首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Werner Fielitz  Ioan Seghedi   《Tectonophysics》2005,410(1-4):111-136
Middle Miocene (Sarmatian) convergence created the fold and thrust belt of the Eastern Carpathians of Romania, which subsequently experienced post-collisional crustal deformation combined with calc-alkaline and alkalic-basaltic volcanism in late Miocene–Quaternary time. This deformation led to the rise of the Cǎlimani–Gurghiu–Harghita volcanic mountains and to the subsidence of the N–S-oriented intramontane Borsec/Bilbor–Gheorgheni–Ciuc and Braşov pull-apart basins, and the E-oriented monocline-related Fǎgǎraş basin. The regional drainage network is the composite of:
(1) Older E-, SE- and S-flowing rivers, which cross the Carpathians, radiate towards the foreland and were probably established during the Middle Miocene (Sarmatian) collision event.

(2) A more recent drainage system related to the contemporaneous development of the volcanoes and intramontaneous basins, which generally drains westward into the Transylvanian Basin since late Miocene time and has been capturing the older river system.

The older river drainage system has also been modified by Late Pliocene–Quaternary folding, thrusting and monoclinal tilting along the Pericarpathian orogenic front and by reactivated transverse high angle basement faults, which cross the Eastern Carpathian foreland.  相似文献   


2.
第四纪华容隆起构造活动、成因及动力机制   总被引:9,自引:0,他引:9  
第四纪华容隆起位于江汉—洞庭盆地中部。通过地表观察和第四系钻孔对华容隆起及周缘地貌、第四纪断裂和沉积进行调查,恢复华容隆起构造升降特征与过程,进而探讨华容隆起的成因及其构造活动的动力机制。研究表明:早更新世-中更新世中期华容隆起与周缘凹陷一道沉降,同时前者受周边正断裂控制相对后者有抬升,中更新世晚期一道抬升,晚更新世—全新世构造稳定或弱沉降。第四纪期间华容隆起总体表现为明显的构造沉降。以上表明第四纪华容隆起主要由前第四纪盆—山地貌分异造成,其次与第四纪期间相对周缘凹陷抬升有关。上述地质特征以及区域第四纪地质资料,表明早更新世-中更新世中期江汉—洞庭盆地为断陷盆地,中更新世晚期—全新世转变为坳陷盆地。就华容隆起第四纪构造活动的动力机制进行了探讨并提出:1)早更新世-中更新世中期江汉—洞庭盆地断陷沉降与地幔上隆背景下的深部物质迁出有关。2)中更新世晚期以来的构造活动可能与深部物质蠕移运动的回返以及板块尺度的物质运动和挤压作用有关。3)江汉—洞庭盆地的整体性沉降导致盆地中部的华容隆起以沉降为主;华容隆起特殊的地壳物质结构可能导致深部物质更难向外迁移,使其相对周缘凹陷有抬升。  相似文献   

3.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   


4.
塔里木盆地西北缘与南天山早-中二叠世盆山耦合特征   总被引:2,自引:1,他引:1  
通过对塔里木盆地西北缘及相邻南天山造山带的早-中二叠世岩相古地理、构造和岩浆作用的分析表明,塔里木盆地西北缘在早-中二叠世由于地幔柱作用而导致玄武质岩浆活动,南天山造山带内部则发育几乎同时代的碰撞后花岗岩.盆山结合部位早-中二叠世的沉积中心处于不断沉降的状态,而且沉积中心逐渐向塔里木地块之上迁移.南天山在早-中二叠世碰撞后伸展背景下的隆升作用导致塔里木岩石圈向南天山之下发生陆内俯冲作用,在山前形成类似周缘前陆盆地的构造环境,山前沉积中心相当于周缘前陆盆地系统的前渊相带.塔里木盆地内部早二叠世的地幔柱活动与南天山的碰撞后伸展作用没有明显的相关关系,但是南天山在早-中二叠世的碰撞后伸展作用则与塔里木盆地西北缘的沉积-构造作用具有良好耦合关系.  相似文献   

