首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
龙门山断裂带南段第四纪沉积差,断层出露不明显,晚第四纪构造活动性资料零星。为了提高对龙门山断裂带南段构造活动性的认识,探索芦山地震的发震构造,文中在分析龙门山断裂带南段的地貌以及构造演化的基础上,对跨盐井-五龙断裂、大川-双石断裂和芦山盆地的青衣江不同段的6级河流阶地进行了差分GPS连续测量和细致研究,结合对高分辨率航拍影像的地质解译,得到了龙门山断裂带南段青衣江各段的河流阶地横剖面,通过不同河段河流阶地的对比分析,建立了龙门山断裂带南段青衣江河流阶地纵剖面。通过对河流阶地的变形分析,发现龙门山断裂带南段晚第四纪以来,盐井-五龙断裂的平均垂向断错速率为0.6~1.2mm/a,大川-双石断裂没有明显的垂向活动,芦山地震的发震断层控制的山前褶皱最新活动。结合龙门山断裂带南段的地壳深部结构资料和芦山地震的精定位余震资料等,认为芦山地震的发震构造不是大川-双石断裂,而是龙门山断裂带南段的山前盲逆断层和反冲断层。  相似文献   

2.
继2013年芦山MS7.0地震发生之后,龙门山断裂带南段的地震危险性得到了广泛的关注。为了深化对龙门山断裂带南段晚第四纪活动性的认识,我们对横跨该断裂带的青衣江上游河段开展了河流阶地调查与测量。在卫星影像和高分辨率DEM分析的基础上,基于SCGNSS(Sichuan Global Navigation Satelite System,四川省卫星定位连续运行基准服务平台)对河流阶地进行了精细测量和对比,开展了河流阶地的光释光测年,建立了青衣江上游河流阶地纵剖面图。耿达-陇东断裂、盐井-五龙断裂和小关子断裂(大川-双石断裂西支)均垂直断错了青衣江二级以上阶地,表现为逆冲活动,其晚第四纪平均垂直错动速率分别为0.21~0.30mm/a、0.12~0.21mm/a和0.10~0.12mm/a。晚第四纪以来,大川-双石断裂东支垂直错动不明显,金汤弧形构造带没有活动。通过青衣江河流阶地变形得到龙门山断裂带南段冲断带晚第四纪地壳缩短速率为0.48~0.77mm/a,该缩短速率约为龙门山断裂带中段的一半。结合前人对前陆区构造变形的研究,认为龙门山南段前陆褶皱带可能吸收了一半以上的地壳缩短量。龙门山断裂带南段3条主要分支断裂均为晚第四纪活动断裂,具有发生强震的危险性。  相似文献   

3.
大川-双石断裂位于龙门山前山断裂南段,因其在都江堰地区隐伏于岷江河流阶地之下,在一定程度上影响了对龙门山断裂带南段的地震危险性评价和发震能力评估。因此,掌握大川-双石断裂的地下分布特征和活动性,对都江堰城区的避灾规划和重大工程选址意义重大。本项研究在野外地质调查基础上,垂直断裂走向布设浅层地震反射剖面、高密度电阻率剖面和钻孔联合剖面。通过多种方法共同揭示了大川-双石断裂在都江堰地区的精确空间展布位置、近地表构造形态、上断点埋深及断裂活动性。大川-双石断裂在都江堰地区的岷江西岸阶地处隐伏通过,为逆断层,倾向NW,倾角在地表浅层为60°~70°,近地面为20°~30°;且破碎带向地面逐渐变浅变薄,上断点向上延伸至第四系灰褐色黏土层和棕黄色粗砂夹砾石层,埋深约3.5 m。上述研究表明大川-双石断裂在都江堰市区附近具有全新世活动特征。  相似文献   

