首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is essential to determine the shear strength parameters c and φ on the sliding surface for stability evaluation and engineering design of a landslide. In this study, a new parameter back analysis method is proposed by combining the 2D/3D upper bound method of limit analysis and reliability theory to accurately determine the shear strength parameters for a 3D slope with a single failure surface. The proposed reliability back analysis method overcomes the shortcomings of the traditional deterministic analysis method of slope stability that cannot take into account the randomness and uncertainty of geotechnical parameters. Based on the reliability theory, two methods were studied: first-order reliability method (implemented by spreadsheet and Matlab, called spreadsheet method and constrained optimization method, respectively, in this paper) and Monte Carlo simulation. The optimized values of c and φ were obtained by establishing only one balance equation with the consideration of the pore water pressure or other complex conditions, which can solve the problem of the back analysis of strength parameters for a single 3D sliding surface condition. The correlation research showed that the negative correlation between c and φ greatly affected the back analysis results, and the reliability index values were conservative without considering such a negative correlation. A case study for the back analysis of shear strength parameters is conducted based on a practical landslide model with a broken line slip surface slope in Zhuquedong village, Luxi town, Xiangxi County, Hunan Province, China, and a suggestion for the selection of landslide cross section is presented. The results show that the back analysis results determined by the reliability theory coincide well with the survey and experimental results. The proposed method is found to be more accurate and effective in determining the values of shear parameters than that of the traditional deterministic inversion method.  相似文献   

2.
The present study deals with the reliability analysis of basal heave caused by excavation considering uncertainty in the soil properties. The case study considered in the present work has been analyzed deterministically by Hsieh et al. (Can Geotech J 45:788–799, 2008). Taiwan building code is adopted in the method for analyzing the basal heave failure. The random variables (undrained shear strength and total unit weight of clay) are assumed to be normally distributed and uncorrelated. A series of parametric studies have been conducted to calculate the reliability index on the basis of the matrix formulation for the second moment method by Hasofer and Lind (J Eng Mech ASCE 100(1):111–121, 1974) considering different coefficient of variation of undrained shear strength and total unit weight of clay layers. It has been found that for a particular value of coefficient of variation of total unit weight, the reliability index with respect to occurrence of basal heave failure decreases with increase in the coefficient of variation of undrained shear strength. Moreover, the reliability index also decreases when the coefficient of variation of total unit weight increases. It has also been found that the probability of basal heave failure is lower with respect to factor of safety equals to 1.2, as compared to factor of safety equals to 1.0. Sensitivity analysis shows that the undrained shear strength of the bottommost layer and total unit weight of the second layer are the most significant random variables affecting the reliability index. Guidelines are provided for reliability based design where, for ‘target’ reliability index of 2.5 and 3.0, the factor of safety can be chosen such that all the related uncertainties are taken into account, especially with regard to undrained shear strength of the bottommost layer and total unit weight of the second layer. Design guidelines have been provided for this purpose.  相似文献   

3.
水泥土支护体稳定的可靠度分析   总被引:1,自引:1,他引:0  
况龙川 《岩土力学》2000,21(1):45-48
以土层剪切强度指标为基本变量, 对水泥土支护体稳定性设计内容建立了可靠度分析方法, 依据上海软土地区 21 例地质资料, 利用一次二阶矩验算点法( JC 法)对有关的失效模式进行了可靠度指标的核算与分析, 探讨了基本变量的敏感性。  相似文献   

4.
A Methodology for Reliability-Based Design of Rock Slopes   总被引:10,自引:0,他引:10  
Summary A reliability-based methodology for the design of rock slopes, that can easily be implemented by the practicing engineers is proposed. The advanced first-order second-moment (AFOSM) method is adopted as the reliability assessment model and its application is illustrated for the case of plane failure. A model is developed within the framework of first-order second-moment approach to analyze the uncertainties underlying the in situ shear strength properties of rock discontinuities. Here, particular emphasis is given on the assessment of uncertainties related to the shear characteristics of clean, unfilled rock discontinuities under low normal stress levels. An extensive literature survey on the shear characteristics of discontinuities is carried out in order to collect data for the quantification of uncertainties. The data extracted from this literature survey are classified and reprocessed so that they can be utilized in the uncertainty analysis model. A user friendly software called ROCKREL is developed to carry out the numerical computations and to make the proposed design format more practical. Received April 16, 2001; accepted June 10, 2002; Published online November 19, 2002 Authors' address: Prof. Celal Karpuz, Middle East Technical University, Faculty of Engineering, Department of Mining Engineering, 06531 Ankara, Turkey; e-mail: karpuz @metu.edu.tr  相似文献   