5.
The main terrains involved in the Cretaceous–Tertiary tectonism in the South Carpathians segment of the European Alpine orogen are the Getic–Supragetic and Danubian continental crust fragments separated by the Severin oceanic crust-floored basin. During the Early–Middle Cretaceous times the Danubian microplate acted initially as a foreland unit strongly involved in the South Carpathians nappe stacking. Multistage folding/thrusting events, uplift/erosion and extensional stages and the development of associated sedimentary basins characterize the South Carpathians during Cretaceous to Tertiary convergence and collision events. The main Cretaceous tectogenetic events responsible for contraction and crustal thickening processes in the South Carpathians are Mid-Cretaceous (“Austrian phase”) and Latest Cretaceous (“Laramide” or “Getic phase”) in age. The architecture of the South Carpathians suggests polyphase tectonic evolution and mountain building and includes from top to bottom: the Getic–Supragetic basement/cover nappes, the Severin and Arjana cover nappes, and Danubian basement/cover nappes, all tectonically overriding the Moesian Platform. The Severin nappe complex (including Obarsia and Severin nappes) with Late Jurassic–Early Cretaceous ophiolites and turbidites is squeezed between the Danubian and Getic–Supragetic basement nappes as a result of successive thrusting of dismembered units during the inferred Mid- to Late Cretaceous subduction/collision followed by tectonic inversion processes.

Early Cretaceous thick-skinned tectonics was replaced by thin-skinned tectonics in Late Cretaceous. Thus, the former Middle Cretaceous “Austrian” nappe stack and its Albian–Lower Senonian cover got incorporated in the intra-Senonian “Laramide/Getic” stacking of the Getic–Supragetic/Severin/Arjana nappes onto the Danubian nappe duplex. The two contraction events are separated by an extensional tectonic phase in the upper plate recorded by the intrusion of the “Banatitic” magmas (84–73 Ma). The overthrusting of the entire South Carpathian Cretaceous nappe stack onto the fold/thrust foredeep units and to the Moesian Platform took place in the Late Miocene (intra-Sarmatian) times and was followed by extensional events and sedimentary basin formation.  相似文献   


6.
第四纪洞庭盆地赤山隆起与安乡凹陷升降运动的沉积记录   总被引:12,自引:0,他引:12  
通过地表地质调查和钻井资料,对第四纪洞庭盆地南部赤山隆起及其西侧安乡凹陷的沉积和地貌特征进行研究,进而探讨二者的升降过程。赤山隆起为居于洞庭盆地南部的小型抬升断块,主要受东、西边界正断裂所控制,长约18 km,宽4~5 km。隆起内早更新世汨罗组和中更新世新开铺组、白沙井组组成多级阶地。安乡凹陷内充填200~300 m厚的河流和湖泊相沉积,自下而上依次为早更新世华田组、汨罗组,中更新世洞庭湖组,晚更新世坡头组,全新世湖积、冲积等。地貌与沉积特征表明,早更新世—中更新世中期赤山隆起总体表现出抬升期与稳定期交替的脉动式抬升,而安乡凹陷则表现出缓慢与快速沉降交替的幕式沉降特征;前者构造较稳定期和构造抬升期分别对应于后者缓慢沉降期和快速沉降期。中更新世晚期二者因区域构造反转而整体抬升并遭受剥蚀。晚更新世—全新世安乡凹陷在拗陷背景下接受沉积。上述第四纪早期赤山隆起脉动式抬升与安乡凹陷幕式沉降的对应关系,为洞庭盆地与周边隆起的盆—山耦合过程提供了约束,同时暗示盆地断陷活动可能与地幔上隆导致中地壳物质自凹陷向周边迁移有关。  相似文献   

