首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Understanding the connectivity of fish among different typical habitats is important for conducting ecosystembased management, particularly when designing marine protected areas(MPA) or setting MPA networks. To clarify of connectivity among mangrove, seagrass beds, and coral reef habitats in Wenchang, Hainan Province,China, the fish community structure was studied in wet and dry seasons of 2018. Gill nets were placed across the three habitat types, and the number of species, individuals, and body size of individual fish were recorded. In total, 3 815 individuals belonging to 154 species of 57 families were collected. The highest number of individuals and species was documented in mangroves(117 species, 2 623 individuals), followed by coral reefs(61 species,438 individuals) and seagrass beds(46 species, 754 individuals). The similarity tests revealed highly significant differences among the three habitats. Approximately 23.4% species used two habitats and 11.0% species used three habitats. A significant difference(p0.05) in habitat use among eight species(Mugil cephalus, Gerres oblongus, Siganus fuscescens, Terapon jarbua, Sillago maculata, Upeneus tragula, Lutjanus russellii, and Monacanthus chinensis) was detected, with a clear ontogenetic shift in habitat use from mangrove or seagrass beds to coral reefs. The similarity indices suggested that fish assemblages can be divided into three large groups namely coral, seagrass, and mangrove habitat types. This study demonstrated that connectivity exists between mangrove–seagrass–coral reef continuum in Wenchang area; therefore, we recommend that fish connectivity should be considered when designing MPAs or MPA network where possible.  相似文献   

2.
海草床是海岸带最富生产力的生态系统之一,支撑着各种各样的伴生生物。热带的印度和太平洋地区被认为拥有海草植物种类多样性最高,且分布面积最广,然而,这个区域的海草床大型底栖生物我们知之甚少。为了填补认知的空白,我们在该区域开展了一项生态调查,旨在描述该区热带海草床大型底栖生物的丰度和多样性,以及确定大型底栖生物丰度、物种丰富度和群落结构是否明显存在断面内的站间变化和样地间变化。2014年5月和2015年10月我们分别在北苏拉威西省东海岸和西海岸开展野外工作,使用柱状取样器采集海草床大型底栖生物样品。所得样品共计鉴定14大类149种底栖生物,种类最为丰富的类别为多毛类(56种,占26%的总个体数),十足类(20种,占9%的总个体数)和端足类(18种,占35%的总个体数)。东、西海岸海草床大型底栖生物表现出不同的空间分布模式。在东海岸,同一断面的大型底栖生物和端足类的丰度存在显著的站间差异;而在西海岸,大型底栖生物和多毛类的种类丰富度和丰度都表现出明显的站间变化,这可能归结于同一断面底质不均所造成。单因素ANOSIM以及MDS排序表明了北苏拉威西省东海岸和西海岸海草床大型底栖生物群落结构存在显著不同,正好对应于将海草床分成两大类型的栖息地,即西海岸的红树林-海草床-珊瑚连续体和东海岸的海草床-珊瑚连续体。与在热带海区开展的其他研究相比,本研究的大型底栖生物丰度和多样性处于中等水平。东、西海岸海草床大型底栖生物群落存在显著区别,其原因可能源于多方面,包括了沉积物模式,海草床结构和时间变化。  相似文献   

3.
In the tropics and sub-tropics, estuarine environments with mangrove and seagrass habitats provide important structures and resources for diverse communities of benthic organisms. However, temperate estuarine habitats, especially in mangrove areas, may differ significantly in their community associations and interactions. The community composition of benthic macro-fauna was investigated within temperate Matapouri Estuary, northern New Zealand. The density and distribution of fauna were sampled within six distinctive habitats (mangrove stands, pneumatophore zones, Zostera beds, channels, banks, and sand flats), within four sampling events between December 2002 and September 2003. Each type of habitat was replicated seven times within different locations in the estuary. Counts of all infauna and epifauna within four replicate cores were recorded from each habitat and location. Multidimensional scaling plots were used to identify differences in structure and composition of assemblages among habitats and locations within each sampling event. Results from these benthic samples indicate that Matapouri Estuary has a high overall biodiversity, with distinctive faunal assemblages found within different habitats, and some seasonal variations also apparent. In terms of both number of individuals and taxa per unit area, seagrass beds had the highest numbers and mangrove areas had the lowest numbers, with all other habitats in between. Some locations were found to support a high diversity of organisms across habitats, while other locations had high densities of a few species only. Several physical and biological differences between tropical/sub-tropical and New Zealand's temperate mangrove habitats are put forth as potential reasons for the lower density and diversity of the benthic component observed herein. Further ongoing studies aim to elucidate the structure and interactions within food webs in this estuarine ecosystem.  相似文献   

