首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Application of Some Complexing Ion Exchangers for Copper Recovery from Natural Water and Wastewater The rational use of water resources is one of the urgent environmental control problems. These problems can be solved by the treatment of sewage. Removal of different non‐ferrous heavy metal ions from wastewater is of great importance. Besides, the selective complexing ion exchangers are of interest because of their good sorption properties. The present paper is devoted to the study of some complexing resins for copper recovery from natural water and sewage. The following carboxylic resins were studied: the cation exchangers KB‐2T, KB‐4 and the amphoteric ion exchangers ANKB 35, AMF‐2T, and AMF‐2S (manufacturer – “TOKEM” company, Kemerovo, Russia). The exchangers investigated differed from each other both by their functional groups and by their matrix physical structures. The copper recovery from CuCl2‐, CuSO4‐, and Cu(NO3)2‐solutions was studied in batch‐experiments (in presence of NaCl, Na2SO4, and NaNO3). The initial copper concentration in the solutions was 0.0002...0.008 mol/L; pH values were 1.0...5.0. After equilibrium (24 h) the resins were separated from the solution. The copper concentration in the solutions after the sorption was determined by the photometrical method with pyridylazoresorcin (λ = 500 nm). On the basis of the experimental data distribution ratio, the separation factors, equilibrium constants, and stability constants of copper complexes in the exchanger phase were calculated. It was found out in this work that the amphoteric ion exchanger AMF‐2T of macroreticular structure is the most effective for the copper sorption from sewage.  相似文献   

2.
A relation is derived for the calculation of unknown selectivity coefficients from unknown values of tertiary reactions and its validity is proved by experimental investigations of the systems H+/Na+/Ca2+, H+/Na+/Co2+ and H+/Na+/Al3+ at the strongly acid cation exchanger Wofatit KPS.  相似文献   

3.
On a bench scale the treatment of electroplating effluents (ZnCl2, NiCl2, NH4Cl, NH3 and two polyether compounds) with Wofatit CA20 is investigated. If the capacity of the resin is utilized to a high degree for the heavy metal ions, the organic matter remains in the filtrate. The results are discussed with regard to the recovery and waste-disposal technology on a large scale.  相似文献   

4.
Stream water was analysed to determine how induced watershed acidification changed the chemistry of peakflow and baseflow and to compare the relative timing of these changes. Two watersheds in north‐central West Virginia, WS3 and WS9, were subjected to three applications of ammonium sulphate fertilizer per year to induce acidification. A third watershed, WS4, was the control. Samples were collected for 8 years from WS9 and for 9 years from WS3. Prior to analyses, concentration data were flow adjusted, and the influence of natural background changes was removed by accounting for the chemical responses measured from WS4. This yielded residual values that were evaluated using robust locally weighted regression and Mann–Kendall tests. On WS3, analyte responses during baseflow and peakflow were similar, although peakflow responses occurred soon after the first treatment whereas baseflow responses lagged 1–2 years. This lag in baseflow responses corresponded well with the mean transit time of baseflow on WS3. Anion adsorption on WS3 apparently delayed increases in SO4 leaching, but resulted in enhanced early leaching losses of Cl and NO3. Leaching of Ca and Mg was strongly tied, both by timing and stoichiometrically, to NO3 and SO4 leaching. F‐factors for WS3 baseflow and peakflow indicated that the catchment was insensitive to acid neutralizing capacity reductions both before and during treatment, although NO3 played a large role in reducing the treatment period F‐factor. By contrast, the addition of fertilizer to WS9 created an acid sensitive system in both baseflow and peakflow. On WS9, baseflow and peakflow responses also were similar to each other, but there was no time lag after treatment for baseflow. Changes in concentrations generally were not as great on WS9 as on WS3, and several ions showed no significant changes, particularly for peakflow. The lesser response to treatment on WS9 is attributed to the past abusive farming and site preparation before larch planting that resulted in poor soil fertility, erosion, and consequently, physical and chemical similarities between upper and lower soil layers. Even with fertilizer‐induced NO3 and SO4 leaching increases, base cations were in low supplies and, therefore, unavailable to leach via charge pairing. The absence of a time lag in treatment responses for WS9 baseflow indicates that it has substantially different flow paths than WS3. The different hydrologies on these nearby watersheds illustrates the importance of understanding watershed hydrology when establishing a monitoring programme to detect ecosystem change. Published in 2002 by John Wiley & Sons, Ltd.  相似文献   