4.
四川省芦山MS7.0地震发震构造分析   总被引:5,自引:3,他引:2  
2013年4月20日的芦山“4·20”MS7.0地震发生在龙门山断裂带西南段,震中地区分布多条NE向断裂,构造较为复杂.这次地震震源机制解显示为逆冲型地震,破裂面为NE走向,与龙门山断裂带的运动性质和走向一致.地表调查只在大川-双石断裂(前山断裂)和新开店断裂(大邑断裂南段)发现局部分布的NE向地表裂缝、沿地表裂缝分布的喷砂冒水和砂土液化,不规则的边坡开裂等地表变形,以及断裂沿线较严重的滑坡崩塌和房屋破坏.野外调查没有发现明显的地震地表破裂.GPS测量结果显示,此次地震的发震断裂位于芦山县城附近或其以东,而芦山西侧的断裂也可能参与了部分活动.根据野外地质调查、GPS观测、震源机制解、震源深度、余震分布等结果综合判定,芦山7.0级地震的主要发震构造是芦山之下、大川-双石断裂和新开店断裂之间的龙门山前缘滑脱带.此滑脱带在该段的运动导致了这次地震的发生,并可能带动了它上面的大川-双石和新开店等断裂的活动.  相似文献   

5.
2013年4月20日发生在龙门山南段的芦山MS7.0地震是继发生在龙门山中北段的汶川MS8.0地震之后的又一次强震。本文通过震后地表变形特征、余震分布、震源机制解、石油地震勘探剖面、历史地震数据等资料,结合前人对龙门山南段主干断裂、褶皱构造特征的研究以及野外实地考察,应用活动褶皱及"褶皱地震"的相关理论,初步分析芦山地震的发震构造模式。认为芦山地震为典型的褶皱地震,发震断裂为前山或山前带一隐伏断裂。构造挤压产生的地壳缩短大部分被褶皱构造吸收。认为龙门山南段前缘地区具有活褶皱-逆断层的运动学特征,表明龙门山逆冲作用正向四川盆地内部扩展。  相似文献   

6.
4.20芦山地震后,有学者在芦山县龙门乡发现一系列的线性裂缝和砖块的旋转变形等"地震地表破裂迹象",由此推测芦山—龙门一线存在隐伏逆断裂,并认为该断裂有可能是此次地震的发震断裂。因此,进一步探讨芦山—龙门一线是否存在潜在的发震断裂,无论是对研究芦山7.0级地震的发震断裂,还是对灾区的重建指导都十分重要。在龙门乡开展了地质灾害调查、跨谷地的地质剖面实测,槽探和人工地震勘探等工作。结果显示:至少在800m深度范围内,不存在芦山-龙门隐伏断裂。此带上的地裂缝等现象不是由断层位错引起,而更可能是地震动在阶地陡坎附近造成的地基或边坡效应所致。  相似文献   

7.
使用双差定位方法,对2013年4月20日08时02分芦山 M 7.0地震后近10天的余震进行重新定位,获得精度较高的重定位结果;在此基础上,对余震空间分布特征进行研究,推测芦山主震的发震断层可能为大川-双石主断裂东侧的一条次级隐伏逆冲断层。  相似文献   

8.
芦山地震发生在龙门山断裂带前缘.关于芦山地震的发震断层,有的认为是前山断裂——双石—大川断裂,有的认为是山前断裂——大邑断裂拟或其他隐伏断裂,发震断裂究竟是哪条断裂以及芦山地震是不是汶川地震的余震?目前仍存在较大争议.震后穿过芦山地震区完成了一条长近40km的深地震反射剖面,以确定芦山地震的发震构造.反射剖面显示浅部褶皱和断裂构造发育,在上地壳存在6条逆冲断裂,下地壳存在一条非常明显的变形转换带,在深度16km左右还存在一个滑脱层,浅部的6条断裂最终都归并到该滑脱层上.参考主余震精定位结果,芦山地震的发震断裂应该是位于双石—大川断裂和大邑断裂之间的隐伏断裂F4,F2和F3断裂受控于发震断裂而活动,形成剖面上"Y"字型余震分布现象.隐伏断裂F4属山前断裂,不是前山断裂,因此芦山地震不是汶川地震的余震.  相似文献   

