fluxes in the FUV and MUV bands. We present in this work the reconstructions of the solar (FUV-MUV) color and Ca ii K and Mg ii indices, from 1749–2015, using a semi-empirical approach based on the reconstruction of the area coverage of different solar magnetic features, i.e., sunspot, faculae and network. We remark that our results are in noteworthy agreement with latest solar UV proxy reconstructions that exploit more sophisticated techniques requiring historical full-disk observations. This makes us confident that our technique can represent an alternative approach which can complement classical solar reconstruction efforts. Moreover, this technique, based on broad-band observations, can be utilized to estimate the activity on Sun-like stars, that cannot be resolved spatially, hosting extra-solar planetary systems.

  相似文献   

10.
We model total solar irradiance (TSI) using photometric irradiance indices from the San Fernando Observatory (SFO), and compare our model with measurements compiled from different space-based radiometers. Space-based measurements of TSI have been obtained recently from ACRIM-3 on board the ACRIMSAT. These data have been combined with other data sets to create an ACRIM-based composite. From VIRGO on board the Solar and Heliospheric Observatory (SOHO) spacecraft two different TSI composites have been developed. The VIRGO irradiance data have been combined by the Davos group to create a composite often referred to as PMOD (Physikalisch-Meteorologisches Observatorium Davos). Also using data from VIRGO, the Royal Meteorological Institute of Belgium (RMIB) has created a separate composite TSI referred to here as the RMIB composite. We also report on comparisons with TSI data from the Total Irradiance Monitor (TIM) experiment on board the Solar Radiation and Climate Experiment (SORCE) spacecraft. The SFO model correlates well with all four experiments during the seven-year SORCE interval. For this interval, the squared correlation coefficient R 2 was 0.949 for SORCE, 0.887 for ACRIM, 0.922 for PMOD, and 0.924 for RMIB. Long-term differences between the PMOD, ACRIM, and RMIB composites become apparent when we examine a 21.5-year interval. We demonstrate that ground-based photometry, by accurately removing TSI variations caused by solar activity, is useful for understanding the differences that exist between TSI measurements from different spacecraft experiments.  相似文献   

11.
The Solar–Stellar Irradiance Comparison Experiment {II (SOLSTICE {II), aboard the Solar Radiation and Climate Experiment (SORCE) spacecraft, consists of a pair of identical scanning grating monochromators, which have the capability to observe both solar spectral irradiance and stellar spectral irradiance using a single optical system. The SOLSTICE science objectives are to measure solar spectral irradiance from 115 to 320 nm with a spectral resolution of 1 nm, a cadence of 6 h, and an accuracy of 5%, to determine its variability with a long-term relative accuracy of 0.5% per year during a 5-year nominal mission, and to determine the ratio of solar irradiance to that of an ensemble of bright B and A stars to an accuracy of 2%. Those objectives are met by calibrating instrument radiometric sensitivity before launch using the Synchrotron Ultraviolet Radiation Facility at the National Institute for Standards and Technology in Gaithersburg, Maryland. During orbital operations irradiance measurements from an ensemble of bright, stable, main-sequence B and A stars are used to track instrument sensitivity. SORCE was launched on 25 January 2003. After spacecraft and instrument check out, SOLSTICE {II first observed a series of three stars to establish an on-orbit performance baseline. Since 6 March 2003, both instruments have been making daily measurements of both the Sun and stars. This paper describes the pre-flight and in-flight calibration and characterization measurements that are required to achieve the SOLSTICE science objectives and compares early SOLSTICE{II measurements of both solar and stellar irradiance with those obtained by SOLSTICE {I on the Upper Atmosphere Research Satellite.  相似文献   

12.
The Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) has measured the solar spectral irradiance for wavelengths 115–410 nm on a daily basis since October 11, 1991. The absolutely calibrated solar UV irradiances through January 8, 1996 have been produced. Their time-dependent behavior is similar to that of the Mgii index as measured both by NOAA-9 SBUV and by SUSIM itself. The maximum long-term variation observed by SUSIM is at L and is measured to be in excess of a factor of 2. This maximum variation decreases with increasing wavelength until about 300 nm where no significant long-term variation is directly measured above SUSIM's estimated 1–2% relative accuracy. The wavelength dependence of the measured UV variability is found to roughly correspond to the mean emission height given by solar atmospheric radiative transfer models. Because SUSIM observations began when solar activity was near its peak and now extend to very near its minimum, estimates of the solar cycle 22 UV variability are generated from a combination of these measurements and solar activity proxy indices.  相似文献   

13.
Solar activity during 2007?–?2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He?ii spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15±6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008?–?2011. We interpret this higher concentration of spatial power in the transition region’s global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He?ii EUV irradiance in addition to the estimations based on its absolute levels.  相似文献   

14.
An empirical model of solar UV spectral irradiance has been developed that is based on observed spectral radiance measurements and full disk Ca ii K images. The Mg ii index is then calculated from the estimated spectra in a narrow wavelength range (180 Å) near the Mg ii doublet at 2800 Å. Our long term goal is to expand this wavelength range from 10 to 4000 Å in continuing studies based on spectral data covering this wavelength range (e.g. Skylab, UARS/SUSIM, TIMED/SEE, etc.). Our previous modeling effort produced spectra in this 180 Å range and the resulting Mg ii index values for the period from 1991 through 1995 and we have used observations during this time period to validate the model results. The current paper presents results from this model based on a 21-year portion of the recently digitized Ca ii K images from the Mt Wilson Observatory (MWO) film archive. Here we present details of the model, the required model modifications, and the resulting Mg ii index from 1961 through 1981. Since the NOAA Mg ii index did not begin until 1978, the present model results are compared to a Mg ii index estimated from the F10.7 radio flux over this 21-year period. The NOAA Mg ii index, which is derived from measured UV spectra, is also included for comparison from late 1978 through 1981.  相似文献   