4.
Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes (Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different life stages. This is important for conservation and management of these habitats, as essential habitats or seasons may be ignored or over-emphasized with respect to their importance for fish during different parts of their life cycle.  相似文献   

5.
Seagrass beds have higher biomass, abundance, diversity and productivity of benthic organisms than unvegetated sediments. However, to date most studies have analysed only the macrofaunal component and ignored the abundant meiofauna present in seagrass meadows. This study was designed to test if meiobenthic communities, especially the free-living nematodes, differed between seagrass beds and unvegetated sediments. Sediment samples from beds of the eelgrass Zostera capricorni and nearby unvegetated sediments were collected in three estuaries along the coast of New South Wales, Australia. Results showed that sediments below the seagrass were finer, with a higher content of organic material and were less oxygenated than sediments without seagrass. Univariate measures of the fauna (i.e. abundance, diversity and taxa richness of total meiofauna and nematode assemblages) did not differ between vegetated and unvegetated sediments. However multivariate analysis of meiofaunal higher taxa showed significant differences between the two habitats, largely due to the presence and absence of certain taxa. Amphipods, tanaidacea, ostracods, hydrozoans and isopods occurred mainly in unvegetated sediments, while kinorhyncs, polychaetes, gastrotrichs and turbellarians were more abundant in vegetated sediments. Regarding the nematode assemblages, 32.4% of the species were restricted to Z. capricorni and 25% only occurred in unvegetated sediments, this suggests that each habitat is characterized by a particular suite of species. Epistrate feeding nematodes were more abundant in seagrass beds, and it is suggested that they graze on the microphytobenthos which accumulates underneath the seagrass. Most of the genera that characterized these estuarine unvegetated sediments are also commonly found on exposed sandy beaches. This may be explained by the fact that Australian estuaries have very little input of freshwater and experience marine conditions for most of the year. This study demonstrates that the seagrass and unvegetated sediments have discrete meiofaunal communities, with little overlap in species composition.  相似文献   

6.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   

7.
Brian  Kensley 《Marine Ecology》1984,5(1):29-44
Abstract. The species composition and numbers of specimens of isopod crustaceans from the rubble of a Belizean reef crest were obtained. Four sets of 30 samples were taken from three rubble zones (rubble with algal turf, rubble between Thalassia plants, and pure rubble), in four different collecting periods. Twenty-four species of isopods were identified, sexed and counted. By means of a Likelihood Ratio Chi-square Contingency Table Analysis the presence of 13 species was shown to be positively correlated with habitat, 15 species with season, and nine species with habitat and season combined. From the spread of total numbers and of ovigerous females it is proposed that the isopods may be grouped into three patterns: a) those present and breeding in the reef crest rubble throughout the year, i. e. stress-tolerant species; b) those showing a breeding peak in summer and a population decrease in winter-spring, i. e. opportunist species; and c) those showing a breeding peak in the fall, and a second peak in spring, and a decrease or complete avoidance of the habitat, especially by ovigerous females, in the summer. The diversity of the Belizean reef crest isopod fauna is compared with the published report of the isopod fauna of a coral reef in Madagascar. Several similarities in composition are noted. The multiplicity of microhabitats is invoked as a possible explanation for the relatively high diversity of anthuridean isopods in coral reefs.  相似文献   

