首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the dynamic response of rigid strip foundations of arbitrary geometry embedded in a homogeneous elastic half-space. The embedded rigid foundation is modelled by an equivalent domain in a uniform half-space which is subjected to an appropriate body force field. The components of the impedance matrix are determined through the solution of a linear simultaneous equation system which is established by invoking rigid body displacements of discrete locations within the equivalent domain and appropriate equilibrium consideration. It is found that high numerical efficiency and flexibility can be achieved using the body force model when compared to boundary integral formulations through the selection of appropriate displacement influence functions and a ‘parent domain’ in the analysis. Numerical results are presented to illustrate the influence of the embedment ratio, frequency of excitation, foundation geometry and Poisson's ratio on the vertical, horizontal, rocking and coupled impedances of a single embedded foundation. The effect on the impedance due to the presence of an adjacent embedment is investigated for various distances between foundations and embedment ratios.  相似文献   

2.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

3.
The boundary element method is used to obtain dynamic stiffness functions of rigid cylindrical foundations embedded in a uniform or layered viscoelastic half-space. Dynamic stiffness functions of hemispherical foundations embedded in a uniform half-space are also computed. The direct integral equation formulation is used in combination with the complete space point load fundamental solution that is integrated numerically along the azimuthal coordinate. The approach is easy to implement because of the simplicity of the fundamental solution. The numerical results obtained by this method for cylindrical and hemispherical foundations are very close to corresponding published results obtained by different procedures. A parametric study shows the important effects of the Poisson's ratio on the dynamic stiffness functions of cylindrical foundations embedded in a uniform viscoelastic half-space. The effect of the bedrock compliance on the stiffness functions is also shown in the case of cylindrical foundations embedded in a soil layer that rests on a bedrock.  相似文献   

4.
An extension of the boundary element method to heterogeneous domains composed of horizontal layers is here proposed. It includes a numerical computation of the corresponding Green's functions, thanks to an inverse Hankel transform of the closed form solutions obtained in the spectral domain with suitable variables derived from displacements and stress vectors to obtain the decoupling between P–SV and SH waves. Transmission and reflection operators are introduced to avoid the problem of overflowing exponentials met with in Thomson–Haskell matrices. Applications are given in the soil–structure interaction field to compute the impedances of surface and embedded circular foundations resting on a viscoelastic halfspace.  相似文献   

5.
A study on the dynamic response of three-dimensional flexible foundations of arbitrary shape, embedded in a homogenous, isotropic and linear elastic half-space is presented. Both massive and massless foundations are considered. The soil-foundation system is subjected to externally applied forces, and/or to obliquely incident seismic waves. The numerical method employed is a combination of the frequency domain Boundary Element Method, which is used to simulate the elastic soil medium, and the Finite Element Method, on the basis of which the stiffness matrix of the foundation is obtained. The foundation and soil media are combined by enforcing compatibility and equilibrium conditions at their common interface. Both relaxed and completely bonded boundary conditions are considered. The accuracy of the proposed methodology is partially verified through comparison studies with results reported in the literature for rigid embedded foundations.  相似文献   

6.
The vertical and rocking response of rigid rectangular foundations resting on a linear-elastic, compressible, non-homogeneous half-space soil model is studied. The non-homogeneity is described by a continuous yet bounded increase of shear modulus with depth. The mixed boundary value problem is solved by means of the semi-analytical method of the subdivision of the foundation/soil contact area whereby the influence functions for the sub-regions are determined by integration of the corresponding surface-to-surface Green's functions for the particular soil model. Impedance functions are given for representative values of the non-homogeneity parameters, the Poisson's ratio and the foundation geometry over a wide range of frequencies. Significant features associated with the soil non-homogeneity are pointed out. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

7.
对于均质弹性半空间上的任意形状的刚性明置和埋置基础,其动刚度和阻尼系数的确定,已有很多这方面的研究。通常基础的任意形状用其外包的规则几何形状代替原有的不规则基础形状,以达到确定动刚度和阻尼系数的目的,而且这两个参数的确定仅仅是对单独刚性基础的,无法考虑相邻基础对其产生的影响。针对上述两方面不完善之处作了进一步探讨,引入相邻基础动力相互作用因子的概念,并利用地基为平面应变假定以求之。推荐的方法经验证,非常准确。  相似文献   

8.
The dynamic behaviour of a system of three-dimensional, massless, rigid, surface foundations of arbitrary shape perfectly bonded to the elastic half-space is numerically studied with the frequency domain boundary element method. This method employs the dynamic Green's function for the surface of the half-space and this results in a discretization of only the soil-foundation interfaces. In addition, use of isoparametric quadratic quadrilateral boundary elements increases the accuracy of the method, which is confirmed by comparison with other known numerical solutions. Externally applied loads, harmonically varying with time, are considered. The through the soil coupling effect between the foundations as a function of distance and frequency is assessed through extensive parametric studies involving two and four rigid foundations being isolated or interconnected. It is found that the assertion of ATC-3 regulations that omission of coupling effects leads to conservative results is not always correct for all frequencies.  相似文献   

