首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

2.
Himalaya is an active fold and thrust belt formed due to continent-continent collision between the Eurasian and Indian plates. It comprises a 3000 km long chain of mountains that span ∼1000 km across, with major boundary thrusts viz., Main Central Thrust (MCT), Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). MFT is marked as mountain front and is the most active thrust; however, evidence of tectonic activity along MCT and MBT also exists.Tectonic activity along MFT created uplifted terraces which now serve as geomorphic archives of past tectonic events. The present study focussed on a glacial-fed river Sankosh that originates in northern Bhutan, and crosses MCT, MBT and MFT before joining the Brahmaputra River in Assam. Due to tectonic uplift, the river shows a deflection at MFT, incising and thus forming four levels of strath terraces. Luminescence chronology, geomorphic studies and analysis of satellite images suggest four levels of terraces T4 (highest level, 195 m asl), T3, T2 and T1 (lowest level, 120 m asl).The quartz was found insensitive for luminescence dating, and thus fading corrected Infra-Red Stimulated Luminescence (IRSL) ages on feldspar minerals were measured that provided ages of 143-77 ka (T4), 65-36 ka (T2) and 35-14 ka (T1), respectively. The T3 terrace was present only on the right bank of the river and could not be accessed. These ages accord with other studies at the Chalsa and Malbazar, North Bengal (west of the study area) and this regional disposition of similar ages suggest that these formed during glacial-interglacial periods. The strath terraces indicate a time-averaged tectonic uplift with a 0.5 mm/year rate over the past 150 ka.  相似文献   

3.
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P. ; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B. P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also resnit in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions.  相似文献   

4.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

5.
河流阶地面是一种时间性、连续性非常高的层状地貌面,利用跨断层地区的河流阶地变形可以定量地判别一个地区的断层活动性。青衣江横跨龙门山断裂带南段是一条区域性大河,由于龙门山南段构造活动强烈且河流阶地被侵蚀程度严重,为了在室内更好、更快地解译青衣江河流阶地,使野外调查工作更具有针对性,本文在龙门山南段青衣江流域小关子至飞仙村一段,采用航测遥感技术制作的2m分辨率DEM和1/5万数字高程模型,基于Arc GIS和MATLAB平台进行了阶地面提取和聚类分析,以模拟野外测量阶地的流程,试图通过计算机提取,快速获取该地区更多的残余地貌面,建立起较为完整的河流阶地纵剖面。研究结果表明:野外测量数据与计算机自动提取结果相似度较高,具有较好的一致性;在完整的阶地剖面中发现了芦山盆地内部阶地具有疑似拱曲现象;在大川-双石断裂附近阶地有翘起现象,推测芦山盆地西缘阶地拱曲是由大川-双石断裂东侧的一条未知断层引起的,大川-双石断裂附近阶地的翘起现象可能是在断层逆冲推覆过程中形成的,同时结合区域年代历史数据,推测该地区(芦山盆地至大川-双石断裂)至少在晚更新世曾发生过构造活动。  相似文献   

6.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

7.
天山北麓活动背斜区河流阶地与古地震事件   总被引:2,自引:2,他引:2       下载免费PDF全文
利用航空遥感照片和Google earth卫星影像,对天山北麓独山子活动背斜区奎屯河两侧的河流地貌进行解释,结合野外调查发现,奎屯河流经独山子背斜段发育7级基座阶地,阶地基座为上新统独山子组泥岩,其上部为2.5 ~ 15m厚的砂砾石层和砂质黏土.在开挖或剥离的各级阶地堆积物剖面中采集细粒堆积物样品,实验室中采用细粒石英...  相似文献   

