首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
The system consists of three preliminary clarifiers and two ponds operating in series. It drains 100,000 to 120,000 m3 highly loaded wastewater per year over the ground. In dependence on load, in the pond 1 a midsummer-time bacterial maximum of up to 800 m3/l occurs. The algal biomass, too, shows an annual curve with one peak; the maximum is independent of the ice cover and varies with the seasons. The BOD5 shows a spring maximum and a summer maximum independent of the biomasses and their variations. In the second pond only slight changes are found from June till October; here prevail algae and a maximum of flagellates. Although a stage of filtrators and consumers is lacking, the system can be regarded as a sewage pond system with a reduction of BOD5 by 73%.  相似文献   

2.
The most important measure is that the freshwater demand of 0.5 m3 per t beet processing is strictly kept to or fallen below, to which a catalogue of measures with ten points is presented. The wastewaters which cannot be used again have to be stored prior to the final purification in order to compensate for quantities and concentrations, aerated storage ponds being successful for small sugar factories as the purification technology. For this, three cases are described as examples: supplementary equipment of two anaerobic ponds with a rod-roll aeration, by which within two months (May to July) the BOD3 is reduced from 1,200 to 11 mg/l. The aeration of a pond of 12.5 ha (370,000 … 500,000 m3) by means of a centrifugal aerator (45 kW) does not lead to completely aerobic conditions: Accumulation up to 350 t BOD5, 200 t organic acids at a reduction of 100 t sulphate, 45 t of which being converted via sulphides by photoautotrophic sulphur bacteria. This combination of anaerobic and aerobic processes is very economical. At aeration with ca. 1 W/m3 in the third case in summer there are achieved wastewater loads which are of a receiving-water quality.  相似文献   

3.
The difficulties arisen in an assimilation pond, as it is called, after 17 years of operation were solved by a stabilization system for the purification of effluents and utilization for fish breeding. It consists of two basins (0.56 and 1.04 ha) and a fish pond (15.58 ha) to which water can flow from a brook by-passing the system. When the stabilization system had worked for 6 years, it was proved that in the case of the average daily intake of milk of 93,846…118,134 litres, effluents flowing out of the dairy plant amounted to 205.28…228.53 m3, on average. The BOD5 of effluents ranged from 201.33 to 261.73 kg/d and the total solids ranged from 95.5 to 139.3 kg/d on average. The average daily outflow from the pond amounted to 394.7…1567.0 m3 of water with 4.1…23.8 kg of BOD5 and with 29.3…112.4 kg of total solids. The average decrease of the main nutrients and extractable substances ranged from 62.8% (Ca2+) to 100% (NO?3). Only the BOD5 value at the end of the growing season in 1984 (8.4…10.3 mg/l) exceeded three times the standards for the admissible pollution of the receiving stream.  相似文献   

4.
Dimethyl Sulfoxide Reduction Method for the Characterization of Biomass Activity in Sludge of an Aerated Lagoon The microbial biomass activity was studied in sludge from a wastewater lagoon (Hatzbachtal) which consisted of 4 aerated ponds and one polishing pond. The lagoon was characterized by low BOD5 loading and high dilution because of water from the surroundings. Sludge samples were taken from 4 sampling sites of each aerated pond and from one site of the polishing pond. The biomass activity in the sludge samples was analysed with the help of dimethyl sulfoxide reductase (DRA) and dehydrogenase (DHA) activity. In addition, Corg-content was also determined. The effect of different reaction parameters on the DRA was studied in relation to incubation period, temperature and atmosphere as well as sludge weight and pH value. The results presented here show that a linear increase in the DRA occured for the sludge weight ranging from 0.1 to 0.5 g, incubation period from 0.5 to 11 h and incubation temperature from 20 to 50 °C. The pH spectrum from acidic to neutral did not effect the DMS formation in sludge. Although the values for DRA were always higher in anaerobic incubation of sludge than in aerobic incubation, the courses of the DRA in both conditions were parallel. Comparing the biomass activity in sludge from different sampling sites of the aerated ponds, the average Corg-content was found to be reflected by the DRA and DHA. Further, the variation in the DRA could represent also the influence of oxygen concentration. Therefore, a reduction in biomass activities indicated a decline in the availability of oxygen.  相似文献   