15.
We analyze the variability of the spectral solar irradiance during the period from 7 January 2010 until 20 January 2010 as measured by the Herzberg channel (190?–?222 nm) of the Large Yield RAdiometer (LYRA) onboard PROBA2. In this period of time, observations by the LYRA nominal unit experienced degradation and the signal produced by the Herzberg channel frequently jumped from one level to another. Both factors significantly complicate the analysis. We present the algorithm that allowed us to extract the solar variability from the LYRA data and compare the results with SORCE/SOLSTICE measurements and with modeling based on the Code for the Solar Irradiance (COSI).  相似文献   

16.
The solar spectral irradiance (SSI) dataset is a key record for studying and understanding the energetics and radiation balance in Earth’s environment. Understanding the long-term variations of the SSI over timescales of the 11-year solar activity cycle and longer is critical for many Sun–Earth research topics. Satellite measurements of the SSI have been made since the 1970s, most of them in the ultraviolet, but recently also in the visible and near-infrared. A limiting factor for the accuracy of previous solar variability results is the uncertainties for the instrument degradation corrections, which need fairly large corrections relative to the amount of solar cycle variability at some wavelengths. The primary objective of this investigation has been to separate out solar cycle variability and any residual uncorrected instrumental trends in the SSI measurements from the Solar Radiation and Climate Experiment (SORCE) mission and the Thermosphere, Mesosphere, Ionosphere, Energetic, and Dynamics (TIMED) mission. A new technique called the Multiple Same-Irradiance-Level (MuSIL) analysis has been developed, which examines an SSI time series at different levels of solar activity to provide long-term trends in an SSI record, and the most common result is a downward trend that most likely stems from uncorrected instrument degradation. This technique has been applied to each wavelength in the SSI records from SORCE (2003?–?present) and TIMED (2002?–?present) to provide new solar cycle variability results between 27 nm and 1600 nm with a resolution of about 1 nm at most wavelengths. This technique, which was validated with the highly accurate total solar irradiance (TSI) record, has an estimated relative uncertainty of about 5% of the measured solar cycle variability. The MuSIL results are further validated with the comparison of the new solar cycle variability results from different solar cycles.  相似文献   

17.
18.
The Extreme ultraviolet SpectroPhotometer (ESP) is one of five channels of the Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO). The ESP channel design is based on a highly stable diffraction transmission grating and is an advanced version of the Solar Extreme ultraviolet Monitor (SEM), which has been successfully observing solar irradiance onboard the Solar and Heliospheric Observatory (SOHO) since December 1995. ESP is designed to measure solar Extreme UltraViolet (EUV) irradiance in four first-order bands of the diffraction grating centered around 19 nm, 25 nm, 30 nm, and 36 nm, and in a soft X-ray band from 0.1 to 7.0?nm in?the?zeroth-order of the grating. Each band’s detector system converts the photo-current into a count rate (frequency). The count rates are integrated over 0.25-second increments and transmitted to the EVE Science and Operations Center for data processing. An algorithm for converting the measured count rates into solar irradiance and the ESP calibration parameters are described. The ESP pre-flight calibration was performed at the Synchrotron Ultraviolet Radiation Facility of the National Institute of Standards and Technology. Calibration parameters were used to calculate absolute solar irradiance from the sounding-rocket flight measurements on 14 April 2008. These irradiances for the ESP bands closely match the irradiance determined for two other EUV channels flown simultaneously: EVE’s Multiple EUV Grating Spectrograph (MEGS) and SOHO’s Charge, Element and Isotope Analysis System/Solar EUV Monitor (CELIAS/SEM).  相似文献   

19.
The NASA Earth Observing System (EOS) is an advanced study of Earth's long-term global changes of solid Earth, its atmosphere, and oceans and includes a coordinated collection of satellites, data systems, and modeling. The EOS program was conceived in the 1980s as part of NASA's Earth System Enterprise (ESE). The Solar Radiation and Climate Experiment (SORCE) is one of about 20 missions planned for the EOS program, and the SORCE measurement objectives include the total solar irradiance (TSI) and solar spectral irradiance (SSI) that are two of the 24 key measurement parameters defined for the EOS program. The SORCE satellite was launched in January 2003, and its observations are improving the understanding and generating new inquiry regarding how and why solar variability occurs and how it affects Earth's energy balance, atmosphere, and long-term climate changes.  相似文献   

20.
The total solar irradiance (TSI) has been recorded daily since October 2013 by the Total Solar Irradiance Monitor (TSIM) onboard the FY-3C satellite, which is mainly designed for Earth observation. The TSIM has a pointing system to perform solar tracking using a sun sensor. The TSI is measured by two electrical substitution radiometers with traceability to the World Radiation Reference. The TSI value measured with the TSIM on 2 October 2013 is \(1364.88~\mbox{W}\,\mbox{m}^{-2}\) with an uncertainty of \(1.08~\mbox{W}\,\mbox{m}^{-2}\). Short-term TSI variations recorded with the TSIM show good agreement with SOHO/VIRGO and SORCE/TIM. The data quality and accuracy of FY-3C/TSIM are much better than its predecessors on the FY-3A and FY-3B satellites, which operated in a scanning mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号