首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Traditional reliability-based design methodologies often involve selection of design which is of lowest cost and satisfies safety requirements. But, this design is sensitive to variation in statistics of input parameters (noise parameters) and might become unsatisfactory if an underestimation of coefficient of variation of input parameters is made. A relatively new design methodology known as robust geotechnical design (RGD) is applied for the case of reinforcement of rock slope using end-anchored rock bolts. This ensures selection of a cost-effective and safe design for which probability of failure (Pf) of reinforced rock slope is least sensitive to the noise parameters. Reliability-based RGD approach involves evaluation of Pf for each design with different possible noise parameters. Finding Pf for the complex geotechnical structure is computationally expensive, and thus an augmented radial basis function-based response surface is used as a surrogate to the finite element model of rock slope. This response surface, being very efficient, also performs well for a range of values of noise parameters. Later, minimum distance algorithm is applied to obtain a cost-effective and robust design. Finally, a comparison is made in the costs between two robust designs obtained for different target probability of failure for the same rock slope.  相似文献   

2.
This paper presents an update for the robust geotechnical design (RGD) methodology, which seeks an optimal design with respect to design robustness and cost efficiency, while satisfying the safety requirements. In general, the design robustness is achieved if the system response is insensitive to the variation in the uncertain input parameters (called “noise factors”). In other words, a design is considered robust if the system response exhibits little variation, even though there is high variation in the input parameters. Robust design achieves this desirable outcome by carefully adjusting ‘design parameters’ (i.e., the parameters that can be controlled by the designer, such as the geometry and dimensions) without reducing the uncertainty in the noise factors. In this paper, the existing RGD methodology is updated with a gradient-based robustness measure and a simplified procedure for seeking the knee point. The RGD methodology and its simplified version (with new updates) are illustrated with three design examples. The results presented in this paper show that the RGD methodology and its simplified version are effective design tools that considers safety, cost and design robustness simultaneously. The advantages of the simplified RGD approach are discussed.  相似文献   

3.
This paper presents a new geotechnical design concept, called robust geotechnical design (RGD). The new design methodology seeks to achieve a certain level of design robustness, in addition to meeting safety and cost requirements. Here, a design is considered robust if the variation in the system response is insensitive to the variation of noise factors such as uncertain soil parameters and construction quality. When multiple objectives are considered, a single best design may not exist, and a trade-off may be necessary. In such a case, a genetic algorithm is adopted for multi-objective optimization and a Pareto Front, which describes a trade-off relationship between cost and robustness at a given safety level, is established. The new design methodology is illustrated with an example of spread foundation design. The significance of the RGD methodology is demonstrated.  相似文献   

4.
This paper presents a fuzzy set-based robust geotechnical design (RGD) methodology for the design of shield-driven tunnels. Here, uncertain geotechnical parameters required for analysis of tunnel performance (referred to herein as the structure safety and serviceability performance of tunnel cross section) are represented as fuzzy sets. Given fuzzy input parameters, the performance of a shield-driven tunnel will be uncertain, which is expressed in this study as a fuzzy factor of safety, according to the analysis of vertex method. Then, the fuzzy factor of safety for a given design is used to evaluate the failure probability and design robustness, which are, in turn, employed in the proposed RGD framework. Note that a design is considered robust if the performance of the shield-driven tunnel is insensitive to the variation of its uncertain geotechnical parameters. Within the RGD framework, each candidate design in the design space is analyzed for its safety state (in terms of failure probability), design robustness, and cost. The goal of the RGD of a shield-driven tunnel is to bring the safety state to an acceptable level, while maximizing the robustness and cost efficiency simultaneously. To this end, a multi-objective optimization is performed and a Pareto front is obtained, which provides a trade-off that may be used to select the most preferred design. Through an illustrative case, the effectiveness and significance of this new robust design methodology is demonstrated.  相似文献   

5.
赵密  张少华  钟紫蓝  侯本伟  杜修力 《岩土力学》2019,40(11):4506-4514
岩土工程随机参数统计特征的不确定性,使得岩土工程可靠度设计存在一定风险。岩土工程稳健性设计能够充分考虑随机参数的不确定性结合结构安全性、稳健性和经济性实现最优设计。针对随机参数统计特征的不确定性对柱下独立基础设计的影响,基于可靠度理论和岩土工程稳健性设计方法,考虑岩土参数、混凝土和钢筋材料力学参数统计特征不确定性的影响,以独立基础几何尺寸作为可控设计参数进行设计分析。将独立基础地基承载力、地基变形、基础结构冲切破坏和基础弯曲破坏4种失效模式视为串联系统,进行多失效模式下的结构体系稳健性设计,分析了多失效模式下结构几何参数与结构体系可靠度的关系。结合稳健性和经济性,进行了独立基础多目标优化设计,确定柱下独立基础设计的最优解。  相似文献   