7.
《Quaternary Science Reviews》2007,26(22-24):2758-2782
The paper discusses the Quaternary evolution of the Danube and Tisza rivers and their main tributaries in the context of evolution of the entire Pannonian Basin, which is Europe's largest intramontane basin, within the Alp–Carpathian orogen. The palaeo-drainage reconstruction of the Pannonian Basin for the pre-Quaternary period is outlined in connection with the gradual regression of Lake Pannon since the Late Miocene. Deltas of rivers that entered the basin from the northwest and northeast were gradually transformed into extended alluvial plains; thus, the earliest possible ancestor of the Danube coming southeastwards from the Alps could be as old as Late Miocene. By the Pliocene the whole Lake Pannon was infilled. The former extensional basin formation was replaced by a compresional stress field, which resulted in an uplift of the marginal flanks and late-stage subsidence anomalies. The increasing relief led to the formation of the Quaternary drainage pattern. The actively subsiding young basins were filled by fluvial sediments, transported by the Danube and Tisza river systems from the uplifting mountains. Between the subsiding regions of the Little and Great Plains, the Danube has formed an antecedent valley with terrace staircases between the uplifting sections of the Transdanubian Range and the North Midmountains. The formation of the terraces is attributed to periodic climate changes during the Pleistocene combined with differences in the uplift rate. The paper gives a complex overview of the classical chronology of the six terraces based on various data sources: mostly dating of loess/paleosol sequences, travertines, aeolian sand, and tephra strata overlying the fluvial sediments, complemented by scattered vertebrate faunal data and archaeological evidence directly from the terrace sediments.The Quaternary drainage pattern evolution of the Great Plain, with a strong tectonic control, is discussed in detail. Rivers originating from the uplifting marginal areas were drawn towards the subsiding depressions which served as local base level. Changes in subsidence rates in space and time throughout the Quaternary resulted in the evolution of a complex drainage pattern. A special emphasis is placed on the Late Pleistocene–Holocene development of the Middle–Tisza region and the Körös basin, where the Berettyó–Körös Rivers form an eastern tributary system of the Tisza River. A comparative evaluation of these two areas is especially relevant, as they provide insights into large-scale Late Pleistocene avulsion of the Tisza River. OSL dating, complemented with inferred transport directions determined from heavy mineral analysis of fluvial sediments in the Körös basin, has revealed an ancient large meandering river system that can be identified with the palaeo-Tisza, which was flowing along a tectonically controlled depression during the Late Pleniglacial. Successions in the Middle Tisza region have allowed differentiation between the older channels of the palaeo-Bodrog River and the Sajó–Hernád alluvial fan and the younger meander belts of the new course of the Tisza. In the Tisza system, changes in river style (braided to various scales of meandering) show correspondence to millennial-scale climate changes of the last 25 ka, while in the Körös basin the effects of tectonics are overprinted onto the regional climatic signals.  相似文献   

8.
三塘湖盆地处于西伯利亚板块南缘,早石炭世晚期,盆地褶皱基底形成;晚石炭世早期,总体处于碰撞期后伸展构造环境;晚石炭世晚期,洋壳消亡,断陷收缩与整体抬升,形成剥蚀不整合.早二叠世,进入陆内前陆盆地演化阶段;中二叠世,盆地进入推覆体前缘前陆盆地发育期;晚二叠世,构造褶皱回返,前陆盆地消失;三叠纪晚期至侏罗纪中期,进入统一坳...  相似文献   

9.
The discrepancy between the size of the Apenninic chain and the depth of the Adriatic foredeep is investigated using 2D flexural backstripping on well‐constrained depth‐converted cross‐sections in the Pescara basin (Central Italy). The procedure consisted of removal, uplift, unfolding and unfaulting of the Pliocene–Pleistocene foreland deposits to produce a palaeogeographic map of the basin at the end of the Messinian and to constrain sedimentary rates since the Miocene. Results are found to support the contribution of an external load to the foreland evolution together with the Apenninic chain load. The interplay of the two types of loads resulted in spatial and temporal variations of the foredeep evolution that are quantified by palaeogeographic maps and sedimentation rates obtained through backstripping. Results are interpreted as representing the effects of a southward‐migrating wave linked to slab detachment beneath the Adriatic foredeep. This procedure can be useful to investigate similar problems on other chains worldwide.  相似文献   

10.
青藏高原中侏罗世-早白垩世羌塘复合型前陆盆地充填模式   总被引:34,自引:5,他引:34  
根据沉积物碎屑组分、粗碎屑楔状体、边缘相、古流向和沉积、沉降中心等重建了盆地结构、古地理和古地貌,认为该盆地是在中侏罗世-早白垩世多岛洋体制下形成的一种复杂的、特殊类型的复合前陆盆地,它的形成和发展同金沙江缝合带与班公湖-怒江缝合带的碰撞和对冲有关,是盆地两侧板块边缘的大型逆冲作用的产物。在此基础上,根据中央隆起地貌景观交替性变化和盆地中“三砂二灰”的幕式沉积特点,将中侏罗世-早白垩世羌塘前陆盆地演化过程分为 5个阶段,其中巴通期和牛津-提唐期是羌塘盆地南北两侧构造活动相对平静期,而巴柔期、卡洛期、提唐-贝里阿斯期是羌塘盆地南北两侧构造活动强烈时期,强烈的逆冲推覆作用产生大量的构造负载,导致中央隆起强烈地挠曲隆升,造成了盆地中的幕式沉积,产生构造层序和层序,恢复了羌塘前陆盆地沉积记录与两侧缝合带的逆冲作用的相互关系.  相似文献   