8.
山东半岛东端以岩基海岸为主,而浅海多为岩礁底质,适宜大型藻类生长。为探究该海域的大型藻类群落结构特征,于2018年11月(秋)、2019年2月(冬)、5月(春)和8月(夏)对山东荣成马山里海域的三个典型生境(草床区、天然礁区和泥沙区)中的大型藻类进行了调查。结果显示:三种生境共鉴定出大型藻类23种,其中红藻门15属15种,褐藻门3属4种,绿藻门3属4种。物种数最高值出现在天然礁区(22种),最低值出现在泥沙区(12种)。生物量最高值为春季草床区(1567.44±21.29)g.m-2、最低值为秋季的泥沙区(594.45±107.06)g.m-2。大型藻类优势种在不同生境、不同季节不同:草床生境为小珊瑚藻,在四个季节中均占绝对优势;礁区为绿藻向红藻、褐藻变化;泥沙区为从红藻到褐藻变化。Pielow均匀度指数的最高值在三个生境中相近且均出现在冬季;多样性指数最高值、最低值分别出现在礁区与泥沙区;Margalef丰富度指数的最高值出现在秋季的礁区,而最低值出现在夏季的泥沙区;聚类与排序结果表明,大型藻类群落结构在不同生境不同季节差异都显著。结果表明,生境特征和季节性变化是影响底栖大型海藻群落结构的主要因素。  相似文献   

9.
The decapod assemblages associated with two shallow meadows of Cymodocea nodosa, located in the same geographical area (Southern Spain) but on different substrates and with different patch size, have been analyzed. They display similar structure (diversity indices not significantly different), without a clear relation of richness and abundances to patch size, and with the same dominant species (the family Hippolytidae and, in particular, Hippolyte leptocerus are characteristic of this habitat). The composition of both crustacean assemblages is influenced by species that are common in neighbouring habitats. Therefore the connectivity among them is an important factor in the qualitative and quantitative structure of these decapod communities. Species richness appears to be higher than in Cymodocea meadows elsewhere in the Mediterranean and Atlantic at a similar depth, perhaps as a consequence of the biogeographical location and the high diversity and connectivity with surrounding biotopes. High evenness values are the result of the structure and location of these meadows, which are fragmented and interspersed with other biotopes (sandy and rocky bottoms), resulting in an ‘ecotone effect’. On the other hand, the structures of the decapod assemblages differ significantly according to sampling period. The abundance and species richness are both related to plant phenology and the dominant species present a positive correlation with the number of leaves per shoot. The maximum abundance of many species is coincident with the greatest seagrass development (spring – summer), which provides more resources (surface, biomass, protection, food). Therefore, seasonality is linked to plant life cycle, but also to the interrelationships and biology of the species, which are adapted and specialized to the environmental features of these shallow habitats.  相似文献   

10.
The faunal communities of four intertidal habitats namely sand, mud, seagrass (Zostera noltii) and seagrass patches (mixSM) of a temperate coastal lagoon, Ria Formosa (southern Portugal), were sampled. A total of 47 species were taken in 428 bottomless drop sampler samples, with the highest number of species and the more commonly occurring species belonging to the Mollusca phylum. The dominance of these gastropod species underlines the importance of the grazing food chain in these habitats. Bittium reticulatum was the most abundant species, being especially abundant in the seagrass habitat. The most frequent and highest biomass species in the community was Carcinus maenas, a predator that makes use of the available resources and that is adapted to the highly variable intertidal environment. Pomatoschistus microps was the most abundant fish species, with highest densities in the mud habitat, which demonstrates an ability to occupy a low depth area. The seagrass habitat had the highest diversity, abundance and biomass, followed by the mixSM habitat and was different from all the others. Assemblages were highly influenced by the presence of vegetation, providing forage and refuge from predation. A well defined summer group was identified in all habitats. These results highlight the importance of seagrass beds and the idea that their decrease implies the decrease of lagoon production through the impoverishment of the trophic structure of the lagoon.  相似文献   