5.
A humic acid extracted from a peat was easily hydrolysed by 6N HCl after oxidation with peracetic acid. The proportion of amino-acids in the hydrolysate was high (11,7 g of aminoacids per 100 g of humic acid), when the proportion of NH3 was relatively low. 17 aminoacids were identified and titrated. On the opposite, a humic acid with the same origin, which was not oxidised with peracetic acid, gave less amino-acids on hydrolysis, but tenfold more NH3, which is probably produced by partial decomposition of the amino-acids.  相似文献   

6.
The chemical composition and D/H, and ratios have been determined for the acid hot waters and volcanic gases discharging from Zaō volcano in Japan. The thermal springs in Zaō volcano issue acid sulfate-chloride type waters (Zaō) and acid sulfate type waters (Kamoshika). Gases emitted at Kamoshika fumaroles are rich in CO2, SO2 and N2, exclusive of H2O. Chloride concentrations and oxygen isotope data indicate that the Zaō thermal waters issue a fluid mixture from an acid thermal reservoir and meteoric waters from shallow aquifers. The waters in the Zaō volcanic system have slight isotopic shifts from the respective local meteoric values. The isotopic evidence indicates that most of the water in the system is meteoric in origin. Sulfates in Zaō acid sulfate-chloride waters with δ34S values of around +15‰, are enriched in 34S compared to Zaō H2S, while the acid sulfate waters at Kamoshika contain supergene light sulfate (δ34S = + 4‰) derived from volcanic sulfur dioxide from the volcanic exhalations. The sulfur species in Zaō acid waters are lighter in δ34S than those of other volcanic areas, reflecting the difference in total pressure.  相似文献   

7.
In a storage reservoir with a hypolimnic volume of 3.5 hm3 the water contains 40 mg/l nitrate. A straw bale of 60 by 20 by 1.5 m was introduced as a reactor. Hypolimnic water having been polluted with a waste product of the fatty acid synthesis (30 … 20% formic, acetic, propionic, butyric and valeric acids) were pumped through it. By the use of a total of 43.8 t fatty acid mixture from June to August an additional oxygen depletion of 14 t O2 is achieved and 49 t NO3? are removed at the same time. The ammonium concentration did not increase, the NO2? concentration, however, rose to 12 … 13 mg/l NO2 at times. The fatty acids were used up save 0.1 mg/l. The increase of the NO2? concentration, of the number of germs and of the iron, manganese and phosphorus back solution due to the controlled anaerobic conditions is the drawback of the process.  相似文献   

8.
This study investigated the effectiveness of a new packing material, namely mixed rice husk silica with dried activated sludge for removing H2S. Dried sewage sludge was collected from Putrajaya sewage treatment plant in Malaysia. Rice husk silica was prepared at temperature of 800°C, after acid leaching and mixed with dried sewage sludge to be utilized in a polyvinyl chloride filter. The system was operated under variable conditions of two parameters, different inlet gas concentration and different inlet flow rate. H2S was passed through the filter with one liter of the packing material. More than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 90–45 s and 300 ppm inlet concentration was observed. However, the RE decreased to 96.87% with the EBRT of 30 s. The maximum elimination capacity (EC) of 52.32 g/m3/h was obtained with the RE of 96.87% and H2S mass loading rate of 54 g/m3/h, while at the RE of 99.96%, maximum EC was 26.99 g/m3/h with the H2S mass‐loading rate of 27 g/m3/h. A strong significant correlation between increasing of H2S mass loading rate and pressure drop was also detected (p < 0.01). Maximum pressure drop was 3.0 mm H2O after 53 days of operating time, the EBRT of 30 s, and 54 g/m3/h of H2S loading rate. These observations suggest that the mixture of rice husk silica with dried activated sludge is a suitable physico‐biological filter for H2S removal.  相似文献   

9.
Comparative studies of the use of chlorine/ultraviolet (Cl2/UV) and hydrogen peroxide/ultraviolet (H2O2/UV) Advanced oxidation processes (AOPs) to remove trichloroethylene (TCE) from groundwater in a pump‐and‐treat application were conducted for the first time at the full‐scale operational level at two water treatment facilities in Northern California. In these studies, aqueous chlorine replaced hydrogen peroxide in the AOP treatment step, where the oxidant is exposed to UV light to produce highly reactive radical species that degrade groundwater contaminants. TCE removal rates as a function of initial chlorine dose and pH were then determined. At the site where the natural pH of the water was 7.1, TCE was removed (to a concentration of less than 0.5 µg/L) for nearly every chlorine dose point tested, and pH adjustment slightly enhanced the treatment process at this facility. The second site had a high natural pH of 7.7, and here, TCE was not completely removed for any chlorine dose up to 5.7 mg/L, although TCE removal did increase when the chlorine dose increased between 0.9 and 3.6 mg/L. Residual TCE remaining in the water post‐Cl2/UV was readily removed using active carbon filtration, which is part of the overall treatment train at this facility. These studies also verified that Cl2/UV AOP did not interfere with the photolysis of N‐nitrosodimethylamine or result in an effluent acutely toxic toward Ceriodaphnia dubia. Comparative economic analysis revealed that the chemical costs associated with Cl2/UV AOP were 25 to 50% of the costs associated with in place H2O2/UV AOP treatment.  相似文献   