9.
2013年4月20日在龙门山南段发生M_W6.7强震,造成重大人员伤亡和财产损失.芦山地震发生后,针对发震断层是高角度还是低角度断层?断层的归属、性质和地震构造模型等问题,一直存在不同的认识和争议.本次研究采用了芦山震区的三条高精度二维人工地震反射剖面,结合区域地质、钻井资料,对芦山震区浅层沉积与构造变形进行综合解释;研究同时综合了震源机制解、小震重定位结果以及深地震探测剖面,并结合龙门山地区古生代以来的构造演化史,对震区地质构造进行解析.研究认为龙门山南段主要发育了三套不同层次的滑脱层并控制了上地壳形变,呈现多层滑脱、多期变形、构造叠加的复杂特征.2013年芦山地震的主要活动断层发育在深部约20 km滑脱层之上,倾向NW、倾角较陡大约在45°~50°,并产生反冲断层形成Y字状结构.地震地质解释表明,芦山地震的同震活动断层没有突破中生界和新生界,并非先前认为的双石—大川断裂(F4)或山前大邑隐伏断裂(F6);芦山地震的发震断层为一基底盲冲断层;深地震反射结果进一步揭示芦山地震的发震断层为一早期(古生代)形成的正断层.研究认为芦山地震发震构造符合简单剪切断层转折褶皱模型(Simple-shear Fault-Bend Fold),2013年芦山地震为一次非特征型地震.晚新生代以来在青藏高原向四川盆地强烈挤压持续作用下,早期正断层重新活动并产生了芦山地震.这种深部隐伏断层活化产生的特殊型地震,无疑增加了龙门山地区地震灾害的风险和不确定性.  相似文献   

10.
龙门山断裂带北段第四纪活动的地质地貌证据   总被引:26,自引:7,他引:19  
以龙门山断裂带北段中的青川断裂、茶坝-林庵寺断裂沿线的地质地貌为研究对象,在青川断裂沿线的土关铺、大安,茶坝-林庵寺断裂上的薛家沟、胡家坝等地,对断裂附近的河流地貌进行了详细的构造地貌制图。龙门山断裂带北段所在地区的河流一般发育5级阶地,T1阶地拔河高度3~5m,为全新世堆积阶地。T2阶地拔河高度10m左右,为晚更新世基座阶地。T3阶地拔河高度一般为30~35m,为晚更新世早期形成的基座阶地。T4阶地拔河高度60~70m,残留的阶地砾石层中花岗岩、砂岩砾石已经被强风化,只保留砾石的形态。T5阶地拔河高度为90m左右,阶地堆积物被剥蚀殆尽。青川断裂、茶坝-林庵寺断裂在河流的T4和T5阶地上形成宽30~180m的断层槽地,深度达8~20m,T4阶地砾石层底面落差达10~15m。T3阶地上不发育断层槽地,或断层两盘的T3阶地拔河高度一致,一些地段断层被T3阶地砾石层覆盖。因此认为,这两条断裂在T3阶地形成之前,T4阶地形成之后有过强烈的活动  相似文献   

11.
On 20 April 2013, a destructive earthquake, the Lushan MS7.0 earthquake, occurred in the southern segment of the Longmenshan Fault zone, the eastern margin of the Tibetan plateau in Sichuan, China. This earthquake did not produce surface rupture zone, and its seismogenic structure is not clear. Due to the lack of Quaternary sediment in the southern segment of the Longmenshan fault zone and the fact that fault outcrops are not obvious, there is a shortage of data concerning the tectonic activity of this region. This paper takes the upper reaches of the Qingyijiang River as the research target, which runs through the Yanjing-Wulong Fault, Dachuan-Shuangshi Fault and Lushan Basin, with an attempt to improve the understanding of the tectonic activity of the southern segment of the Longmenshan fault zone and explore the seismogenic structure of Lushan earthquake. In the paper, the important morphological features and tectonic evolution of this area were reviewed. Then, field sites were selected to provide profiles of different parts of the Qingyijiang River terraces, and the longitudinal profile of the terraces of the Qingyijiang River in the south segment of the Longmenshan fault zone was reconstructed based on geological interpretation of high-resolution remote sensing images, continuous differential GPS surveying along the terrace surfaces, geomorphic field evidence, and correlation of the fluvial terraces. The deformed longitudinal profile reveals that the most active tectonics during the late Quaternary in the south segment of the Longmenshan Fault zone are the Yanjing-Wulong Fault and the Longmenshan range front anticline. The vertical thrust rate of the Yanjing-Wulong Fault is nearly 0.6~1.2mm/a in the late Quaternary. The tectonic activity of the Longmenshan range front anticline may be higher than the Yanjing-Wulong Fault. Combined with the relocations of aftershocks and other geophysical data about the Lushan earthquake, we found that the seismogenic structure of the Lushan earthquake is the range front blind thrust and the back thrust fault, and the pop-up structure between the two faults controls the surface deformation of the range front anticline.  相似文献   