8.
Geostatistical topographic analysis is widely recognized as a useful tool for the statistical reconstruction of planar geomorphic markers from relict surfaces. This work is aimed at improving the geostatistical approach used in previous works and developing a method for evaluating the incision rates of rivers in their lower catchments during the Late Quaternary. We chose the major valleys of the Adriatic foothills (central Italy), affected since Late Miocene by a differential tectonic uplift which is still active. In particular, (i) we applied the geostatistical analysis to reconstruct the original top‐surfaces of fluvial‐to‐coastal terrace bodies at the Metauro River and Cesano River mouths; (ii) we performed correlations between the height distribution of the alluvial terrace sequences and the Quaternary climatic curve to estimate the average long‐term fluvial incision rates in the lowermost reaches of the Metauro, Cesano, Misa and Esino Rivers. The obtained averaged incision rates have been interpreted also in the light of the Stream‐Length Gradient Index (SL Index), Steepness Index (Ks), and Concavity Index (θ) as proxies of the stream‐power per unit length. Results confirm that geostatistical and terrain analysis of topographic and geometric arrangements of fluvial and coastal terraces is an effective tool in detecting geomorphic and tectonic factors inducing perturbations on planar geomorphic markers. In particular, we better delineated the surface geometry and boundaries of well‐developed coastal fans at the mouths of the Metauro and Cesano Rivers, already recognized in previous works through sedimentological, morphostratigraphic, and chronological data. Moreover, we found evidence for cut‐and‐fill phases that took place during and immediately after the river aggradation of the late Quaternary glacial periods. Despite the Slope–Area analysis evidenced a widespread influence of the regional differential uplift on single river basin configuration, we observed some space and time variability of averaged incision rates for adjacent valleys, mainly explained by physiographic configuration and dynamics of drainage network. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The variability of Quaternary landforms preserved in the Tabernas basin of southeast (SE) Spain raises numerous questions concerning the roles of external forcing mechanisms (e.g. tectonics and/or climate) and internal landscape properties (e.g. lithological controls) in the evolution of the basin‐wide fluvial system over Late Quaternary timescales. In this study, we apply the FLUVER2 numerical model to investigate the significance of these landscape controls upon patterns of landscape evolution. We highlight the complications of generating realistic input datasets for use in the modelling of long‐term landscape evolution (e.g. discharge and runoff datasets). Model outputs are compared to extensive field mapping of fluvial terraces, their sedimentary architecture and optically stimulated luminescence dating results of the terraces. The results demonstrate the significance of non‐linear rates of flexural tectonic uplift towards the west of the Tabernas Basin which have controlled base levels throughout the Quaternary and promoted the formation of a series of diverging fluvial terraces. Our numerical model results further highlight the importance of climate cycles upon river terrace formation. Basin‐wide aggradation events were modelled during the transition from Marine Isotope Stage (MIS) 6 to 5 and the Last Glacial Maximum (LGM) as supported by field evidence. This aggradational pattern supports the regional hypothesis of terrace formation during global glacial cycles and cold‐to‐warm stage transitions and supports the use of sea surface temperature climate proxy data in the modelling exercise. The availability of sediments derived from the surrounding hillslopes and adjacent alluvial fans explains the generation of substantial terrace aggradations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Fluvial terraces are used as geomorphic indicators for deciphering long-term landscape evolution. Knowing the distribution of fluvial terraces is essential for establishing former river profiles and their tectonic significance, for studying climate-modulated processes of terrace development, or for defining fluvial network adjustments in response to sudden base-level changes like those produced by fluvial captures. Multiple methods for automatic map production have been proposed based on the comparison of morphometric indices with those of the modern river course. Here we propose an alternative method to identify flat surfaces and scarps separating them from digital elevation models without setting comparisons with a modern river course and thus fully applicable to study flat landforms whatever their origin. Its application to the low-relief landscape of the Cenozoic Duero basin has allowed the improvement of previous geomorphological maps and the analysis of fluvial network adjustments in response to a sudden base-level fall after the opening of the Neogene endorheic basin towards the Atlantic Ocean. Reconstructed terrace long-profiles suggest an initial episode of fast vertical incision followed by a period of repeated planation–aggradation–incision with the formation of 14 to 13 unpaired terrace levels. Changes observed in the pattern of terrace profiles are discussed with regard to changes in regional tectonics and base-level variations. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
李光涛  陈国星  苏刚  杨攀新 《地震》2008,28(3):125-132
滇西地区自第四纪以来经过了复杂的构造抬升, 其上新世准平原面被差异抬升为不同高度的夷平面。 在抬升过程中, 怒江的侵蚀作用形成了深切的高山峡谷地貌, 并形成了能反映构造抬升过程的多级河流阶地。 这种高山峡谷地貌的形成不仅与构造活动有关, 还与气候变化有关, 但构造活动是主因。 通过河流阶地和夷平面的研究能够得到河流阶地特征和差异隆升特征, 并能够进一步反演该区的构造活动特征。  相似文献   