5.
池塘养殖是农业源污染的重要来源之一,尤其在水网密布、渔业发达的太湖流域,控制池塘养殖过程中氮、磷、化学需氧量等污染物的排放,对于减轻水体富营养化程度、恢复水质健康、维持地区社会经济可持续发展具有重要意义.基于野外采样、入户调查、遥感解译等多种手段,结合GIS软件技术,对太湖流域池塘养殖污染物的排放进行了估算.结果表明,20142015年太湖流域总氮、硝态氮、铵态氮、总磷、可溶性磷、COD Cr的年排放量分别为6.1×10^6、1.1×10^6、1.7×10^6、1.3×10^5、1.1×10^5和8.0×10^7 kg.其中鱼类池塘养殖排放系数分别为69.5、12.4、20.1、1.6、1.3和919.8 kg/hm 2;虾类池塘排放系数分别为3.0、0.5、0.9、0.07、0.06和39.3 kg/hm^2;蟹类池塘排放系数分别为6.4、1.2、1.9、0.2、0.1和84.9 kg/hm^2.太湖流域池塘养殖各类污染物排放分布特征为位于太湖西北部、南部和东北部的大部分地区池塘养殖污染物排放较高,位于太湖东部和太湖西南部的池塘养殖污染物排放较低.池塘养殖业发达、饲料肥料投入高、养殖密度大等是造成该流域池塘养殖污染物排放较高的主要原因.针对太湖流域池塘养殖减排治理,建议推行合理的池塘污染治理管理政策与策略,综合考虑饲料利用率与投放量、养殖面积、养殖密度、养殖生物生态混养,以及一些科学养殖管理措施和净化养殖废水的技术措施等.  相似文献   

6.
内陆水体是大气CO2收支估算的重要组成部分。农业流域分布着大量池塘景观水体,且具备蓄洪抗旱、消纳污染、水产养殖等多种功能。但是,农业流域不同功能的小型池塘CO2排放特征尚不清楚。本研究以极具农业流域代表性的烔炀河流域为研究对象,选取流域中用于水产养殖(养殖塘)、生活污水承纳(村塘)、农业灌溉(农塘)、蓄水(水塘)的4个功能不同的景观池塘,基于为期1年的野外实地观测,以明确农业流域小型池塘CO2排放特征。结果表明,不同功能池塘水体CO2排放差异显著,受养殖活动、生活污水输入和农田灌溉等人类活动影响,养殖塘((80.37±100.39) mmol/(m2·d))、村塘((48.69±65.89) mmol/(m2·d))和农塘((13.50±15.81) mmol/(m2·d))是大气CO2的热点排放源,其CO2排放通量分别是自然蓄水塘((4.52±23.26) mmol/(m2·d))的18、11和3倍。统计分析也表明,该流域池塘CO2排放变化总体上受溶解氧、营养盐等因素驱动。4个不同景观池塘CO2排放通量全年均值为(37.31±67.47) mmol/(m2·d),是不容忽视的CO2排放源,其中养殖塘和村塘具有较高的CO2排放潜力,在未来研究中需要重点关注。  相似文献   