6.
This paper provides a simplified procedure for reliability-based robust geotechnical design (RGD) using spreadsheet. In the RGD methodology, design robustness is achieved by adjusting “design parameters” without reducing the uncertainties in noise factors. This design approach generally involves a multi-objective optimisation, which is computationally challenging. To improve the efficiency of the RGD methodology, the design robustness is evaluated in terms of sensitivity index and the safety requirement is evaluated using mean value first order second moment (MFOSM). To ease the concern that the reliability index obtained with MFOSM may not be sufficiently accurate, a mapping function that relates MFOSM to a more accurate method such as first order reliability method is introduced. To further improve the efficiency of the proposed simplified RGD method, a new simplified procedure along with a more accurate robustness measure is developed that eliminates the need for multi-objective optimisation. With these modifications, the proposed simplified RGD method can efficiently be implemented in a single Excel spreadsheet. The proposed simplified method, which goes beyond any existing reliability-based RGD methods in terms of ease of use and computational efficiency, is illustrated in this paper with an example of robust design of drilled shaft in clay.  相似文献   

7.
Reliability-based design (RBD) can play a useful complementary role to overcome some limitations in the Eurocode 7 (EC7) design approach, for example in situations with parameters not covered in EC7, different parametric sensitivities across different problems, cross-correlated or spatially correlated parameters, design aiming at a target reliability or failure probability, or when uncertainty in unit weight of soil is modeled. The complementary role played by RBD under these circumstances is illustrated and discussed for a shallow foundation, a reinforced rock slope, a Norwegian clay slope with spatial variability, a laterally loaded pile requiring implicit numerical analysis, and an anchored sheet pile wall. A pragmatic RBD approach involving first-order reliability method (FORM) only and a more rigorous RBD approach involving both first-order and second-order reliability method (SORM) are offered. Both approaches are implementable using either spreadsheet-based FORM and SORM procedures, or using various commercially available FORM/SORM packages.  相似文献   

8.
Field observed performance of slopes can be used to back calculate input parameters of soil properties and evaluate uncertainty of a slope stability analysis model. In this paper, a new probabilistic method is proposed for back analysis of slope failure. The proposed back analysis method is formulated based on Bayes’ theorem and solved using the Markov chain Monte Carlo simulation method with a Metropolis–Hasting algorithm. The method is very flexible as any type of prior distribution can be used. The method is also computationally efficient when a response surface method is employed to approximate the slope stability model. An illustrative example of back analysis of a hypothetical slope failure is presented. Effects of jumping distribution functions and number of samples on the efficiency of Markov chains are studied. It is found that the covariance matrix of the jumping function can be set to be one half of the covariance of the prior distribution to achieve a reasonable acceptance rate and that 80,000 samples seem to be sufficient to obtain robust posterior statistics for the example. It is also found that the correlation of cohesion and friction angle of soil does not affect the posterior statistics and the remediation design of the slope significantly, while the type of the prior distribution seems to have much influence on the remediation design.  相似文献   

9.
为了进一步了解我国北方新生代玄武岩地下水的赋存规律和形成演化机理,以河北省张北县玄武岩地下水为研究对象,在野外采集地下水样、测定水化学和同位素组成的基础上,利用统计分析、离子比例系数、氢氧同位素、反向地球化学模拟等方法,对区内玄武岩地下水的水化学形成机制进行了研究。结果表明:沿地下水径流方向,研究区内玄武岩地下水中多数离子质量浓度呈现增大趋势,补给区的地下水化学类型以HCO3Ca·Mg为主,TDS质量浓度多小于500 mg/L,排泄区地下水中阴离子以Cl-和SO2-4为主,阳离子以Na+为主,TDS质量浓度多大于1 400 mg/L;研究区地下水补给来源为当地大气降水;硅铝酸盐、岩盐、硫酸盐的风化溶解是地下水中离子的主要来源;溶滤作用、阳离子交替吸附作用和农业施肥等人类活动影响是控制地下水化学形成的主要作用。  相似文献   

