首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper shows the development of a partial factor design method on the bearing capacity of pile foundations for Japanese Specifications for Highway Bridges. Firstly, estimation design equations on the bearing capacities of pile foundations are improved by analysis of pile load test results and uncertainties in the bearing capacities are evaluated. Secondly, the reliabilities of pile foundations designed by the former specifications are evaluated based on reliability analysis considering the uncertainties in the bearing capacities and coefficients of subgrade reaction. Finally, a partial factor design method is developed based on the target reliability index obtained based on the conventional pile installation method by the pile installation methods. The factors are different for each pile installation method.  相似文献   

2.
ABSTRACT

Recent hurricanes between 2004 and 2008 in the Gulf of Mexico provide valuable new information about design model biases and uncertainties because multiple offshore platforms were loaded beyond the predicted capacity of their pile systems and because there was a failure of a pile system. A Bayesian calibration of model bias factors based on predicted versus observed performance of pile systems in hurricanes indicates that the conventional American Petroleum Institute design method for pile capacity is slightly conservative by about 10% for base shear (i.e. lateral) failures of pile systems in clay, unbiased for overturning (i.e. axial) failures of pile systems in clay, and conservative by more than 50% for overturning failures of piles systems in sand. The epistemic uncertainty in the updated bias factors is represented by coefficient of variation values of about 0.25 for base shear and overturning failures of pile systems in clay and 0.35 for overturning failures of pile systems in sand. A reliability assessment with the calibrated model bias factors shows that the current design practice produces lower reliability for a pile system with three piles versus one with eight piles and lower reliability for a pile system failing in overturning versus one failing in base shear. Therefore, the current design practice could potentially be improved by taking into account the mode of failure and the redundancy in the pile system to provide for a more uniform level of reliability.  相似文献   

3.
ABSTRACT

This paper adds to the ongoing discussion on the role of reliability calculations in geotechnical design. It situates design calculations, be it verified by a global factor of safety, partial factors, or reliability-based design (RBD), in a larger context of quality management over the life cycle of the structure. It clarifies that uncertainties amenable to probabilistic treatment typically fall under the category of “known unknowns” where some measured data and/or past experience exist for limited site-specific data to be supplemented by both objective regional data and subjective judgement derived from comparable sites elsewhere. Within this category, reliability is very useful in handling complex real-world information (multivariate correlated data) and information imperfections (scarcity of information or incomplete information). It is also very useful in handling real-world design aspects such as spatial variability that cannot be easily treated using deterministic means. Examples are presented to illustrate how reliability calculations could relieve engineering judgement from the unsuitable task of performance verification in the presence of uncertainties so that the engineer can focus on setting up the right lines of scientific investigation, selecting the appropriate models and parameters for calculations, and verifying the reasonableness of the results.  相似文献   

4.
In designing piled raft foundations, controlling the total and differential settlements as well as the induced bending moments of the raft is crucial. The majority of piled raft foundations have been designed by placing piles uniformly. In such a design method, the settlements of the piled rafts are likely to be large, which leads to an increase of the pile length and/or number of piles required to reduce the settlements. However, this increase does not satisfy the requirement for economical design. On the basis of a parametric study, this paper contributes a framework for considering an economical design methodology in which piles are placed more densely beneath the column positions when the piled raft is subjected to column loads. The analysis uses PLAXIS 3D software, and the validity of the parametric study is examined through the results of centrifuge model tests conducted by the authors. The study shows that the concentrated pile arrangement method can help to considerably reduce the total and differential settlements as well as the induced bending moments of the raft. Moreover, the effects of parameters, such as pile length, pile number, raft thickness and load types, on the piled raft behavior are investigated. This study can help practicing engineers choose pile and raft parameters in combination with the concentrated pile arrangement method to produce an economical design.  相似文献   

5.
Long-term predictions of pile displacements, bending moments and soil reactions for laterally loaded piles in a hereditary elastic medium are presented. Asymptotic estimates on fractional exponential operators yield predictions for large time.  相似文献   