11.
Sponges are inhabited by a wide variety of organisms and have been regarded as one of the richest biotopes in tropical seas. The aim of this study was to assess the influence of the host morphology and selected environmental conditions on macrofaunal assemblages associated with the sponge Halichondria melanadocia in an estuarine system of the southern Gulf of Mexico. This sponge exhibits different growth forms when it inhabits mangrove prop roots of Rhizophora mangle (thickly encrusting form) and adjacent seagrass beds (massive, amorphous or ramose form). From a total of 50 sponge specimens collected in each habitat, a total of eight taxa (of epi‐ and endobionts) was found associated with this sponge, with polychaetes, echinoderms and crustaceans the most abundant groups. In both morphotypes (thickly‐encrusting and massive‐ramose forms), taxon richness was positively related to sponge volume and oscular diameter. The overall mean abundance of associated fauna was also positively related to sponge volume in both morphotypes and with the oscular diameter (in the seagrass morphotype only). These findings suggest that H. melanadocia constitutes an important microhabitat for a wide variety of fauna, independent of its morphology and habitat type. However, when comparing the two morphotypes, the mangrove individuals, despite having smaller sizes, smaller oscular diameter and less structural complexity, displayed an overall mean abundance of fauna 17 times higher [0.36 ± 0.18 individuals (ind.)·ml·sponge?1] than that recorded in the seagrass individuals (0.021 ± 0.01 ind.·ml·sponge?1). There were also marked differences in the proportions of the major taxonomic groups; in fact, some of them were found exclusively in one morphotype. The variability recorded in the composition and abundance of associated fauna between the morphotypes seems to be influenced by differences in sponge morphology, environmental conditions (e.g. sedimentation rate and light intensity), substrate orientation and the fauna inhabiting the surrounding area.  相似文献   

12.
In the northern Wadden Sea, the extent of intertidal seagrass beds, their plant biomass and shoot density highly depends on local current regimes. This study deals with the role of intertidal Zostera noltii beds as nursery for mobile epibenthic macrofauna and the impact of seagrass bed characteristics on their abundance and distribution patterns. According to their exposure to the main tidal gullies, sampling sites were separated into exposed, semi-exposed and sheltered. Dominant species of crustaceans and demersal fish were studied in respect of their abundances within seagrass beds and adjacent unvegetated areas. Quantitative sampling was performed at day and night high tide using a portable drop trap. In general, species composition varied little between seagrass beds and bare sand. However, the presence of vegetation had a quantitative effect increasing individual numbers of common epifaunal species. Abundances of 0-group shore crabs (Carcinus maenas), common gobies (Pomatoschistus microps) and brown shrimps (Crangon crangon) were highest within sheltered seagrass beds. With decreasing plant density habitat preference of epibenthos changed on species level. By regulating the habitat complexity the currents regime is profoundly influencing the nursery function of intertidal seagrass beds in the Wadden Sea.  相似文献   

13.
Habitat choice of reef fish larvae at settlement is one of the mechanisms proposed to explain spatial patterns in the distribution of fishes and the corresponding spatial structure of communities. Field experiments using Pomacentridae were conducted at Iriomote Island, southern Japan, in order to determine if rare recruitment of coral reef fishes in seagrass beds is due to larval settlement preference. When three types of natural patch treatments (branching coral patch, seagrass patch, and control without patches) were established in cleared seagrass squares in the center of a seagrass bed, four pomacentrid species, Amblyglyphidodon curacao, Dischistodus prosopotaenia, Cheiloprion labiatus, and Dascyllus aruanus, recruited exclusively onto the coral patches, indicating that larvae distributed in the seagrass bed may have preferred a coral rather than seagrass substrate as a settlement habitat. The effects of differences in physical shape (grid structure for branching coral vs. vertical structure for seagrass leaves) and rigidity (rigid substrate for coral vs. flexible substrate for seagrass) between coral and seagrass substrates on such recruitment patterns were investigated using artificial coral and seagrass units. When artificial habitat units with predator exclusion cages were established in the cleared seagrass squares as above, high densities of A. curacao and D. prosopotaenia recruits were observed on the rigid rather than flexible habitat units (both unit types having similar shape), whereas differences in recruit numbers of the two species were unclear in differently shaped units. These results demonstrated that even though pomacentrid larvae are distributed in the seagrass bed, they do not settle on the seagrass substrate owing to their habitat choice being partially based on a preference for substrate rigidity. Moreover, non-recruitment of C. labiatus and D. aruanus on artificial habitat units suggested that the presence of living coral substrates rather than physical shape/rigidity of substrates are an important cue for habitat choice of these fishes.  相似文献   