5.
ABSTRACT

This paper describes the development of a partial factor design method on the bending strength of piles for the Japanese Specifications for Highway Bridges. First, uncertainties in mobilised bending moments and yield bending moments were evaluated by Monte Carlo simulations. Second, the reliability of piles designed by the previous specifications were evaluated on the basis of reliability analysis considering uncertainties in the mobilised bending moments, yield bending moments, and other factors. Finally, a partial factor design method utilising a survey subsurface investigation method and ground type was developed to reach target reliability levels determined by the Standards.  相似文献   

6.
The 2D random finite element method and the one-dimensional and 2D random limit equilibrium method are used to investigate the influence of spatial variability of soil strength parameters on the probability of failure of simple soil slopes with cohesive undrained shear strength. The combined influence of spatial variability of soil properties and cross-correlation between undrained soil strength and unit weight on the computed probability of failure is explored. The paper identifies conditions where numerical outcomes are similar and where they are not. The limitations of each analysis method are described and implications to analysis and design are identified.

Abbreviations: FEM: finite element method; LEM: limit equilibrium method; RFEM: random finite element method; RLEM: random limit equilibrium method  相似文献   

7.
ABSTRACT

Recent hurricanes between 2004 and 2008 in the Gulf of Mexico provide valuable new information about design model biases and uncertainties because multiple offshore platforms were loaded beyond the predicted capacity of their pile systems and because there was a failure of a pile system. A Bayesian calibration of model bias factors based on predicted versus observed performance of pile systems in hurricanes indicates that the conventional American Petroleum Institute design method for pile capacity is slightly conservative by about 10% for base shear (i.e. lateral) failures of pile systems in clay, unbiased for overturning (i.e. axial) failures of pile systems in clay, and conservative by more than 50% for overturning failures of piles systems in sand. The epistemic uncertainty in the updated bias factors is represented by coefficient of variation values of about 0.25 for base shear and overturning failures of pile systems in clay and 0.35 for overturning failures of pile systems in sand. A reliability assessment with the calibrated model bias factors shows that the current design practice produces lower reliability for a pile system with three piles versus one with eight piles and lower reliability for a pile system failing in overturning versus one failing in base shear. Therefore, the current design practice could potentially be improved by taking into account the mode of failure and the redundancy in the pile system to provide for a more uniform level of reliability.  相似文献   

8.
Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (k s) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of k s, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (t), and the shape of β–t curves for different slope model is quite different for they depend on the value of k s. When k s is very small, β keeps decreasing for all the 18 simulation days. With the increase of k s, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.  相似文献   

9.
Probabilistic slope stability analysis by a copula-based sampling method   总被引:2,自引:0,他引:2  
In probabilistic slope stability analysis, the influence of cross correlation of the soil strength parameters, cohesion and internal friction angle, on the reliability index has not been investigated fully. In this paper, an expedient technique is presented for probabilistic slope stability analysis that involves sampling a series of combinations of soil strength parameters through a copula as input to an existing conventional deterministic slope stability program. The approach organises the individual marginal probability density distributions of componential shear strength as a bivariate joint distribution by the copula function to characterise the dependence between shear strengths. The technique can be used to generate an arbitrarily large sample of soil strength parameters. Examples are provided to illustrate the use of the copula-based sampling method to estimate the reliability index of given slopes, and the computed results are compared with the first-order reliability method, considering the correlated random variables. A sensitivity study was conducted to assess the influence of correlational measurements on the reliability index. The approach is simple and can be applied in practice with little effort beyond what is necessary in a conventional analysis.  相似文献   

10.
The variance of the friction angle or friction coefficient (tan ?) is often considered in geotechnical reliability analyses, which implies that the variance of the shear strength as defined by a Mohr-Coulomb envelope increases as the normal stress on the shearing surface increases. However, shear strength data sometimes has approximately constant variance, and most simple regression techniques assume constant variance. Four effective stress shear strength data sets are evaluated using both the constant variance (homoscedastic) and constant coefficient of variation (heteroscedastic) interpretations. The impact of the variance interpretation on slope stability is evaluated using infinite slope, homogeneous dam, and zoned dam examples. For relatively shallow infinite slope surfaces, the reliability index for the heteroscedastic interpretation of shear strength variance was about twice the reliability index obtained using the homoscedastic approach. In the dam examples, the difference in the reliability indices resulting from the heteroscedastic and homoscedastic interpretations was about one, indicating a tenfold increase in the probability of failure. The typical assumption of constant coefficient of variation of shear strength may result in unconservative estimates of the reliability of shallow failure surfaces and overly conservative results for deeper failure surfaces.  相似文献   