10.
Commercial ZnO, MnO2, and their acid‐treated forms were used as catalysts for oxidative degradation of Orange II dye in water. ZnO and MnO2 were treated with 0.5, 0.75, or 1.0 N aqueous H2SO4. The acid treated oxides were found to be highly effective in bringing about degradation of Orange II in water. As much as 68.7% of the dye in an aqueous solution of 1 mg/L concentration could be degraded with untreated ZnO as the catalyst. The degradation increased to 79.5% with 1.0 N acid treated ZnO as the catalyst when the reaction was carried out at room temperature for 240 min. The catalytic activity was slightly affected by the solution pH in the range of 2.0–8.0. With MnO2 as the catalyst, there was only 12.7% degradation of the dye, but this increased up to 100% when 0.5 N acid treated MnO2 was used as the catalyst. It was found that a catalyst loading of 5.0 g/L of raw and acid‐treated ZnO and a loading of 0.5 g/L of raw and acid‐treated MnO2 could bring about almost 100% degradation of Orange II in water in an interaction time of 240 min at room temperature.  相似文献   

11.
Degradation of an anthraquinone dye, disperse blue E‐4R, by zero‐valent iron (ZVI)/ozone (O3) was carried out in a series of laboratory‐scale experiments. The obtained results indicated that this method was much more effective than single ZVI or single O3 at removal of color, chemical oxygen demand, total organic carbon, and adsorbable organic halogen. The effect of several related operational parameters, including O3 dosage, zero valent iron dosage, temperature, pH value, and ZVI particle size were also discussed. Finally, we tried to decontaminate some actual samples with this method, which showed high treatment efficiency to the sample pretreated by conventional activated sludge.  相似文献   

12.
There are many fundamental problems with the injection of nano‐zero‐valent iron (NZVI) particles to create permeable reactive barrier (PRB) treatment zone. Among them the loss of medium porosity or pore blocking over time can be considered which leads to reduction of permeability and bypass of the flow and contaminant plume up‐gradient of the PRB. Present study provides a solution for such problems by confining the target zone for injection to the gate in a funnel‐and‐gate configuration. A laboratory‐scale experimental setup is used in this work. In the designed PRB gate, no additional material from porous media exists. NZVI (d50 = 52 ± 5 nm) particles are synthesized in water mixed with ethanol solvent system. A steady‐state condition is considered for the design of PRB size based on the concept of required contact time to obtain optimum width of PRB gate. Batch experiment is carried out and the results are used in the design of PRB gate width (~50 mm). Effect of high initial NO3‐N concentration, NZVI concentration, and pore velocity of water in the range of laminar groundwater flow through porous media are evaluated on nitrate‐N reduction in PRB system. Results of PRB indicate that increasing the initial NO3‐N concentration and pore velocity has inhibitor effect—against the effect of NZVI concentration—on the process of NO3‐N removal. Settlement velocity (S.V.) of injected NZVI with different concentrations in the PRB is also investigated. Results indicate that the proposed PRB can solve the low permeability of medium in down‐gradient but increasing of the S.V. especially at higher concentration is one of the problems with this system that needs further investigations.  相似文献   

13.
110 samples from two swimming-pools were gas-chromatographically investigated for halogenated hydrocarbons. In spite of varying chlorine concentrations between 0.1 and 2.5 mg/l Cl2 the bacteriological results were unobjectionable. The total of the haloforms was between 1.2 and 182 μg/l, with the average value of 90 μg/l. Besides CHCl3, CHBrCl2, CHBr2Cl and CCl3NO2 there were observed other, still unidentified compounds in the chlorinated bathing water which clearly are successive products of disinfection, too. The water treatment by flocculation and filtration does not bring about any elimination of trihalomethanes. Of special importance is the occurrence of trichloronitromethane in concentrations of 0.13 … 1.2 μg/l, whose LC50 in the Daphnia test is 189 μg/l, at a threshold concentration of 160 μg/l. To limit the pollution of water and air to a minimum, specific conditions must be adhered to in the operation of indoor swimming-pools.  相似文献   