6.
以苏通长江大桥主墩特大型群桩基础为研究背景,考虑地震动的不确定性,将地震激励作为平稳随机过程,采用随机地震反应分析方法,对深厚场地上群桩基础受上部桥墩荷载下的地震反应进行研究。土体动力非线性性能采用等效线性化方法考虑。由于桥墩惯性作用以及软土土层对桩身位移的约束作用,地震激励下桩身位移呈三角形分布。土体位移与土体和基础间距离有关,桥墩-桩-土相互作用对基础两侧1.5倍基础宽度的土体位移有较大影响。桩体内力反应结果表明,桩顶及桩身上部剪力及弯矩均较大,边桩剪力显著大于中间桩剪力。此外,基于强度破坏准则,对以桩身屈服剪力作为控制指标的群桩基础动力可靠性进行了分析。  相似文献   

7.
8.
《Computers and Geotechnics》2006,33(6-7):355-370
A numerical method that takes into account the coupling between the rigidities of the piles, the cap, and the column has been developed for analyzing the response of pile group supported columns. Special attention is given to consideration of pile cap flexibility. A load transfer approach using tz/qz and py curves is used for the analysis of single piles. The finite element technique is used to combine the pile stiffness with the stiffness of the cap and column. The numerical method developed has been verified by comparing the results with other numerical methods for pile groups. Through comparative studies, it has been found that the maximum load on the individual piles in a group is highly influenced by pile cap flexibility. The prediction of the lateral loads and bending moments in the pile cap is much more conservative in the present analysis than in FBPier 3.0 and shows a definitely larger lateral load and bending moment for various cap thicknesses.  相似文献   

9.
采用室内试验和数值分析相互验证方法,对单排挤扩桩和悬臂直桩基坑支护的桩顶位移和受力特征进行了研究,进而对基坑双排挤扩桩支护特性进行了分析。试验结果表明,与悬臂直桩相比,挤扩桩支护桩顶位移小,挤扩桩支盘提供的抗倾覆力矩有效地改善了挤扩桩的工作性状;与单排挤扩桩相比,双排挤扩桩基坑支护结构刚度大,在桩身内力分配以及控制基坑变形等方面有较大优势,是深基坑工程中经济合理的支护形式。  相似文献   

10.
采用适用于敏感环境下基坑数值分析的硬化类弹塑性本构模型,针对锚杆对双排桩变形和受力的影响进行数值模拟。分析表明:锚固角度的增加能有效减小双排桩的最大水平位移和后排桩的桩身控制弯矩,但减小幅度随锚固角度增大而减小;在实际设计中,在周边环境允许的条件下,应尽可能增加锚杆与后排桩的夹角。锚固力的增加对双排桩结构的变形控制作用明显,能显著降低桩身最大水平位移,减小幅度也随锚固力的增加而减小;锚固力较大时会增大桩的控制弯矩,使桩的截面或配筋增加;在实际设计中,锚固力不应过大,可随信息化施工对基坑变形进行主动控制。  相似文献   

11.
In a recent study, the time-dependent increase in axial load resistance of steel H-piles driven into cohesive soils, due to setup, was systematically quantified using measured field data. A method to estimate the setup based on measurable soil properties was subsequently established. These studies highlighted that the uncertainties of the measurements of soil properties and thus the semi-empirical approach to estimate setup are significantly different from those of the methodology used for measuring the pile resistance during retaps at any time after the end of driving. Recognizing that the two sets of uncertainties should be addressed concurrently, this paper presents a procedure for determining the factored resistance of a pile with due consideration to setup in accordance with the load and resistance factor design that targets a specific reliability index. Using the first-order second-moment method, the suggested procedure not only provides a simplified approach to incorporate any form of setup in design, but it also produces comparable results to the computationally intensive first-order reliability method. Incorporating setup in design and construction control is further shown to reduce foundation costs and minimize retap requirements on piles, ultimately reducing the construction costs of pile foundations.  相似文献   