10.
张颖 《吉林地质》2011,30(4):99-102
传统上常以安全系数作为边坡稳定性的评价指标,但是安全系数只是由一种确定的方法计算所得的一个定值,没有考虑设计参数的变异性,因此安全系数很难表征边坡的安全程度,为此本文引入了可靠度的概念,并运用基于概率论和数理统计学的蒙特卡洛法(Monte Carlo)和Rosenblueth法进行边坡可靠性分析,有效的弥补了边坡传统评...  相似文献   

11.
边坡稳定性一直是边坡安全的重点研究对象,针对边坡评价中常见的不确定性因素,可靠度分析是值得利用的方法。为评价某节理发育的岩质岸坡稳定性,通过有限元计算软件,结合现场勘探测绘数据,建立以边坡节理强度参数c、φ为输入变量,安全系数为输出变量的点估计(PEM)计算概率模型,计算结果表明:节理发育对该边坡变形具有明显控制作用;边坡整体可靠性较好,破坏概率极低。最后,通过蒙托卡罗法对可靠度结果进行验证,结果表明两种方法的计算结果不存在显著性差异。研究结果表明节理对岩质边坡稳定具有良好的敏感性,基于节理不确定性的点估计法分析边坡可靠度是一种有效的方法。  相似文献   

12.
Although fuzzy analysis has been widely developed, its use in rock mechanics and rock engineering is limited. Here, it has been used to evaluate the potential for underground rock spalling at the boundary of a circular excavation in terms of rock strength and in situ rock stress, given the uncertainty in both of these input parameters. Using standard techniques from fuzzy mathematics, we develop an expression for the fuzzy factor of safety, and extend this to form the crisp parameters Safety Certainty Value and its complement, the Failure Certainty Value. Plots of the Failure Certainty Value in terms of the in situ stress ratio and rock strength/stress ratio show the effect of uncertainty on the assessment of stability. From these plots, we illustrate how the relative importance of uncertainty in the input parameters can be assessed, with the associated ramifications for site investigation and subsequent engineering design.  相似文献   

13.
A methodology is developed for probabilistic rock slope stability assessment using numerical modelling that incorporates statistical analysis of the variability of joint set geometric parameters. Each probabilistic input parameter is substituted by its two point estimates. Half-factorial and central composite designs are implemented to obtain a minimum number of representative slope realizations to model. The output from the numerical models is used to construct mathematical prediction models or response surfaces. A response surface can be used to predict the factor of safety of arbitrary realizations without further numerical modelling and can be used to determine the probability of slope failure.  相似文献   

14.
The stability of the slope around a flood discharge tunnel is influenced by the space topography, the geological structure, the seepage of the flood discharge tunnel, the rainfall and so on, which introduce complexity and uncertainty to the problem of slope engineering. For slope stability analysis at the outlet of a flood discharge tunnel affected by high interior hydraulic pressure, the inner water exosmosis (IWE) phenomenon will become obvious, the rock’s mechanical properties will be changed, and the seepage effects of the flood discharge tunnel should be focused on. In this paper, a complicated three-dimensional (3D) numerical simulation and safety assessment of the slope around the flood discharge tunnel at Yangqu hydropower station is implemented in FLAC3D, and 3D slide arcs of good shape are obtained. When calculating the safety coefficient of slopes, the Shear Strength Reduction Technique (SSRT) is adopted, and a factor of safety (FOS) is then found. It is found that the FOS of the natural slope is 1.43 in its original condition, and in this case, the slope is in a stable state. The safety factor of the slope is 1.30 after the slope excavation without considering IWE. Under the condition of normal seepage from inside the tunnel to the outside, the safety factor is 1.29. For investigating the influence of IWE on the slope stability, we design three types of scenarios – minimal seepage, normal seepage and serious seepage – for the fluid–solid coupling calculation. Under the serious seepage condition, the safety factor of the slope is 1.26, and it is in a critical failure state. It should be pointed out that uncertainties in input parameters are not researched in this paper. There is not big difference among safety factors under different scenarios mainly because the maximum of inner water head of the flood discharge tunnel is only about 80 m. It still can be found that seepage action has an effect on the stability of the whole slope from calculation results. The stress concentrated region (SCR) near the surrounding rock grows from inside to outside as the seepage intensity increases. The surrounding rock will experience more water pressure and seepage pressure, and, at the same time, the area of the plastic zone grows. Suitable treatments and suggestions are discussed to eliminate the adverse effects of IWE. The research results in this paper can provide a reference for construction, reinforcement and drainage design of the slope in similar hydropower slope engineering scenarios.  相似文献   