14.
The most important measure is that the freshwater demand of 0.5 m3 per t beet processing is strictly kept to or fallen below, to which a catalogue of measures with ten points is presented. The wastewaters which cannot be used again have to be stored prior to the final purification in order to compensate for quantities and concentrations, aerated storage ponds being successful for small sugar factories as the purification technology. For this, three cases are described as examples: supplementary equipment of two anaerobic ponds with a rod-roll aeration, by which within two months (May to July) the BOD3 is reduced from 1,200 to 11 mg/l. The aeration of a pond of 12.5 ha (370,000 … 500,000 m3) by means of a centrifugal aerator (45 kW) does not lead to completely aerobic conditions: Accumulation up to 350 t BOD5, 200 t organic acids at a reduction of 100 t sulphate, 45 t of which being converted via sulphides by photoautotrophic sulphur bacteria. This combination of anaerobic and aerobic processes is very economical. At aeration with ca. 1 W/m3 in the third case in summer there are achieved wastewater loads which are of a receiving-water quality.  相似文献   

15.
Subsurface brines with high nitrate (NO3?) concentration are common in desert environments as atmospheric nitrogen is concentrated by the evaporation of precipitation and little nitrogen uptake. However, in addition to having an elevated mean concentration of ~525 mg/L (as N), NO3? in the coastal sabkhas of Abu Dhabi is enriched in 15N (mean δ15N ~17‰), which is an enigma. A NO3? solute mass balance analysis of the sabkha aquifer system suggests that more than 90% of the nitrogen is from local atmospheric deposition and the remainder from ascending brine. In contrast, isotopic mass balances based on Δ17O, δ15N, and δ18O data suggest approximately 80 to 90% of the NO3? could be from ascending brine. As the sabkha has essentially no soil, no vegetation, and no anthropogenic land or water use, we propose to resolve this apparent contradiction with a density‐driven free‐convection transport model. In this conceptual model, the density of rain is increased by solution of surface salts, transporting near‐surface oxygenated NO3? bearing water downward where it encounters reducing conditions and mixes with oxygen‐free ascending geologic brines. In this environment, NO3? is partially reduced to nitrogen gas (N2), thus enriching the remaining NO3? in heavy isotopes. The isotopically fractionated NO3? and nitrogen gas return to the near‐surface oxidizing environment on the upward displacement leg of the free‐convection cycle, where the nitrogen gas is released to the atmosphere and new NO3? is added to the system from atmospheric deposition. This recharge/recycling process has operated over many cycles in the 8000‐year history of the shallow aquifer, progressively concentrating and isotopically fractionating the NO3?.  相似文献   

16.
. Kaste  P. J. Dillon 《水文研究》2003,17(12):2393-2407
In‐lake retention of inorganic nitrogen species (nitrate and ammonium) was estimated from mass balances in five acid‐sensitive lakes in southern Norway and eight in southern Ontario, Canada, to evaluate an empirical in‐lake N retention (RN) model. This model is included in the First‐order Acidity Balance (FAB) model, which currently is used for calculation of critical acid loads and exceedances in many countries. To estimate in‐lake RN, the FAB model uses a recommended mass transfer coefficient (SN) of 5 m year−1, which mainly is derived from NO3 mass balances in Canadian lakes. To date, the in‐lake RN model has not been evaluated for large parts of Europe. At the Norwegian study sites receiving the highest N deposition (>120 meq m−2 year−1) the net in‐lake retention of inorganic N (TIN) exceeded the corresponding terrestrial retention by a factor of 1·1–2·6. Despite differences in N loading and hydrology at the Norwegian and Canadian sites, both the mean mass transfer coefficients for NO3 (SNO3; 6·5 versus 5·6 m year−1) and TIN (STIN; 7·9 versus 7·0 m year−1) were of comparable magnitude. Both mean values and ranges of SNO3 suggest that the default SN value presently recommended for FAB model applications seems valid over a large range in N inputs and areal water loads (qs). However, owing to the relatively few data available for lakes with high qs values (15–150 m year−1), it is recommended that more lakes within this range be included in future studies to obtain a more precise prediction of in‐lake N retention over a wide qs gradient. Also, when considering that the FAB model treats all inorganic N leaching from a catchment as NO3, it seems reasonable to use a default STIN value instead of just SNO3 when estimating in‐lake RN. In that case, the in‐lake RN presently calculated by the FAB model might be slightly underestimated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Acid‐neutralizing capacity (ANC) is an important index for streamwater acidification caused by external factors (i.e. chronic acid deposition) and internal factors such as soil acidification due to nitrification. In this study, the influence of forest clear‐cutting and subsequent regrowth on internal acidification was investigated in central Japan, where stream pH (near 7·0) and ANC (above 0·1 meq L?1) are high. pH, the concentrations of major cations (Na+, K+, Mg2+ and Ca2+), major anions (NO3?, Cl? and SO42?) and dissolved silica (Si), and ANC were measured in 33 watersheds of various stand ages, during 2002 to 2004. Only NO3? concentration decreased with stand age, whereas pH, ANC, and concentrations of the sum of base cations (BC) and Si were negatively correlated with the minimum elevation of the watershed. The correlation between the BC/Si ratio and minimum elevation suggested that factors contributing to acid neutralization changed at 1100 m above sea level. In watersheds at lower elevations (?1100 m), the relatively high contribution of soil water with longer soil contact times should result in higher ANC, and cation exchange reactions should be the dominant process for acid neutralization due to deposition of colluvial soils on the lower slope. In contrast, in higher‐elevation watersheds (≥1100 m), weathered residual soils are thin and the small contribution of deeper groundwater results in lower ANC. These results suggest that the local acid sensitivity is determined by the hydrological and geomorphologic factors generated by steep topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   