7.
Carbon dioxide fluxes and water balance were examined in 43 tundra ponds in the northern portion of the Hudson Bay Lowland near Churchill, Manitoba. Most of the ponds were hydrologically disconnected from their catchments during dry periods throughout the post‐melt season. However, episodic reconnection occurred following large precipitation events where depression storage was exceeded. Significant shifts in pond chemistry were observed following precipitation events, with the degree of CO2 saturation increasing during these periods. Pond CO2 concentrations rapidly fell to pre‐event levels following events, suggesting that hydrological connectivity can affect the magnitude and direction of CO2 gas fluxes in tundra ponds. Atmospheric CO2 invaded ponds with highly organic sediments for most of the summer, suggesting that terrestrially derived inorganic carbon was insufficient to meet the demands of algal net production. In contrast, ponds with highly mineral sediments continued to evade CO2 during the summer. In a subset of 11 ponds, long‐term rates of carbon accumulation in sediment ranged from 0·6 to 2·2 mol C m?2 year?1. Very strong correlations existed between average sediment accumulation rates and pond perimeters and basin areas suggesting that peat may be a major source of sediment carbon. Aeolian transport is also a potentially large source of sediment carbon. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Biologically purified wastewater in ten doses of 50 and 400 mm per year was given into sand-filled lysimeters of 1 m2 area and 1 m depth which were vegetated with Lolium perenne (forage rye) and green maize all the year round. The experimental results gained in the course of five summer half-years and four winter half-years were evaluated with respect to the purification efficiency of the soil-plant system. The results demonstrate a high efficiency of the system with mean annual elimination performances of 86 and 40% for BOD5, and COD-Cr, resp., as well as 49, 86 and 52% for N, P and K, resp., at mean concentrations in mg/l for BOD5?1.3, COD-Cr?34.1, N?18.1, P?0.4 and K?9 in the percolating water from a soil depth of 1 m. The lysimeters which had been supplied with wastewater were not treated with mineral fertilizer. Intermingling with 1 kg/m2 straw brings about an increase of the loads of K and P as well as COD-Cr in the percolating water and a reduction of the N-loads, besides an increase in yield. All in all, for four years the performance has been stable without any temporal trend.  相似文献   

9.
云南抚仙湖窑泥沟复合湿地的除氮效果   总被引:11,自引:3,他引:8  
为了延缓抚仙湖局部湖湾水体富营养化趋势,在北岸建设了净化面积1hm2.的复合人工湿地.综合利用生物氧化塘、水平潜流湿地和表面流湿地治理技术,对入湖河道窑泥沟污水中氮的去除效果进行了试验研究.试验结果表明,湿地系统的除氮效果十分明显,水力负荷年平均为437mm/d,氮负荷年平均为3.315 g/(m2·d),湿地系统氮滞留量年平均为1.91g/(m2·d).其中,通过植物吸收同化作用除氮量为0.142g/(m2·d),占总氮滞留量的7.5%左右.湿地系统对污水中硝酸盐及亚硝酸盐氮(NOX-)、氨氮(NH4+)、有机氮(TON)和总氮(TN)的去除率年平均分别为62.7%、53.8%、62.4%和57.5%.在湿地系统各功能区中,表面流人工湿地除氮效果最佳,氮去除率年平均为39.4%,硝化和反硝化作用均较强;生物净化塘除氮效果次之,氮去除率年平均为18.5%;潜流人工湿地氮去除率年平均为10.6%;沉淀池中氮去除率年平均只有3.6%.  相似文献   

10.
Beavers, primarily through the building of dams, can deliver significant geomorphic modifications and result in changes to nutrient and sediment fluxes. Research is required to understand the implications and possible benefits of widespread beaver reintroduction across Europe. This study surveyed sediment depth, extent and carbon/nitrogen content in a sequence of beaver pond and dam structures in South West England, where a pair of Eurasian beavers (Castor fiber) were introduced to a controlled 1.8 ha site in 2011. Results showed that the 13 beaver ponds subsequently created hold a total of 101.53 ± 16.24 t of sediment, equating to a normalised average of 71.40 ± 39.65 kg m2. The ponds also hold 15.90 ± 2.50 t of carbon and 0.91 ± 0.15 t of nitrogen within the accumulated pond sediment. The size of beaver pond appeared to be the main control over sediment storage, with larger ponds holding a greater mass of sediment per unit area. Furthermore, position within the site appeared to play a role with the upper‐middle ponds, nearest to the intensively‐farmed headwaters of the catchment, holding a greater amount of sediment. Carbon and nitrogen concentrations in ponds showed no clear trends, but were significantly higher than in stream bed sediment upstream of the site. We estimate that >70% of sediment in the ponds is sourced from the intensively managed grassland catchment upstream, with the remainder from in situ redistribution by beaver activity. While further research is required into the long‐term storage and nutrient cycling within beaver ponds, results indicate that beaver ponds may help to mitigate the negative off‐site impacts of accelerated soil erosion and diffuse pollution from agriculturally dominated landscapes such as the intensively managed grassland in this study. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