12.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

13.
Slip rate is one of the most important parameters in quantitative research of active faults. It is an average rate of fault dislocation during a particular period, which can reflect the strain energy accumulation rate of a fault. Thus it is often directly used in the evaluation of seismic hazard. Tectonic activities significantly influence regional geomorphic characteristics. Therefore, river evolution characteristics can be used to study tectonic activities characteristics, which is a relatively reliable method to determine slip rate of fault. Based on the study of the river geomorphology evolution process model and considering the influence of topographic and geomorphic factors, this paper established the river terrace dislocation model and put forward that the accurate measurement of the displacement caused by the fault should focus on the erosion of the terrace caused by river migration under the influence of topography. Through the analysis of the different cases in detail, it was found that the evolution of rivers is often affected by the topography, and rivers tend to migrate to the lower side of the terrain and erode the terraces on this side. However, terraces on the higher side of the terrain can usually be preserved, and the displacement caused by faulting can be accumulated relatively completely. Though it is reliable to calculate the slip rate of faults through the terrace dislocation on this side, a detailed analysis should be carried out in the field in order to select the appropriate terraces to measure the displacement under the comprehensive effects of topography, landform and other factors, if the terraces on both sides of the river are preserved. In order to obtain the results more objectively, we used Monte Carlo method to estimate the fault displacement and displacement error range. We used the linear equation to fit the position of terrace scarps and faults, and then calculate the terrace displacement. After 100, 000 times of simulation, the fault displacement and its error range could be obtained with 95%confidence interval. We selected the Gaoyan River in the eastern Altyn Tagh Fault as the research object, and used the unmanned air vehicle aerial photography technology to obtain the high-resolution DEM of this area. Based on the terrace evolution model proposed in this paper, we analyzed the terrace evolution with the detailed interpretation of the topography and landform of the DEM, and inferred that the right bank of the river was higher than the left bank, which led to the continuous erosion of the river to the left bank, while the terraces on the right bank were preserved. In addition, four stages of fault displacements and their error ranges were obtained by Monte Carlo method. By integrating the dating results of previous researches in this area, we got the fault slip rate of(1.80±0.51)mm/a. After comparing this result with the slip rates of each section of Altyn Tagh Fault studied by predecessors, it was found that the slip rate obtained in this paper is in line with the variation trend of the slip rate summarized by predecessors, namely, the slip rate gradually decreases from west to east, from 10~12mm/a in the middle section to about 2mm/a at the end.  相似文献   

14.
兰州黄河阶地高精度GPS测量与构造变形研究   总被引:2,自引:5,他引:2       下载免费PDF全文
在综合分析兰州黄河阶地发育和分布特征的基础上,采用高精度差分GPS测量并结合1:1万DEM图形数据资料,获得了黄河兰州段南北两岸阶地平面分布图和纵横剖面对比图。结合本区黄河不同级别阶地年代测试结果,研究了其构造变形特征,获得了穿越断裂带地区的阶地变形特点、变形带宽度、变形幅度和速率等定量参数。结果表明:兰州盆地晚第四纪的构造变形主要以褶皱隆升为主,盆地内的断裂晚第四纪无明显构造活动。  相似文献   