11.
The modern Tianshan is an active intracontinental range in central Asia. Its initial timing is poorly known and still hotly debated. As the subsidence of foreland basins is intrinsically coupled with the uplift of orogenic wedges, the foreland sedimentary records may accurately constrain the Tianshan uplifting history. To better address the question, we analyse a seismic profile across the southern Junggar foreland basin to decipher its tectonic and stratigraphic history. Four structural layers can be identified in an ascending order: the Permian – Lower Jurassic transtension‐related layer, the Jurassic – Cretaceous thermal‐subsistence layer, the Palaeogene layer and the Miocene – Quaternary foreland sedimentary layer. The oldest sedimentary sequence in the foreland succession is of the Shawan Formation deposited at ~24 Ma based on magnetostratigraphic constraints. This indicates that foreland deformation in the northern Tianshan and uplifting of the modern Tianshan probably initiated at the beginning of the Miocene.  相似文献   

12.
第四纪中国自然环境变迁的原因机制   总被引:6,自引:1,他引:6  
作者在重建晚第三纪和第四纪古气候环境的基础上,着重讨论了晚第三纪和第四纪古气候之间的显著差异以及引起中国第四纪自然环境大幅度变迁的主要原因机制。中国新生代晚期构造运动导致自然环境的巨大变迁,其中青藏高原隆起的影响尤为突出。作者认为,青藏高原隆起及其反馈作用、季风环流的加强以及全球气候变化的影响,协同成为中国第四纪气候大幅度变化的主要原因,当然也是新生代晚期以来,尤其是中更新世以来中国自然环境变迁的主要原因机制。  相似文献   

13.
米仓山南缘中生代沉积盆地性质讨论   总被引:2,自引:0,他引:2       下载免费PDF全文
米仓山南缘位于四川盆地北部地区,前人认为该地区晚三叠世-白垩纪受控于米仓山造山作用形成的前陆盆地.实际上,无论是按照经典的前陆盆地概念,还是陆内前陆盆地或陆内俯冲前陆盆地等术语,米仓山南缘中生代为前陆盆地值得商榷,其一些关键的地质问题必须给以重视.主要表现在:①平面构造图显示,米仓山地区,前震旦系基底与震旦系盖层之间构成一规模较大的不完整的背斜穹隆,盖层围绕基底分布,说明不是构造推覆体;②不存在形成前陆盆地的区域应力,即该区在晚三叠世开始主要是升隆作用而非强烈的推覆挤压,研究资料表明该地区大规模的逆冲推覆作用发生在燕山期,米仓山的形成也应在该时限之内,之前米仓山为一继承性的隆起;③不具备前陆盆地的沉积格局,即晚三叠世-侏罗纪的沉积格局不是呈楔形展布.鉴于此,笔者认为前陆盆地术语不适用于米仓山南缘晚三叠世-侏罗纪沉积盆地的类型.  相似文献   

14.
罗布泊东部阿奇克谷地第四纪古地理   总被引:5,自引:0,他引:5  
通过对罗布泊东部阿奇克谷地中部AK1孔及露头剖面第四纪沉积特征的综合研究,初步分析了阿奇克谷地第四纪以来的沉积环境与古地理演化。结果表明,阿奇克谷地第四纪古地理受上新世以来区域构造控制,谷地两侧北山及阿尔金山的隆升,一方面为其提供了丰富的物质来源,同时也控制了其沉积环境的演化。其中第四纪以来阿奇克谷地沉积环境有两次明显变化,早更新世中期谷地中开始出现湖相沉积;中更新世晚期湖相沉积范围扩大,为罗布泊湖的大发展期。晚更新世谷地两侧普遍出现砾石层,与中更新世呈不整合接触,表明构造抬升造成湖泊退缩。晚更新世以来湖泊沉积环境波动变化加快。  相似文献   