19.
Testing Effluents of the Textile Refining Industry with Biological Methods The environmental problems caused by the manufacture of finished textiles involve a long chain of individual processes. This “textile chain” includes very diverse enterprises of varied size and structure. The textile refiners occupy a key position in the “textile chain”. On the one hand, this is due to their use of an obscurely large number of chemicals which can end up in the wastewater as well as in the textile products. On the other hand, this key role of the textile refining industry is based on their central position between the preproduction stage and the consumers. This study dealt with the textile refining industry's wastewater. As measured by volume and contents of its wastewater, this industry can be counted among the major industrial plants which discharge into municipal wastewater treatment plants. German wastewater legislation includes the provision that substances which are toxic, persistent, capable of accumulating, carcinogenic, fetotoxic or mutagenic be kept out of natural waters as well as technically possible (Wasserhaushaltsgesetz WHG). Several biotest methods for examining the effect of the substances contained in the wastewater were incorporated into the appendix of the German wastewater regulation (Rahmenabwasser-Verwaltungsvorschrift based on § 7a WHG). The aim of this study was to show, with the aid of biotest methods, how strongly the wastewater of textile refining companies is polluted as compared to other known industrial branches and to what degree the pollution of these wastewaters is eliminated by the treatment in wastewater treatment plants. Finally, we experimented to find out which biotest methods were suited for the examination of these wastewaters. The study's results show that the ecotoxicity of the textile refining industry's wastewater was only extraordinary high in isolated cases as compared to other examined branches of industry. The textile wastewaters exhibit values of GL = 3 to GL = 96 in the luminescent bacteria test, GD = 1 to GD = 192 (with one exception of GD > 30000) in the daphnia test and GF < = 2 to GF = 32 in the fish test. It turned out though, that a large number of the samples from the textile refining companies (27%) reacted mutagenically in the Ames test in their native state. Consecutive tests for chromosomal aberrations (V79 hamster cell test) also showed mutagenic potential in five out of nine native samples. The employed testing methods with fish, daphnia and luminescent bacteria demonstrate a higher sensitivity of the luminescent bacteria and/or the daphnia as opposed to the fish in most cases. As the fish test is controversial anyway on the grounds of animal protection, a replacement of the fish test by these other tests should be aimed at: on account of the different end points of the luminescent bacteria and the daphnia test, a combination of these tests appears most sensible.  相似文献   

20.
The wastewater treatment is carried out in two parallel pond groups: South–9200 m3/d, 1748 kg/d BOD5, preliminary clarifier (1.1 ha, 22000 m3), three ponds (9.8 ha, 88000 m3), naturel aeration; North ?5700 m3/d, 2394 kg/d BOD5, Imhoff tank, three ponds (7.9 ha, 71000 m3), the pond 1 artificially aerated by gyroscopic units. The different loads of 15.9 and 33.7 g/m3 d BOD5 results in rates of removal of 11.2 and 22.5 g/m3d BOD5, resp. Therefore, the efficiency of the naturally aerated system is higher than that of the artificially aerated system. In the aerated system mainly the bacterial growth is promoted, a typical algal state being achieved only slowly, whereas the naturally aerated system gains a summer-time algal maximum in the ponds 2 and 3, which is accompanied already by zooplankton populations. In the dynamics of the biomass development, the higher efficiency of the four-stage, naturally aerated system is especially obvious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号