15.
《地学前缘(英文版)》2018,9(6):1639-1648
Cohesion(c) and friction angle(φ) of rock are important parameters required for reliability analysis of rock slope stability. There is correlation between c and φ which affects results of reliability analysis of rock slope stability. However, the characterization of joint probability distribution of c and φ through which their correlation can be estimated requires a large amount of rock property data, which are often not available for most rock engineering projects. As a result, the correlation between c and φ is often ignored or simply assumed during reliability studies, which may lead to bias estimation of failure probability. In probabilistic rock slope stability analysis, the influence of ignoring or simply assuming the correlation of the rock strength parameters(i.e., c and φ) on the reliability of rock slopes has not been fully investigated. In this study, a Bayesian approach is developed to characterize the correlation between c and φ, and an expanded reliability-based design(RBD) approach is developed to assess the influence of correlation between c and φ on reliability of a rock slope. The Bayesian approach characterizes the sitespecific joint probability distribution of c and φ, and quantifies the correlation between c and φ using available limited data pairs of c and φ from a rock project. The expanded RBD approach uses the joint probability distribution of c and φ obtained through the Bayesian approach as inputs, to determine the reliability of a rock slope. The approach gives insight into the propagation of the correlation between c and φ through their joint probability into the reliability analysis, and their influence on the calculated reliability of the rock slope. The approaches may be applied in practice with little additional effort from a conventional analysis. The proposed approaches are illustrated using real c and φ data pairs obtained from laboratory tests of fractured rock at Forsmark, Sweden.  相似文献   

16.
A new approach to identify the texture based on image processing of thin sections of different basalt rock samples is proposed here. This methodology uses RGB or grayscale image of thin section of rock sample as an input and extracts 27 numerical parameters. A multilayer perceptron neural network takes as input these parameters and provides, as output, the estimated class of texture of rock. For this purpose, we have use 300 different thin sections and extract 27 parameters from each one to train the neural network, which identifies the texture of input image according to previously defined classification. To test the methodology, 90 images (30 in each section) from different thin sections of different areas are used. This methodology has shown 92.22% accuracy to automatically identify the textures of basaltic rock using digitized image of thin sections of 140 rock samples. Therefore, present technique is further promising in geosciences and can be used to identify the texture of rock fast and accurate.  相似文献   

17.
ABSTRACT

The economical and safe design of footings supported on aggregate-pier-reinforced clay could benefit from the implementation of a reliability-based approach that incorporates the different sources of uncertainty. Monte Carlo simulations are conducted to quantify the probability distribution of the ultimate bearing capacity for practical design scenarios. A reliability analysis is then conducted to propose design charts that yield the required factor of safety as a function of the major input parameters. The novelty in the proposed methodology is the incorporation of a lower bound shear strength that is based on the remoulded undrained shear strength in the reliability analysis.  相似文献   

18.
19.
在岩质边坡的稳定性计算分析中,各向异性岩体抗剪强度参数的合理取值直接决定了分析成果的可靠性。为充分考虑岩体各向异性对边坡工程的影响,本文基于H-B强度准则,利用边坡岩体质量分类体系CSMR替代RMR,对参数mb、s进行修正,并由此进一步计算得到各向异性边坡岩体的等效M-C强度参数。通过工程实例,计算比较了金沙江某水电站导流洞出口边坡在相同基岩条件、不同开挖设计方案下强度参数修正前后的边坡稳定安全系数。研究结果表明,岩体各向异性对边坡稳定性影响较大,未考虑岩体各向异性的岩体参数用于边坡稳定性计算时不能准确反映边坡的实际稳定性状态;而经过各向异性修正后,导流洞出口边坡两种设计方案下的整体稳定安全系数计算结果分别为1.11和1.70,与工程地质定性、半定量评价结果基本相符。通过本文提出的方法对边坡各向异性岩体参数进行修正,并在此基础上对边坡整体稳定性进行计算分析是可行的。  相似文献   

20.
A data set was derived for the Åknes rock slope, Norway, with the main focus on deriving input parameters for the Barton–Bandis shear strength criterion. Back-calculations of a 100,000 m3 rock slide were performed for evaluation of the data set. The limit equilibrium analysis showed that the joint roughness coefficient (JRC) has the greatest effect on the calculated safety factor of the slide. Probabilistic computations showed that the JRC stands out as the most important contributor to the total uncertainty over the whole set of variables and that the computed failure probability of the 1960 slide was very high, which may be interpreted that the input variables and the Barton–Bandis shear strength criterion are reasonable for the slide. JRC was measured on 0.25 m scale and on 1 m scale. The results from the two scales were different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号