15.
Fluvial terraces are used as geomorphic indicators for deciphering long-term landscape evolution. Knowing the distribution of fluvial terraces is essential for establishing former river profiles and their tectonic significance, for studying climate-modulated processes of terrace development, or for defining fluvial network adjustments in response to sudden base-level changes like those produced by fluvial captures. Multiple methods for automatic map production have been proposed based on the comparison of morphometric indices with those of the modern river course. Here we propose an alternative method to identify flat surfaces and scarps separating them from digital elevation models without setting comparisons with a modern river course and thus fully applicable to study flat landforms whatever their origin. Its application to the low-relief landscape of the Cenozoic Duero basin has allowed the improvement of previous geomorphological maps and the analysis of fluvial network adjustments in response to a sudden base-level fall after the opening of the Neogene endorheic basin towards the Atlantic Ocean. Reconstructed terrace long-profiles suggest an initial episode of fast vertical incision followed by a period of repeated planation–aggradation–incision with the formation of 14 to 13 unpaired terrace levels. Changes observed in the pattern of terrace profiles are discussed with regard to changes in regional tectonics and base-level variations. © 2019 John Wiley & Sons, Ltd.  相似文献   

16.
Fluvial terraces are important geomorphic markers for modern valley development.When coupled with numeric ages,terraces can provide abundant information about tectonic,climatic,paleohydrological and the paleoenvironmental changes.On the basis of the paleomagnetic,electron spin resonance(ESR) and optically stimulated luminescence(OSL) dating,in addition to an investigation of local loess-paleosol sequences,we confirmed that 13 fluvial terraces were formed,and then preserved,along the course of the Upper Weihe River in the Sanyangchuan Basin over the past 1.2 Ma.Analyses of the characteristics and genesis of these terraces indicate that they resulted from the response of this particular river system to climate change over an orbital scale.These changes can further be placed within the context of local and regional tectonic uplift,and represent an alternation between lateral migration and vertical incision,dependent upon the predominance of climatic and tectonic controls during different periods.Most of the terraces are strikingly similar in that they have several meters of paleosols which have developed directly on top of fluvial deposits located on the terrace treads,suggesting that the abandonment of terraces due to river incision occurred during the transitions from glacial to interglacial climates.The temporal and spatial differences in the distribution patterns of terraces located on either side of the river valley indicate that a tectonic inversion occurred in Sanyangchuan Basin at-0.62 Ma,and that this was characterized by a transition from overall uplift to depression induced by fault activity.Synthesized studies of the Basin's terraces indicate that formation of the modern valley of the Upper Weihe River may have begun in the late Early Pleistocene between1.4-1.2 Ma.  相似文献   

17.
The seismogenic structure of the Lushan earthquake has remained in suspensed until now. Several faults or tectonics, including basal slipping zone, unknown blind thrust fault and piedmont buried fault, etc, are all considered as the possible seismogenic structure. This paper tries to make some new insights into this unsolved problem. Firstly, based on the data collected from the dynamic seismic stations located on the southern segment of the Longmenshan fault deployed by the Institute of Earthquake Science from 2008 to 2009 and the result of the aftershock relocation and the location of the known faults on the surface, we analyze and interpret the deep structures. Secondly, based on the terrace deformation across the main earthquake zone obtained from the dirrerential GPS meaturement of topography along the Qingyijiang River, combining with the geological interpretation of the high resolution remote sensing image and the regional geological data, we analyze the surface tectonic deformation. Furthermore, we combined the data of the deep structure and the surface deformation above to construct tectonic deformation model and research the seismogenic structure of the Lushan earthquake. Preliminarily, we think that the deformation model of the Lushan earthquake is different from that of the northern thrust segment ruptured in the Wenchuan earthquake due to the dip angle of the fault plane. On the southern segment, the main deformation is the compression of the footwall due to the nearly vertical fault plane of the frontal fault, and the new active thrust faults formed in the footwall. While on the northern segment, the main deformation is the thrusting of the hanging wall due to the less steep fault plane of the central fault. An active anticline formed on the hanging wall of the new active thrust fault, and the terrace surface on this anticline have deformed evidently since the Quaterary, and the latest activity of this anticline caused the Lushan earthquake, so the newly formed active thrust fault is probably the seismogenic structure of the Lushan earthquake. Huge displacement or tectonic deformation has been accumulated on the fault segment curved towards southeast from the Daxi country to the Taiping town during a long time, and the release of the strain and the tectonic movement all concentrate on this fault segment. The Lushan earthquake is just one event during the whole process of tectonic evolution, and the newly formed active thrust faults in the footwall may still cause similar earthquake in the future.  相似文献   