12.
Using pile foundations as heat exchangers with the ground provides an efficient and reliable energy source for the heating and cooling of buildings. However, thermal expansion or contraction of the concrete brings new challenges to the design of such structures. The present study investigates the impact of temperature variation on the mobilised bearing capacities of geothermal piles. The mechanisms driving the variations and redistribution of mobilised bearing forces along geothermal piles are identified using Thermo-Pile software. The EPFL and Lambeth College test piles are modelled and analysed as real-scale experiments. Three simple representative cases are used to investigate the impact of over-sizing geothermal piles on their serviceability. It is found that the mechanisms responsible for the variations and redistribution of mobilised bearing forces along the piles are unlikely to cause geotechnical failure, even if the ultimate bearing force of a pile is reached. Furthermore, over-sizing geothermal piles compared to conventional piles can have a negative impact on their serviceability.  相似文献   

13.
ABSTRACT

The economical and safe design of footings supported on aggregate-pier-reinforced clay could benefit from the implementation of a reliability-based approach that incorporates the different sources of uncertainty. Monte Carlo simulations are conducted to quantify the probability distribution of the ultimate bearing capacity for practical design scenarios. A reliability analysis is then conducted to propose design charts that yield the required factor of safety as a function of the major input parameters. The novelty in the proposed methodology is the incorporation of a lower bound shear strength that is based on the remoulded undrained shear strength in the reliability analysis.  相似文献   

14.
白皓  王武斌  廖知勇  刘宝  苏谦 《岩土力学》2015,36(Z2):221-228
对软岩陡坡椅式桩(CSP)支挡结构,通过大比例模型试验研究路基面分级荷载作用下其内力变形规律、结构-岩土体相互作用,根据试验条件和结构受力状态,提出了其设计计算方法。结果表明,椅式桩的空间结构特性可有效控制结构变形和减小桩身内力;主副桩桩身弯矩大小接近,最大弯矩位于坡面处,桩侧岩石压力主要跟桩基变形与岩石变形模量有关;椅式桩一般不会出现结构倾倒破坏,软岩边坡则以浅层破坏为主;基于弹性地基梁的分析解,可较好地描述椅式桩的内力变化及其分布规律。研究结果对正确分析椅式桩支挡结构的抗滑机制和设计计算具有较好的参考价值。  相似文献   

15.
Hu  Biao  Gong  Quanmei  Zhang  Yueqiang  Yin  Yihe  Chen  Wenjun 《Acta Geotechnica》2022,17(9):4191-4206

It is known that a lot of uncertainties are involved in geotechnical design of energy piles. In this paper, a Bayesian updating framework is presented to characterize those uncertainties. The load-transfer model is developed to predict the thermomechanical response of energy piles. Considering the cross-case variability of the uncertainty in the axial strains of pile, the global model bias is firstly calibrated by establishing a comprehensive database consisting of 12 energy pile cases. Furthermore, the uncertainty in input parameters is considered in the Bayesian updating of model bias in a specific case. The variability of the uncertain parameters is effectively reduced after updating. The coefficient of variation of prediction is decreased from 0.34 to 0.13. The present framework can well quantify uncertain factors and improve the accuracy and reliability of the prediction model.

  相似文献   

16.
陈建峰  杜长城  陈思贤  石振明  彭铭 《地球科学》2022,47(12):4362-4372
为了解抗滑桩—预应力锚索框架组合结构在地震作用下的受力机制,基于四川省东北部某滑坡治理工程,采用MIDAS/GTS有限元程序建立抗滑桩—预应力锚索框架数值模型,利用位移时程曲线法对加固边坡进行稳定安全系数计算,而后输入不同峰值地震加速度(peak ground accelerations,PGA)的Wolong地震波,分析了加固边坡的加速度响应、桩锚结构内力变化以及荷载分担规律.研究结果表明,加固边坡的稳定安全系数满足规范要求,在地震作用下其上部存在潜在浅层滑面,中部和下部存在潜在深层滑面,与静力条件下加固边坡的潜在滑面分布不同,这是加速度高程放大效应所致;随着输入地震波PGA增大,加速度高程放大效应明显加强,且抗滑桩桩身弯矩和剪力增大,但其最大值出现位置不变,桩身正、负弯矩最大值分别位于距桩顶约0.7L和0.4L处,最大正、负剪力分别位于距桩顶约0.9L和0.7L处,实际工程中需注意防范抗滑桩在滑面附近发生破坏;同时随着输入地震波PGA增大,桩锚承担的荷载逐渐增大,但抗滑桩分担的下滑力比例增大,而锚索分担的下滑力比例减小,故实际工程设计中不应固定桩锚荷载分担比例.   相似文献   