12.
Progressive geomorphic changes in the flight of fluvial terraces along the Rappahannock River, Virginia, provide a framework for analysing the effect of time on landforms. The oldest terrace is probably no younger than early Quaternary, and the youngest major fill terrace probably correlates with the high sea level of the last major interglacial. A uranium-series date of 187,000 yr has been obtained on coral from marine sediments related to this terrace. Indices of terrace preservation, especially drainage densities and area to perimeter ratios, show systematic changes with terrace age. Hence, these variables appear to satisfactorily indicate relative age, and could perhaps be used to estimate actual ages if suitably calibrated. The morphology of scarps formed by entrenchment of the fluvial terraces is more variable than analogous morphology of fault scarps and wave-cut bluffs. However, measurements of the fluvial scarps clearly indicate that for a given terrace age, higher scarps tend to have steeper slopes, and that for a given scarp height, older scarps tend to have gentler slopes. The terrace forms themselves are preserved for at least several million years. Depositional features such as bars and channels with l–3m of relief are preserved on terraces on the order of 105 yr old. Scarps related to the formation of terraces of this age are well preserved and have slopes of about 6–8 degrees where the scarp height is about 5 m. The preservation of fluvial landforms and scarps suggests that, if fault scarps comparable to these features were commonly formed by earthquakes in low relief areas of the eastern United States, many should be recognizable.  相似文献   

13.
The characteristics of the Holocene valley floor of the River Lippe, Germany, are atypical for a river in central Europe. The valley floor consists of three terrace levels, which are not always clearly separated from each other. Analysis of the sediments making up the terraces indicates that they accumulated during the course of the entire Holocene, although there is insufficient information available to allow detailed determination of phases of fluvial change and stability responsible for terrace formation. Two of the terraces exist only in the lower reaches of the valley, where they converge and diverge with the third. The lowest terrace consists only of a narrow strip, running parallel to the river channel. The configuration of the valley floor may be explained by a series of anthropogenic influences. The earliest human impact probably occurred about 2000 years ago when, during their campaign against German tribes, the Romans built a towpath and may have changed the channel planform from its natural, anabranching pattern to a meandering form by building small dams on local distributary forks. Implementation of artificial meander cut‐offs to improve navigation on the river began in medieval times. The morphological response to these human interventions was primarily degradational. In the 19th century, artificial lateral fill was used to narrow the channel and the towpath was renewed several times. The trace of the most recent towpath is still discernible as a narrow strip parallel to the river channel, and it constitutes the lowest terrace level. Comparison between the bankfull discharge of a 4000‐year‐old abandoned channel and the formative flow for the modern channel supports the premise that, prior to anthropomorphic influence, the natural planform was anabranched. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
通过对阿尔金断裂带西段莫勒切河河口附近卫星影像解译、野外调查测量及地貌面样品年龄测定,利用宽谷阶地、堆积阶地获取构造隆升速率、构造变形方式及加积速率,并结合区域气候资料探讨该区阶地发育对气候变化的响应.莫勒切河出山口发育4级阶地(T<‘4>,T<‘3>,T<‘2>,T<‘1>),其中T<‘4>、T<‘3>为宽谷阶地,T...  相似文献   