15.
The Bajo Segura Basin is located in the eastern Betic Cordillera, at present connected with the Mediterranean Sea to the east. It has a complete stratigraphic record from the Tortonian to the Quaternary, which has been separated into six units bounded by unconformities. This paper is concerned with the northern edge of the basin, controlled by a major strike–slip fault (the Crevillente Fault Zone, CFZ), where the most complete stratigraphic successions are found. The results obtained (summarised below) are based on an integrated analysis of the sedimentary evolution and the subsidence-uplift movements. Unit I (Early Tortonian) is transgressive on the basin basement and is represented by ramp-type platform facies, organised in a shallowing-upward sequence related to tectonic uplift during the first stages of movement along the CFZ. Unit II (lower Late Tortonian) consists of shallow platform facies at bottom and pelagic basin facies at top, forming a deepening-upward sequence associated with tectonic subsidence due to sinistral motion along the CFZ. Unit III (middle Late Tortonian) is made up of exotic turbiditic facies related to a stage of uplift and erosion of the southern edge of the basin. Unit IV (upper Late Tortonian) consists of pelagic basin facies at bottom and shallow platform facies at top, defining a shallowing-upward sequence related to tectonic uplift during continued sinistral movement on the basin-bounding fault. Units V (latest Tortonian–Messinian) and VI (Pliocene–Pleistocene p.p.) consist of shallowing-upward sequences deposited during folding and uplift of the northern margin of the basin. No definitive evidence of any major eustatic sea-level fall, associated with the ‘Messinian salinity crisis’, has been recorded in the stratigraphic sections studied.  相似文献   

16.
中生代羌塘前陆盆地充填序列及演化过程   总被引:40,自引:1,他引:40  
李勇  王成善  伊海生 《地层学杂志》2002,26(1):62-67,79
中生代羌塘前陆盆地位于青藏高原巨型造山带内 ,夹于金沙江缝合带与班公湖—怒江缝合带之间 ,是一个与两侧缝合带逆冲作用相关的沉积盆地 ,由羌北盆地 (对应于金沙江缝合带 )、羌南盆地 (对应于班公湖—怒江缝合带 )和中央隆起带构成 ,其中中央隆起是北部前陆盆地和南部前陆盆地共有的前陆隆起 ,显示为对称型复合前陆盆地 ;该盆地形成于晚三叠世 ,并持续发育至早白垩世 ,盆地中充填了巨厚的同构造期的复理石和磨拉石 ,具有总体向上变粗变浅的充填序列 ,以不整合面可将其划分为 5个由顶底不整合面限制的构造层序 ,其中晚三叠世诺利期构造层序对应于金沙江缝合带主碰撞期 ,晚三叠世瑞替期构造层序对应于金沙江缝合带碰撞闭合后冲断抬升 ,早侏罗世构造层序对应于班公湖—怒江缝合带初始逆冲推覆 ,中侏罗世—早白垩世构造层序对应于班公湖—怒江缝合带主碰撞期 ,中白垩世构造层序为班公湖—怒江缝合带碰撞闭合后冲断抬升与金沙江缝合带冲断抬升的产物 ,为中生代羌塘盆地关闭后的磨拉石建造  相似文献   

17.
准噶尔东北缘前陆盆地构造演化与油气关系   总被引:16,自引:0,他引:16  
在挤压构造环境下,造山带与相邻的克拉通之间形成前陆盆地,其演化是由早期不稳定阶段向晚期稳定阶段不断发展。准噶尔盆地东北缘于克拉麦里山前形成典型的前陆盆地。前陆盆地及前缘陆隆的演化、迁移与克拉麦里深大断裂的走滑发展休戚相关。早石炭世前陆盆地位于陆南-滴西地区,晚石炭世迁至东部大井-石钱滩北部,二叠纪,受克拉麦里大断裂影响,开始向西迁移至五彩湾一带;晚二叠世晚期前陆盆地消失,进入统一拗陷时期。前陆盆地的发展演化过程中,早期与晚期的构造应力作用松弛期,为前陆盆地发育期,分别形成该地区滴水泉组与平地泉组两套烃源岩。其中滴水泉组形成的石炭纪原生油气藏,在后期的构造变动中,遭受了破坏,油气发生散失,而平地泉组最具现实意义。前缘陆隆的变迁,控制着油气的运移方向;前缘陆隆于演化过程中逐步被NE向构造改造,后期得到不断加强的古隆起之上的NE向构造是油气有利聚集带。  相似文献   