11.
The effluent from biological treatment plants of cane sugar factories undergoes a final purification in laboratory models with a Chlorella culture at volume loads of 76… 325 mg/l. d BOD5 or 121… 555 mg/l-d COD. The coefficient of removal on the basis of BOD5 is found to be linearly negatively correlated with the retention time, but independent of the substrate concentration and composition as well as of the pre-treatment of the wastewaters (aerobic or anaerobic). A dimensioning on the basis of the COD is not possible because of the high phytoplankton content in the effluent of the ponds.  相似文献   

12.
A numerical model (sediment trap efficiency for small ponds—STEP) is developed to simulate sediment deposition in small ponds (i.e. <1 ha) and to calculate the sediment trap efficiency (STE). The algorithms are kept simple to allow the model to simulate larger time periods (i.e. several years). Eight runs with an experimental pond were executed to test the model. The STEP model produces reasonable predictions of STE as well as the shape and magnitude of the effluent sediment concentration graph. The model efficiency of STEP for the prediction of STE equals 0·38 and the root mean square error equals 4·7%. Similar models, such as DEPOSITS and CSTRS, were inefficient in predicting the experimental results. The STEP model was used to simulate the long‐term (33 years) STE of small retention ponds in central Belgium using 10‐min rainfall data. For a typical pond (1000 m2) with a catchment area of 25 ha, annual STE can vary from 58 to 100%, with a long‐term STE of only 68%. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Erosion leading to sedimentation in surface water may disrupt aquatic habitats and deliver sediment-bound nutrients that contribute to eutrophication. Land use changes causing loss of native vegetation have accelerated already naturally high erosion rates in New Zealand and increased sedimentation in streams and lakes. Sediment-bound phosphorus (P) makes up 71–79% of the 17–19 t P y−1 delivered from anthropogenic sources to Lake Rotorua in New Zealand. Detainment bunds (DBs) were first implemented in the Lake Rotorua catchment in 2010 as a strategy to address P losses from pastoral agriculture. The bunds are 1.5–2 m high earthen stormwater retention structures constructed across the flow path of targeted low-order ephemeral streams with the purpose of temporarily ponding runoff on productive pastures. The current DB design protocol recommends a minimum pond volume of 120 m3 ha−1 of contributing catchment with a maximum pond storage capacity of 10 000 m3. No previous study has investigated the ability of DBs to decrease annual suspended sediment (SS) loads leaving pastoral catchments. Annual SS yields delivered to two DBs with 20 ha and 55 ha catchments were 109 and 28 kg SS ha−1, respectively, during this 12-month study. The DBs retained 1280 kg (59%) and 789 kg (51%) of annual SS loads delivered from the catchments as a result of the bunds' ability to impede stormflow and facilitate soil infiltration and sediment deposition. The results of this study highlight the ability of DBs to decrease SS loads transported from pastures in surface runoff, even during large storm events, and suggests DBs are able to reduce P loading in Lake Rotorua.  相似文献   

14.
The two eutrophicated reservoirs Husinec (2.6 km3, 35 ha, zmax 18 m, MQ 1.87 m3/s) and ?ímov (34.5 hm3, 216 ha, zmax 44 m, MQ 4.14 m3/s) show concentrations of total phosphorus of 10… 50 mg/m3 and chlorophyll contents of 7… 36 mg/m3 in the summer season. For both reservoirs a good correlation exists between the chlorophyll concentration and the density of the phytoplankton (20 · 103… 13 · 106 ind./l). With average concentrations of 10… 20 mg/m3 chlorophyll a in summer, the water can be treated for producing drinking water only at a higher expenditure. The water quality will be improved by a reduction of the phosphorus load.  相似文献   