9.
An alternate formulation of the ‘substructure deletion method’ suggested by Dasgupta in 19791 has been successfully implemented. The idea is to utilize simple Green's functions developed for a surface problem to replace the more complicated Green's functions required for embedded problems while still being able to generate an accurate solution. Since the exterior medium is usually represented by a continuum model, the interior medium in the present approach will also be represented by a continuum model rather than a finite element model as suggested originally, thereby eliminating the incompatibility between the solutions of the interior and exterior media. Detailed studies of the method's accuracy and limitations were performed using two-dimensional examples in wave scattering of canyons and alluvial valleys, problems which are more suitable for this method than the embedded foundation problem. The results obtained indicate that the alternate formulation gives accurate results only when the vertical dimension of the scattering object is not too large; if the aspect ratio (vertical over lateral) exceeds a certain limit, the results will not approach the known results given by boundary integral equation solutions or indirect boundary integral equations no matter what the refinement of the model may be. The greatest advantage of the present method is that the task of calculating Green's functions is reduced significantly; computational time using this new formulation is approximately five times less than for conventional boundary integral equation methods.  相似文献   

10.
A new experimental method using a finite soil model with no special treatement on its boundaries is employed for soil-structure intration problems to simulate the semi-infinitenesss of the actual soil medium. The present method utlizies the characteristics of transient response to an impluse load to obtain the impedance functions and effective input motions for surface and embedded foundations. This technique is applicable to a linear elastic system whose impulse response decreases to a small enough value before observing the reflected waves. The experimentally obtained impedance functions and effective input motions are compared with those obtained by the direct boundary integral equation method and the hybrid approach. Good agreement between the xperimental and analytical results validates the present method as well as the accuracy of the numerical tools.  相似文献   

11.
Scattering of elastic waves by a three‐dimensional transversely isotropic basin of arbitrary shape embedded in a half‐space is considered using an indirect boundary integral equation approach. The unknown scattered waves are expressed in terms of point sources distributed on the so‐called auxiliary surfaces. The sources are expressed in terms of the full‐space Green's functions with their intensities determined from the requirement that the boundary and the continuity conditions are to be satisfied in the least‐squares sense. Steady‐state results were obtained for incident plane pseudo‐P‐, SH‐, SV‐, and Rayleigh waves. Using the Radon transform the Green's functions are obtained in the form of finite integrals over a unit sphere or a unit circle which can be numerically evaluated very efficiently. Detailed analysis of the method includes the discussion on the shape of the auxiliary surfaces and the distribution of the collocation points and sources. The convergence criteria is defined in terms of transparency tests, isotropic limit test, and minimization of a certain norm. The isotropic limit tests show excellent agreement with the isotropic results available in literature. For anisotropic materials the numerical results are given for a semispherical basin. The results show that presence of an anisotropic basin may result in significant amplification of surface motion atop the basin. While the amplitude of peak surface motion may be similar to the corresponding isotropic results, the difference in the displacement patterns may be quite different between the two. Therefore, this study clearly demonstrates that material anisotropy may be very important for accurate assessment of surface ground motion amplification atop basins. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
Dynamic response of deeply embedded structures, such as underground tunnels and deep foundations, in a multilayered elastic half-space are analysed when the structure is excited by a plane P or SV wave propagating at some angle. The scattered field is represented by the sum of three Green's functions, corresponding to two oscillating forces and one oscillating moment at the centroid position of the buried structure. The amplitudes of these two forces and one moment are a priori unknown and are obtained by satisfying displacement and stress continuity conditions across the near-field/far-field boundary. The distinguishing feature of this technique from direct or indirect boundary integral techniques is that in these techniques a distribution of sources of unknown amplitude are considered at the near-field/far-field boundary, and a large number of sources are needed for different combinations of source-receiver arrangements. But in this technique the sources of unknown amplitude are placed at the location of the structure, not at the near-field/far-field boundary and, using the Saint Venant's principle, the scattered field is modelled. Thus, the number of sources required is reduced to only three. Two example problems are solved. The first one is for a deeply embedded footing in a three-layer soil mass and the second one is for a rectangular tunnel in a two-layer soil mass.  相似文献   