15.
Quantifying rates of river incision and continental uplift over Quaternary timescales offer the potential for modelling landscape change due to tectonic and climatic forcing. In many areas, river terraces form datable archives that help constrain the timing and rate of valley incision. However, old river terraces, with high-level deposits, are prone to weathering and often lack datable material. Where valleys are incised through karst areas, caves and sediments can be used to reconstruct the landscape evolution because they can record the elevation of palaeo-water tables and contain preserved datable material. In Normandy (N. France), the Seine River is entrenched into an extensive karstic chalk plateau. Previous estimates of valley incision were hampered by the lack of preserved datable fluvial terraces. A stack of abandoned phreatic cave passages preserved in the sides of the Seine valley can be used to reconstruct the landscape evolution of the region. Combining geomorphological observations, palaeomagnetic and U/Th dating of speleothem and sediments in eight caves along the Lower Seine valley, we have constructed a new age model for cave development and valley incision. Six identified cave levels up to ∼100 m a.s.l. were formed during the last ~1 Ma, coeval with the incision of the Seine River. Passage morphologies indicate that the caves formed in a shallow phreatic/epiphreatic setting, modified by sediment influxes. The valley's maximum age is constrained by the occurrence of late Pliocene marine sand. Palaeomagnetic dating of cave infills indicates that the highest-level caves were being infilled prior to 1.1 Ma. The evidence from the studied caves, complemented by fluvial terrace sequences, indicates that rapid river incision occurred during marine isotope stage (MIS) 28 to 20 (0.8–1 Ma), with maximal rates of ~0.30 m ka−1, dropping to ~0.08 m ka−1 between MIS 20–11 (0.8–0.4 Ma) and 0.05 m ka−1 from MIS 5 to the present time. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
As one of the most important regions for early human occupation in East Asia, Nihewan Basin in North China is well-known for an abundance of archaeological sites with ages spanning the last 2 Ma. In recent 10 years, more than 27 new archaeological localities have been discovered from the Yuxian (sub-basin of Nihewan), and all of them are with no age control. The lack of reliable ages for these localities affects our understanding for the evolution of the stone-tool technology in the Nihewan Basin. As many localities were founded in the river terrace, the fluvial terrace sequence of the Huliu River (main river of the Yuxian) was investigated. Based on single-grain post-infrared infrared stimulated luminescence (pIRIR) procedure on potassium (K-) feldspar, our results reveal that the formation ages of three Huliu River terraces are 139.6–115.7, 19.7–5.5, and <0.9 ka, respectively. On the basis of these pIRIR ages, the formation of the fluvial terrace sequence may provide informative constraints on the human occupation in the Huliu River terrace in the Nihewan Basin, if a clear stratigraphic correlation is established between the archaeological sites and the dated terrace deposits.  相似文献   

17.
Fluvial systems in uplifting terrain respond to tectonic, climatic, eustatic and local base‐level controls modified by specific local factors, such as river capture. The Rio Alias in southeast Spain is an ephemeral, transverse‐to‐structure fluvial system. The river drains two interconnected Neogene sedimentary basins, the Sorbas and Almeria basins, and crosses two major geological structures, the Sierras de Alhamilla/Cabrera and the Carboneras Fault Zone. Regional epeirogenic uplift resulted in sustained fluvial incision during the Quaternary, punctuated by major climatically driven periods of aggradation and dissection, which created a suite of five river terraces. The river terrace sequence was radically modified in the late Pleistocene by a major river capture (itself a response to regional tectonics), localized tectonic activity and eustatic base‐level change. The Rio Alias is defined by four reaches; within each the climatically‐generated, region‐wide, fluvial response was modified by tectonics, base‐level change or river capture to varying degrees. In the upper part of the basin (Lucainena reach), climate was the dominant control on river development, with limited modification of the sequence by uplift of the Sierra Alhamilla and local drainage reorganization by a local river capture. Downstream of the Sierra Alhamilla in the Polopus reach, the climatic signal is dominant, but its expression is radically modified by the response to a major river capture whereby the Alias system lost up to 70% of its pre‐capture drainage area. In the reach adjacent to the Carboneras Fault Zone (Argamason reach), modification of the terrace sequence by local tectonic activity and a resultant local base‐level fall led to a major local incisional event (propagating c. 3–4 km upstream from the area of tectonic disturbance). At the seaward end of the system (El Saltador reach) Quaternary sea‐level changes modified the patterns of erosion and incision and have resulted in steep incisional terrace profiles. The signals generated by regional tectonics and the Quaternary climate change can be identified throughout the basin but those generated by ongoing local tectonics, river capture and sea‐level change are spatially restricted and define the four reaches. The connectivity of the system from the headwaters to the coast decreased through time as incision progressed, resulting in changes in local coupling characteristics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
兰州黄河阶地高精度GPS测量与构造变形研究   总被引:2,自引:5,他引:2       下载免费PDF全文
在综合分析兰州黄河阶地发育和分布特征的基础上,采用高精度差分GPS测量并结合1:1万DEM图形数据资料,获得了黄河兰州段南北两岸阶地平面分布图和纵横剖面对比图。结合本区黄河不同级别阶地年代测试结果,研究了其构造变形特征,获得了穿越断裂带地区的阶地变形特点、变形带宽度、变形幅度和速率等定量参数。结果表明:兰州盆地晚第四纪的构造变形主要以褶皱隆升为主,盆地内的断裂晚第四纪无明显构造活动。  相似文献   