17.
ABSTRACT

Since piles are one of the major geotechnical foundation systems, estimation of their axial bearing capacity is of great importance. Employing different design methods, resulting in a wide range of bearing capacity estimations, complicates the selection of an appropriate design scheme and confirms the existence of model error along with the inherent soil variability in bearing capacity prediction. This paper tends to evaluate different predictive methods in Reliability-Based Design (RBD) framework. In this regard, different static analyses, SPT and CPT-based methods are considered to evaluate which approaches collectively and which method individually, have more reliable predictions for compiled data bank. In order to assess reliability indices and resistance factors, two approaches have been considered, i.e. First Order Second Moment method (FOSM) and First Order Reliability Method (FORM). To investigate the reliability indices for different methods in both RBD approaches, various safety factors and loading ratios have been considered. Also, the Load and Resistance Factor Design (LRFD) resistance factors are calibrated for different target reliability indices and loading ratios. Results show that CPT-based methods are more reliable among other methods. Furthermore, the estimated efficiency ratio, i.e. the ratio of resistance factor to resistance bias factor, confirms this agreement.  相似文献   

18.
赵文斌  罗文强  冯永 《岩土力学》2006,27(Z1):952-957
抗滑桩设计的常规方法是建立在定值基础上的,未能考虑计算参数的随机性与变异性,故在抗滑桩设计中存在局限性:一是不能给出抗滑桩设计的边坡安全度;二是设计中过分保守,造成浪费。可靠性分析法考虑了计算参数的随机性,用严格的概率来度量边坡的安全度,弥补了上述传统抗滑桩设计中存在的不足。基于可靠性分析法,以传统边坡稳定性计算公式为基础,建立了抗滑桩设计的边坡稳定性评价模型,并且运用蒙特卡罗法,采用单参数敏感性分析方法,分析抗滑桩设计各参数对边坡安全系数及可靠性指标的影响。结果表明,岩土体抗剪强度参数、岩土体重度、抗滑桩直径等因素对可靠性指标影响较明显,边坡安全系数对岩土体重度、抗滑桩有效长度、抗滑桩直径等随机变量较敏感。  相似文献   

19.
The py method is one of the most popular methods for the analysis and design of laterally loaded piles. The mathematical relationship it provides between the bending moment, which can be easily measured at strain gauges along the pile, and the soil resistance and lateral pile displacement, facilitates the construction of py curves. Numerical techniques are required to fit smooth continuous curves to the discrete bending moment data in order to improve the accuracy of subsequent differentiation and integration operations. Due to the lack of guidance on the optimum positioning of strain gauges and the reliability and accuracy of curve fitting methods, a unifying study, inclusive of small (0.61 m) and large (3.8 and 7.5 m) diameter piles in clay, was carried out using 18 strain gauge layouts and cubic spline, cubic to quintic B-spline and 3rd to 10th degree global polynomial techniques. Bending moment data was obtained using 3D finite element analysis. Through a comprehensive evaluation, the cubic and cubic B-spline methods were found to be consistently accurate in deriving py curves for both the small and large diameter piles.  相似文献   

20.
A simple numerical procedure for the solution of the non-linear differential equation is presented. Such an equation with the appropriate boundary conditions is often encountered in the analysis of piles subjected to lateral loads and bending moments. The method is suitable for application using a microcomputer of limited memory capacity and the extension of the procedure to cover the solution to the equation 4+f(u, y) = 0 which governs the mode of deformation of slab-on-grades is possible and straight-forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号