15.
The water quality of an urban pond in the thickly populated area of Varanasi city (5 km apart) was studied and compared with a rural pond in the Banaras Hindu University campus for transparency, conductivity and nutrient richness (Cl?, SO, PO? P, NO? N, organic carbon, Ca2+, Mg2+, K+, Na+) at three depths (surface, 1.5 m, 3 m) at monthly intervals between February 1982 and February 1983. This was done to assess the effects of urban surroundings of a very ancient city sector on pond water quality in reference to that of a rural pond. The rural pond had a lush growth of 12 macrophytic species, whereas the urban one had only such a growth with many phytoplanktonic species. Transparency was maximum in the winter season and the rural pond water was more transparent, while the electrolytical conductance was maximum in the rainy season, being higher in the urban pond. Electrolytical conductivity was negatively correlated to transparency: urban: EC = 1081.612–6.575 T, r2 = 0.897, F1,11 = 96, P <0.005; rural: EC = 728.981–4.328 T, r2 = 0.892, F1,11 = 91, P <0.005. Chloride and sulphate concentrations were highest in summer months, but the former was much higher in the urban pond while the latter in the rural pond. NO3–N was highest in the rainy season in the rural pond and in early winter in the urban one and showed a definite trend with change in depth. PO4–P also varied with depth and time and it was higher in late summer and the early rainy season in the rural pond and in early winter in the urban pond. But both these nutrients were much higher in the urban pond. The maximum organic carbon concentration was found in the rainy season in the rural pond and in summer months in the urban pond. The variation of organic carbon with depth was distinct. Both summer and winter seasons showed almost similar values of calcium concentration in the rural pond, but in the urban pond it was maximum in summer. Organic carbon and calcium were higher in the urban pond. The magnesium concentration was highest in rainy months in both the ponds, but the periodicity of the minimum differed. The distribution of calcium with depth was not well defined. The highest concentration of potassium was found in the winter season in both the ponds. The sodium concentration in the rural pond was observed maximum in summer and minimum in the rainy season, but in the urban pond the trend was different. The variation of potassium and sodium with depth was not well defined. Magnesium and sodium were also higher in the urban pond but potassium was almost at the same concentration in both the ponds. The effect of urbanisation may be one of the factors which might be responsible to the shift of the species composition towards phytoplanktonic flora.  相似文献   

16.
Chlorophyll pigments (CHL), primary productivity (PP) and particulate nitrogen (Np) in relation to several environmental factors were monitored during planktonic colonization of an aquaculture pond (Layo, Côte d'Ivoire). How interactions between the organisms are established in an initially azoic environment were investigated. From March, 15 (D1) to March, 31 (D16), the system transformation went through three stages. First, a precolonization by heterotrophic microbial community from D1 to D2 (Np < 1 m maximum at D2: 243 mg m–2; CHL around 0). Then, a pioneer microalgal community developped from D3 to D7 (maximum CHL on D6: 19 mg m–2; PP: 1.0 g C m–2 d–1) with a significant contribution of picoplankton (CHL and PP < 3 m: 33 and 23% of the total, respectively). Finally, a second microalgal colonization was noticed from D9 to D12 (maximum CHL: 55 mg m–2, PP: 2.8 g C m–2 d–1), largely dominated by nanoplankton (CHL and PP > 3 m: 95 and 99% of the total, respectively). Overall, photosynthetic activity appeared to be closely linked to algal biomass. The study of autotrophic biomass and activity in different size classes in relation to the other parameters allowed us to precise the origin of the biomass fluctuations. The first bloom appeared to be controlled by selective grazing on small algae. The second algal development ended when N requirement represented at least 69% of N supply (in the N — NH4 form). This control was enhanced by the appearance of rotifers, leading to a more complex equilibrium.  相似文献   