19.
焉耆盆地北缘和静逆断裂-褶皱带中晚第四纪变形速率   总被引:4,自引:4,他引:0  
焉耆盆地为南天山内部的一个山间盆地,盆地北缘发育1排第四纪新生褶皱带,即和静逆断裂-褶皱带。中晚第四纪以来,由于和静逆断裂-褶皱带的持续活动使得在褶皱生长过程中形成的多期洪积地貌面发生反向掀斜变形。利用高精度差分GPS,对褶皱带中部哈尔莫敦背斜区内的多期变形地貌面的地形形态进行了测绘,判定背斜的生长主要以翼旋转为主。利用背斜北翼不同地貌面的反向掀斜角度,分别计算了不同期次地貌面的隆升和缩短变形量。结合原地宇宙成因核素深度剖面法和光释光测年法,对背斜区内的F4,F3b,F2洪积台地面和T1阶地面的形成年龄进行了测定,发现背斜在距今约550ka、428.3+57.6-47.2ka和354.3+34.2-34.8ka不同时段的平均隆升速率从0.31±0.24mm/a下降至0.15±0.02mm/a,同时背斜北翼的翼旋转速度也呈逐渐减小的趋势。但背斜自起始变形开始,缩短速率却大致保持恒定为约0.3mm/a。而这一恒定的缩短速率与现今横跨和静逆断裂-褶皱带所观测的GPS速率具有很好的一致性,说明在天山内部的哈尔莫敦背斜区,短尺度的GPS速率可以代表长尺度的地壳应变速率,同时反映出山体内部一系列断层和褶皱构造在吸收和调节整体变形量时也起到一定的作用。  相似文献   

20.
西宁城市活动断裂地表特征初步研究   总被引:13,自引:2,他引:11  
李智敏  田勤俭  高占武  陈立泽 《地震》2005,25(4):119-126
在详细的野外地质调查基础上, 通过开挖探槽剖面揭露了断层的基本性质, 初步展示了西宁市北川河东岸断裂、 南川河断裂和湟水河断裂的地表特征。 结合前人的阶地测定年代结果初步判断, 北川河东岸断裂错断相当于湟水河Ⅱ至Ⅲ级阶地, Ⅱ级阶地形成不晚于0.05 Ma, Ⅲ级阶地形成不晚于0.12 Ma, 说明该断裂是晚更新世活动断裂; 南川河断裂错断相当于湟水河Ⅳ、 Ⅴ级阶地, Ⅳ级阶地形成不晚于0.54 Ma, Ⅴ级阶地形成不晚于0.78 Ma, 说明该断裂是早中更新世活动断裂; 湟水河断裂错断其Ⅱ、 Ⅲ级阶地砾石层, 说明该断裂是晚更新世活动断裂。 这些断裂规模小、 活动性弱, 可能为盖层断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号