11.
基于Bootstrap抽样技术提出了有限数据条件下边坡可靠度分析方法。简要介绍了传统的边坡可靠度分析方法。采用Bootstrap方法模拟了抗剪强度参数概率分布函数的统计不确定性。以无限边坡为例研究了抗剪强度分布参数和分布类型不确定性对边坡可靠度的影响规律。结果表明:基于有限数据估计的样本均值、样本标准差和AIC值具有较大的变异性,这种变异性进一步导致了抗剪强度参数概率分布函数存在明显的统计不确定性。在考虑抗剪强度参数概率分布函数的统计不确定性时,边坡可靠度指标应为具有一定置信度水平的置信区间,而不是传统可靠度分析中的固定值。边坡可靠度指标的置信区间变化范围随安全系数的增加而增大,同时考虑分布参数和分布类型不确定性计算的可靠度指标具有更大的变异性和更宽的置信区间变化范围。Bootstrap方法为有限数据条件下抗剪强度参数概率分布函数统计不确定性的模拟以及边坡可靠度的评估提供了一条有效的途径。  相似文献   

12.
ABSTRACT

A simplified reliability analysis method is proposed for efficient full probabilistic design of soil slopes in spatially variable soils. The soil slope is viewed as a series system comprised of numerous potential slip surfaces and the spatial variability of soil properties is modelled by the spatial averaging technique along potential slip surfaces. The proposed approach not only provides sufficiently accurate reliability estimates of slope stability, but also significantly improves the computational efficiency of soil slope design in comparison with simulation-based full probabilistic design. It is found that the spatial variability has considerable effects on the optimal slope design.  相似文献   

13.
O. Nasir  M. Fall   《Engineering Geology》2008,101(3-4):146-153
The shear stress–strain behaviour and shear strength parameters of the interface between cemented paste backfill (CPB) and rock are of practical importance in the optimal and safe design of CPB structures. An understanding of the shear behaviour and properties at this interface is also required to develop comprehensive interface models for CPB-rock analyses, interface design methods for the static and dynamic stability analysis of CPB structures, and building high performance CPB structures. In this study, direct shear tests were conducted to investigate the interface shear strength behaviour between CPB and rock. All tests were carried out in a standard direct shear test apparatus for a range of curing ages of 1 to 28 days for the CPB. The procedures of the laboratory tests will be described. Results will be presented for interface shear behaviour, including stress–strain curves, vertical deformation and shear strength parameters. The test results show that the shear strength parameters and behaviour of the CPB-rock interface are time-dependent and significantly influenced by the normal load.  相似文献   

14.
This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.  相似文献   

15.
ABSTRACT

In this study, over 1000 data from the literature was used to characterize and compare the density, strengths, modulus, fracture toughness, porosity and the ultimate shear strengths of the gypsum, limestone and sandstone rocks. The compressive modulus and Mode-1 fracture toughness of the gypsum rock, limestone rock and sandstone rocks varied from 0.7 GPa to 70 GPa, and from 0.03 MPa.m0.5 to 2.6 MPa.m0.5  respectively. Vipulanandan correlation model was effective in relating the modulus of elasticity, fracture toughness with the relevant strengths of the rocks. A new nonlinear Vipulanandan failure criterion was developed to quantify the tensile strength, pure shear (cohesion) strength and to predict the maximum shear strength limit with applied normal stress on the gypsum, limestone and sandstone rocks. The Vipulanandan failure model predicts the maximum shear strength limit was, as the Mohr-Coulomb failure model does not have a limit on the maximum shear strength. With the Vipulanandan failure model based on the available data, the maximum shear strengths predicted for the gypsum, limestone and sandstone rocks were 64 MPa, 114 MPa and 410 MPa respectively.  相似文献   

16.
ABSTRACT

The local site experience is a valuable component for the success of rock mass classification systems as tunnel design methods. The Ituango hydroelectric project is a very important source of information in order to evaluate the usefulness of the main rock mass classification systems. The objective of this research is to improve understanding of some important features of excavated rock mass, such as discontinuities, block size, shear strength and joint alteration, by analyzing some hundreds of data obtained during excavation cycle.