18.
2017年11月18日在西藏米林发生了MS6.9地震,目前尚未发现地表破裂带,发震构造尚不明确.震源机制解表明该次地震为逆冲型地震.精定位结果显示余震集中在加拉白垒东北坡上一个NW走向的长约36 km、宽约8 km的狭长条带之内.余震条带的走向及长度严格受到派乡构造岩片NE边界走向及长度的控制,垂直于该条带的地震剖面清晰地揭示出一条倾向NE的低倾角逆冲断层面,结合震源机制解及GPS同震位移场的已有结果,初步推断它可能就是发震断层面.雅鲁藏布江大拐弯上游加拉-米林河段两岸的湖相基座阶地面和山脊线在南迦巴瓦、加拉白垒脚下都发生了倾向SW的翘起变形,发震断层面构成了其上盘加拉白垒、南迦巴瓦强烈隆升区与其下盘地貌发生翘起变形的弱隆升区的分界面,推断加拉白垒峰沿着这一断层面不断地逆冲、隆升,以此来调节其两侧的不均匀挤出,而下盘近断层处的褶皱、拖曳等作用逐渐造成了阶地面、山脊线的翘起、弯曲变形.基于夷平面的区域变形分析,认为雅江缝合带作为主干断裂带从整体上控制着印度板块与欧亚板块在东构造结地区的碰撞-挤压格局.印度板块东北犄角的强烈顶撞引起了东构造结附近强烈的断块运动,嘉黎断裂带北侧的地壳显著增厚,主夷平面随之发生裂解.与此同时,由于碰撞带来的强烈挤压,派乡构造岩片、多雄拉变质穹隆沿着缝合带大拐弯内侧不均匀地挤出,南迦巴瓦、加拉白垒随之隆升.此次的米林地震仅仅是该不均匀挤出过程所引发的一次具体的事件,是派乡构造岩片内部的一条次级断层发生的一次逆冲运动造成的.此外,紧邻此次余震条带的南迦巴瓦NEE边界以及SE边界是一个潜在的地震空区,其未来地震危险性值得关注.  相似文献   