17.
The water storage and energy transfer roles of supraglacial ponds are poorly constrained, yet they are thought to be important components of debris‐covered glacier ablation budgets. We used an unmanned surface vessel (USV) to collect sonar depth measurements for 24 ponds to derive the first empirical relationship between their area and volume applicable to the size distribution of ponds commonly encountered on debris‐covered glaciers. Additionally, we instrumented nine ponds with thermistors and three with pressure transducers, characterizing their thermal regime and capturing three pond drainage events. The deepest and most irregularly‐shaped ponds were those associated with ice cliffs, which were connected to the surface or englacial hydrology network (maximum depth = 45.6 m), whereas hydrologically‐isolated ponds without ice cliffs were both more circular and shallower (maximum depth = 9.9 m). The englacial drainage of three ponds had the potential to melt ~100 ± 20 × 103 kg to ~470 ± 90 × 103 kg of glacier ice owing to the large volumes of stored water. Our observations of seasonal pond growth and drainage with their associated calculations of stored thermal energy have implications for glacier ice flow, the progressive enlargement and sudden collapse of englacial conduits, and the location of glacier ablation hot‐spots where ponds and ice cliffs interact. Additionally, the evolutionary trajectory of these ponds controls large proglacial lake formation in deglaciating environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Estimates of population size and biomass of net plankton were made in two tropical fish ponds in relation to the ecological data over a period of one year. There was a wide spatial and seasonal variation of population size and biomass of net plankton in two ponds studied. Always predominant over zooplankton, phytoplankton demonstrated three distinct annual peaks in the pond N-1 while a single peak was obtained in the pond N-2. A variable result was found in two ponds in the values of Shannon index of general diversity for phyto- and zooplankton. The seasonal changes of phytoplankton number in these ponds showed an inverse characteristic either with absolute concentration or with the rate of concentration changes of bicarbonate in the water, while the former and concentration of dissolved oxygen was positively correlated. In the multiple correlation analysis, the greatest importance of the concentration of PO4 was indicated on the phytoplankton population as HCO 3 and dissolved oxygen were not considered to be included in the final regression formula in both the ponds studied but the rate of changes of HCO 3 , PO4 and dissolved oxygen were influential on phytoplankton in the pond N-1.  相似文献   

19.
The ponds are natural water resources used for drinking, bathing, washing and aqua culture. In this work, the contamination of ponds lied in central India with F and heavy metals (As, Sb, Cr, Mn, Fe, Cu, Zn, Cd, Pb, Th and U) is described. The F concentration in the pond water and sediment (n = 24) was ranged from 1.6–5.5 mg/L and 210–1430 mg/kg with mean value of 2.3 ± 0.4 mg/L and 599 ± 137 mg/kg, respectively. The concentration variation and sources of the elements in the pond water and sediment are discussed. The health hazards of F in the domestic animals are described.  相似文献   

20.
Reduction of the Concentration of Bacteria and Coliphages along the Flowing Stretch of a Treated Sewage Channel The efficiency of surface waters to eliminate E. coli, fecal streptococci, Salmonella spp., and coliphages was evaluated in a small river which receives treated wastewater and which is rich in submerged macrophytes. The study took place between April and December, 1994. Total colony count, BOD5, O2 concentration and water temperature were determined in the river as well. As the river does not receive additional water downwards along its 17.2 km course, dilution effects could be ruled out as the cause for the elimination of the microorganisms. The reduction is assumed to happen rather due to sedimentation, grazing, and adsorption to the submerged waterplants. Immediately after discharge of the wastewater, the river water contained about 105 cfu/100 mL E. coli and 104 cfu/100 mL fecal streptococci, about 1000 pfu/100 mL coliphages, and, as a rule, was positive for salmonella in 10 mL. The reduction of E. coli, fecal streptococci, salmonella, clostridia, and coliphages at the end of the course was 1 to 2 orders of magnitude. This reduction took place mainly within the first 4.7 km, a part in which, due to low flowing velocities, suspended solids settle down efficiently. Besides, at the end of this part the submerged waterplants are especially abundant. The reduction of suspended solids correlated positively with that of BOD5, bacteria, and coliphages. The reduction of microorganisms was not sufficient to fulfill the requirements of the European Community guidelines for bathing waters and for surface waters used as drinking water source. The regenerating capacity of surface waters is not sufficient to eliminate pathogens from convenionally treated wastewater. Therefore, tertiary treatment is necessary to keep receiving waters reasonably free from pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号