18.
In southern Poland, Miocene deposits have been recognised both in the Outer Carpathians and the Carpathian Foredeep (PCF). In the Outer Carpathians, the Early Miocene deposits represent the youngest part of the flysch sequence, while in the Polish Carpathian Foredeep they are developed on the basement platform. The inner foredeep (beneath the Carpathians) is composed of Early to Middle Miocene deposits, while the outer foredeep is filled up with the Middle Miocene (Badenian and Sarmatian) strata, up to 3,000mthick. The Early Miocene strata are mainly terrestrial in origin, whereas the Badenian and Sarmatian strata are marine. The Carpathian Foredeep developed as a peripheral foreland basin related to the moving Carpathian front. The main episodes of intensive subsidence in the PCF correspond to the period of progressive emplacement of the Western Carpathians onto the foreland plate. The important driving force of tectonic subsidence was the emplacement of the nappe load related to subduction roll-back. During that time the loading effect of the thickening of the Carpathian accretionary wedge on the foreland plate increased and was followed by progressive acceleration of total subsidence. The mean rate of the Carpathian overthrusting, and north to north-east migration of the axes of depocentres reached 12 mm/yr at that time. During the Late Badenian-Sarmatian, the rate of advance of the Carpathian accretionary wedge was lower than that of pinch-out migration and, as a result, the basin widened. The Miocene convergence of the Carpathian wedge resulted in the migration of depocentres and onlap of successively younger deposits onto the foreland plate.  相似文献   

19.
祁连山东南缘第四纪以来的隆升作用及动力学分析   总被引:3,自引:0,他引:3  
祁连山东南缘隆升是来自印度板块挤压的远程效应与该区周边地块的存在及其活动的相互制约作用而产生的挤压隆升、伸展隆升和左旋走滑隆升共同作用的结果.标志性构造及主应力分析表明, 自早更新世以来, 隆升动力机制不断发生转换, 在早更新世早期以北东-南西向挤压为主, 中更新世早期至全新世早期以北东-南西向拉张、近东-西向的拉张为主, 全新世晚期以北西-南东向左旋扭动为主.根据湟水河阶地有关数据估算出的不同时段河谷下切速率为: 1.4 1× 103 ~ 36.4ka间平均速率较慢(0.11mm/a), 36.4ka至今较快(1.5 4mm/a), 其中10.5~ 3ka间最快(2.2 7~ 2.80mm/a), 显示该区自1.4 1Ma至今构造隆升具有越来越强烈的变化趋势.   相似文献   

20.
晚印支期以来中国南方大陆的构造演化与油气分布   总被引:2,自引:0,他引:2  
中国南方大陆于中三叠世末的印支期结束海相沉积历史,进入陆内构造演化阶段。中一新生代发生显著的陆内造山与板内变形,并存在三种不同的造山与变形机制:晚印支期—早燕山期为发生于陆—陆或弧—陆之间的碰撞造山,伴生形成一批前陆盆地;中燕山期为发生于板内的基底拆离隆升造山和板内递进变形,伴生形成山前、山间磨拉石盆地;晚燕山期—喜马拉雅期为大陆蠕散、壳幔隆升而引起的基底隆升剥离造山和伸展变形,伴生形成大型陆内裂谷盆地。晚印支期以来的构造作用在平面上表现为由老至新、自强而弱的递进推覆序列,根据变形强度的差异可划分为 A、B、C、D 四个变形带,它们对海相油气的影响也由强而弱。处于 A、B 两个变形带的海相油气系统已遭受强烈的破坏;有利的勘探领域为处于 C、D 两个变形带的地区、前陆盆地掩覆的海相系统以及板缘推覆构造带掩覆的“影子盆地”。中一新生代前陆层序和大型裂谷盆地亦具广阔的油气勘探前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号