19.
The variability of Quaternary landforms preserved in the Tabernas basin of southeast (SE) Spain raises numerous questions concerning the roles of external forcing mechanisms (e.g. tectonics and/or climate) and internal landscape properties (e.g. lithological controls) in the evolution of the basin‐wide fluvial system over Late Quaternary timescales. In this study, we apply the FLUVER2 numerical model to investigate the significance of these landscape controls upon patterns of landscape evolution. We highlight the complications of generating realistic input datasets for use in the modelling of long‐term landscape evolution (e.g. discharge and runoff datasets). Model outputs are compared to extensive field mapping of fluvial terraces, their sedimentary architecture and optically stimulated luminescence dating results of the terraces. The results demonstrate the significance of non‐linear rates of flexural tectonic uplift towards the west of the Tabernas Basin which have controlled base levels throughout the Quaternary and promoted the formation of a series of diverging fluvial terraces. Our numerical model results further highlight the importance of climate cycles upon river terrace formation. Basin‐wide aggradation events were modelled during the transition from Marine Isotope Stage (MIS) 6 to 5 and the Last Glacial Maximum (LGM) as supported by field evidence. This aggradational pattern supports the regional hypothesis of terrace formation during global glacial cycles and cold‐to‐warm stage transitions and supports the use of sea surface temperature climate proxy data in the modelling exercise. The availability of sediments derived from the surrounding hillslopes and adjacent alluvial fans explains the generation of substantial terrace aggradations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Strike-slip fault plays an important role in the process of tectonic deformation since Cenozoic in Asia. The role of strike-slip fault in the process of mountain building and continental deformation has always been an important issue of universal concern to the earth science community. Junggar Basin is located in the hinterland of Central Asia, bordering on the north the Altay region and the Baikal rift system, which are prone to devastating earthquakes, the Tianshan orogenic belt and the Tibet Plateau on the south, and the rigid blocks, such as Erdos, the South China, the North China Plain and Amur, on the east. Affected by the effect of the Indian-Eurasian collision on the south of the basin and at the same time, driven by the southward push of the Mongolian-Siberian plate, the active structures in the periphery of the basin show a relatively strong activity. The main deformation patterns are represented by the large-scale NNW-trending right-lateral strike-slip faults dominated by right-lateral shearing, the NNE-trending left-lateral strike-slip faults dominated by left-lateral shearing, and the thrust-nappe structure systems distributed in piedmont of Tianshan in the south of the basin. There are three near-parallel-distributed left-lateral strike-slip faults in the west edge of the basin, from the east to the west, they are:the Daerbute Fault, the Toli Fault and the Dongbielieke Fault. This paper focuses on the Dongbielieke Fault in the western Junggar region. The Dongbielieke Fault is a Holocene active fault, located at the key position of the western Junggar orogenic belt. The total length of the fault is 120km, striking NE. Since the late Quaternary, the continuous activity of the Dongbielieke Fault has caused obvious left-lateral displacement at all geomorphologic units along the fault, and a linear continuous straight steep scarp was formed on the eastern side of the Tacheng Basin. According to the strike and the movement of fault, the fault can be divided into three segments, namely, the north, middle and south segment. In order to obtain a more accurate magnitude of the left-lateral strike-slip displacement and the accumulative left-lateral strike-slip displacement of different geomorphic surfaces, we chose the Ahebiedou River in the southern segment and used the UAV to take three-dimensional photographs to obtain the digital elevation model(the accuracy is 10cm). And on this basis, the amount of left-lateral strike-slip displacement of various geological masses and geomorphic surfaces(lines)since their formation is obtained. The maximum left-lateral displacement of the terrace T5 is(30.7±2.1)m and the minimum left-lateral displacement is(20.1±1.3)m; the left-lateral displacement of the terrace T4 is(12±0.9)m, and the left-lateral displacement of the terrace T2 is(8.7±0.6)m. OSL dating samples from the surface of different level terraces(T5, T4, T2 and T1)are collected, processed and measured, and the ages of the terraces of various levels are obtained. By measuring the amount of left-lateral displacements since the Late Quaternary of the Dongbielieke Fault and combining the dating results of the various geomorphic surfaces, the displacements and slip rates of the fault on each level of the terraces since the formation of the T5 terrace are calculated. Using the maximum displacement of(30.7±2.1)m of the T5 terrace and the age of the geomorphic surface on the west bank of the river, we obtained the slip rate of(0.7±0.11)mm/a; similarly, using the minimum displacement of(20.1±1.3)m and the age of the geomorphic surface of the east bank, we obtained the slip rate of(0.46±0.07)mm/a. T5 terrace is developed on both banks of the river and on both walls of the fault. After the terraces are offset by faulting, the terraces on foot wall in the left bank of the river are far away from the river, and the erosion basically stops. After that, the river mainly cuts the terraces on the east bank. Therefore, the west bank retains a more accurate displacement of the geomorphic surface(Gold et al., 2009), so the left-lateral slip rate of the T5 terrace is taken as(0.7±0.11)mm/a. The left-lateral slip rate calculated for T4 and T2 terraces is similar, with an average value of(0.91±0.18)mm/a. In the evolution process of river terraces, the lateral erosion of high-level terrace is much larger than that of low-level terrace, so the slip rate of T4 and T2 terraces is closer to the true value. The left-lateral slip rate of the Dongbielieke Fault since the late Quaternary is(0.91±0.18)m/a. Compared with the GPS slip rate in the western Junggar area, it is considered that the NE-trending strike-slip motion in this area is dominated by the Dongbielieke Fault, which absorbs a large amount of residual deformation while maintaining a relatively high left-lateral slip rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号