13.
A numerical scheme is developed in the paper for calculating torsional, vertical, horizontal, coupling and rocking impedances in frequency domain for axial-symmetric foundations embedded in layered media. In the scheme, the whole soil domain is divided into interior and exterior domains. For the exterior domain, the analytic solutions with unknown coefficients are obtained by solving three-dimensional (3D) wave equations in cylindrical coordinates satisfying homogeneous boundary conditions. For the interior domain, the analytical solutions are also obtained by solving the same 3D wave equations satisfying the homogeneous boundary conditions and the prescribed boundary conditions. The prescribed conditions are the interaction tractions at the interfaces between embedded foundation and surrounding soil. The interaction tractions are assumed to be piecewise linear. The piecewise linear tractions at the bottom surface of foundation will be decomposed into a series of Bessel functions which can be easily fitted into the general solutions of wave equations in cylindrical coordinates. After all the analytic solutions with unknown coefficients for both interior and exterior domains are found, the variational principle is employed using the continuity conditions (both displacements and stresses) at the interfaces between interior and exterior domains, interior domain and foundation, and exterior domain and foundation to find impedance functions.  相似文献   

14.
A semi-analytical model for the evaluation of dynamic impedance of rigid surface footing bonded to multi-layered subsoil is proposed. The technique is based on the dual vector form of wave motion equation and Green's influence function of subdisk for horizontally layered half-space. The multi-layered half-space is divided into a quite large number of mini-layers and the precise integration method (PIM) is introduced for the numerical implementation. The PIM is highly accurate for solving sets of first-order ordinary differential equations with specified two-end boundary conditions. It can produce numerical results of Green's influence functions up to the precision of computer used. The dual vector form of wave motion equation makes the combination of two adjacent mini-layers/layers very easy. As a result, the computational effort for the evaluation of Green's influence function of the multi-layered half-space is reduced to a great extent. In order to satisfy the mixed boundary condition at the surface, the footing–soil interface is discretized into a number of uniformly spaced subdisk-elements. Comparisons illustrating the efficiency and accuracy of the proposed approach are made with a number of solutions available in the literature.  相似文献   

15.
An approximate numerical procedure for calculation of the harmonic force-displacement relationships for a rigid foundation of arbitrary shape placed on an elastic half-space is presented. This procedure is used to evaluate the vertical, rocking and horizontal compliance functions for rigid rectangular foundations and the vertical compliance for a rigid square foundation with an internal hole. Several comparisons between the results obtained by the proposed approach and other methods are also presented.  相似文献   

16.
Scattering of elastic waves by an orthotropic basin of arbitrary shape embedded in a half-space is investigated for the sagittal plane motion using an indirect boundary integral equation approach. Steady-state results were obtained for incident plane harmonic pseudo P-, S-, and Rayleigh waves. Detailed convergence analysis of the method is presented. Green's functions are evaluated by using adaptive Newton–Cotes or Filon quadratures. Surface ground motion is presented for semicircular and semielliptical basins with different material properties and various angles of incidence. The results show that surface motion strongly depends upon nature of incident wave, geometry and material properties of the basin, and location of the observation point. Comparison with isotropic basin response demonstrates that anisotropy is very important in amplification of surface ground motion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
An integral equation technique to calculate the dynamic response of foundations embedded in a layered viscoelastic half-space when subjected to external forces and moments is presented. The technique is based on representing the radiated field as resulting from a set of sources distributed over a surface internal to the actual boundary of the foundation and by imposing the boundary conditions in an integral sense. The resulting non-singular integral equation with symmetric kernel is solved by discretization and reduction to a system of linear algebraic equations. The technique is validated by comparison with previous results for cylindrical foundations with different embedment ratios.  相似文献   

18.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
An integral equation technique to determine the response of foundations embedded in a layered viscoelastic half-space when subjected to various types of seismic waves is presented. The technique is validated by comparison with previous results for rigid hemispherical and cylindrical foundations embedded in a uniform half-space. Illustrative results for rigid cylindrical foundations embedded in layered media are also presented.  相似文献   

20.
Apart from some special cases, calculating the dynamic stiffness matrix of foundations on a layered half-space, especially for embedded foundations, is computationally expensive. An efficient method for two-dimensional foundations in a horizontally layered soil media is presented in this paper. This method is based on indirect boundary element methods and uses discrete wave number solution methods for calculating Green's functions for displacements and analytical methods for the integrations over the boundary. For surface foundations, the present method applies at all frequencies. For embedded foundations or for constructing energy transmitting boundaries, because the free-field part is modelled by boundary elements and the excavated part is modelled by finite elements, the present method applies only at low frequencies for the spring coefficients (the real parts of the dynamic stiffness matrix) but applies at all frequencies for the damping coefficients (the imaginary part of the dynamic stiffness matrix) for undamped sites. The novelty of the method can be used for three-dimensional foundations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号