The field study included a survey of exposures after drilling and blasting rounds. Rock mass classification and support measures for each type of terrain along 1400 m tunnel were performed. The rock mass classes could be better explained if shear strength, alteration or block size is calculated. The assessment of these data allows evaluating the block fall risk, improving support and liner. A local correlation between the RMR and Q system was also obtained.  相似文献   

17.
ABSTRACT

In this study, uniaxial compression experiments with seven different bedding angles and six numbers of freeze–thaw cycles were conducted to investigate the influences of freeze–thaw cycles on the elastic parameters and the uniaxial compressive strength of slate. The laws of the elastic parameters, uniaxial compressive strength and failure characteristics were analysed, and a new uniaxial compressive strength prediction model that considers the bedding angle and the number of freeze–thaw cycles as control variables was established and verified using the experimental data. The results showed that the uniaxial compressive strength, elastic modulus and shear modulus decreased exponentially with an increasing number of freeze–thaw cycles. However, the Poisson’s ratio increased linearly with an increasing number of freeze–thaw cycles. The uniaxial compressive strength initially decreased and then increased with increasing bedding angle. There are three forms of failure occurred during the tests: when the bedding angle was 0°≤β ≤ 26.6°, the splitting failure and shear failure occurred at the same time; when the bedding angle was 26.6°≤β ≤ 83.0°, sliding failure occurred along the bedding plane; and when the bedding angle was 83.0°≤β ≤ 90°, splitting failure occurred along the axial direction of sample.  相似文献   

18.
Slopes are mainly naturally occurred deposits, so slope stability is highly affected by inherent uncertainty. In this paper, the influence of heterogeneity of undrained shear strength on the performance of a clay slope is investigated. A numerical procedure for a probabilistic slope stability analysis based on a Monte Carlo simulation that considers the spatial variability of the soil properties is presented to assess the influence of randomly distributed undrained shear strength and to compute reliability as a function of safety factor. In the proposed method, commercially available finite difference numerical code FLAC 5.0 is merged with random field theory. The results obtained in this study are useful to understand the effect of undrained shear strength variations in slope stability analysis under different slope conditions and material properties. Coefficient of variation and heterogeneity anisotropy of undrained shear strength were proven to have significant effect on the reliability of safety factor calculations. However, it is shown that anisotropy of the heterogeneity has a dual effect on reliability index depending on the level of safety factor adopted.  相似文献   

19.
ABSTRACT

This paper shows the development of a partial factor design method on the bearing capacity of pile foundations for Japanese Specifications for Highway Bridges. Firstly, estimation design equations on the bearing capacities of pile foundations are improved by analysis of pile load test results and uncertainties in the bearing capacities are evaluated. Secondly, the reliabilities of pile foundations designed by the former specifications are evaluated based on reliability analysis considering the uncertainties in the bearing capacities and coefficients of subgrade reaction. Finally, a partial factor design method is developed based on the target reliability index obtained based on the conventional pile installation method by the pile installation methods. The factors are different for each pile installation method.  相似文献   

20.
基于水-岩相互作用的泥岩库岸时变稳定性分析   总被引:2,自引:0,他引:2  
周世良  刘小强  尚明芳  李怡 《岩土力学》2012,33(7):1933-1939
为探寻云南省富宁港区泥岩库岸在水-岩相互作用下的稳定性演变规律,通过富宁港区一期工程现场采集泥岩试样,经过不同次数的干湿循环后,进行常规三轴压缩试验。将得到的岩石抗剪强度参数进行工程转换,经回归分析后构建泥岩岩体综合抗剪强度参数概率分布的时变模型。结合极限平衡法和可靠性理论,得到水-岩相互作用下泥岩库岸中值安全系数、可靠度及可靠安全系数的时变规律。分析结果表明,在水位反复升降作用下,综合二元指标的可靠安全系数能更合理地分析泥岩库岸稳定性;库岸整体稳定程度呈现出非线性衰变特点;库岸最危险滑动面表现为由内向外的渐进性破坏。以试验为基础,提出的泥岩库岸时变稳定性分析方法为研究水位周期性涨落下库岸的稳定性演变规律提供了一条有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号