14.
The present study investigates the different uses and the functional roles of shallow habitats for fish fauna in the Venice Lagoon, by applying the functional guilds approach. Temporal (seasons) and spatial (location) changes within the lagoon show different habitat uses by fish assemblages, not influenced by local factors. Unvegetated mud habitats (salt marsh creeks and sub-tidal mud flats) and sparsely vegetated (seagrass) habitats show a common nursery role, especially for marine migrant fishes; but, contrary to other similar areas elsewhere shallow seagrass beds in the Venice Lagoon do not have a primary nursery role. This latter habitat has a more important role as a spawning ground for a resident, highly specialized component of the fish community. The habitat uses and their role to fish fauna illustrate the balance between predation risk and foraging profitability, as major factors structuring the fish assemblages. Spatial effects at a larger scale also highlight general characteristics of the fish assemblages in the Venice Lagoon. These indicate differences between the Northern sub-basin and the other two lagoon sub-basins, due to differences in the hydrodynamic regime, habitats distribution, and contributions from land and sea.  相似文献   

15.
By creating novel habitats, habitat‐modifying species can alter patterns of diversity and abundance in marine communities. Many sea urchins are important habitat modifiers in tropical and temperate systems. By eroding rocky substrata, urchins can create a mosaic of urchin‐sized cavities or pits separated by exposed, often flat surfaces. These microhabitats appear to harbor distinct assemblages of species. We investigated how a temperate rocky intertidal community uses three small‐scale (<100 cm2) microhabitats created by or adjacent to populations of the purple sea urchin (Strongylocentrotus purpuratus): pits occupied by urchins, unoccupied pits, and adjacent flat spaces. In tidepools, flat spaces harbored the highest percent cover of algae and sessile fauna, followed by empty pits and then occupied pits. The Shannon diversity and richness of these sessile taxa were significantly higher in flat spaces and empty pits than in occupied pits. The composition of these primary space holders in the microhabitats also varied. Unlike primary space holders, mobile fauna exhibited higher diversity and richness in empty pits than in flat spaces and occupied pits, although results were not significant. The protective empty pit microhabitat harbored the highest densities of most trophic functional groups. Herbivores, however, were densest in flat spaces, concordant with high algal coverage. These results suggest the habitats created by S. purpuratus in addition to its biological activities alter community structure at spatial scales finer than those typically considered for sea urchins.  相似文献   

16.
17.
Carmen-Pia  Günther 《Marine Ecology》1996,17(1-3):117-130
Abstract. The development of temporary Mytilus edulis beds and their associated macro fauna was studied on an intertidal sand flat in the German Wadden sea during 1986 by comparing mussel beds with bare sandy areas of the same tidal elevation. Macro fauna samples We taken with a 100 cm2 corer (penetration depth 27 cm, mesh size 0.5 mm, 5 parallel samples).
Numbers of taxa and diversity were higher in the mussel beds compared to the sandy areas. The abundance of macro fauna organisms decreased with the age of the mussel bed, whereas the relative abundance of species was not strongly affected. Hydrobia ulvae , oligochaetes, and Heteromastus filiformis dominated the macro fauna inside as well as outside the mussel beds. Among the lower ranks of dominance changes in species composition were observed due to increasing densities of opportunistic polychaetes.
About six weeks after the establishment of the mussel beds a higher abundance of Capitella spp., Polydora ligni, Tharyx marioni , and nemerteans occurred within the mussel beds while other species such as Hydrobia ulvae and Pygospio elegans showed a significantly lower abundance compared to the adjacent flat. Macoma balthica as well as Mya arenaria were not affected by the alteration of a bare sand flat to a mussel bed. O-group Carcinus maenas reached their highest abundance in the mussel beds (over 1000 indiv. m-2). In contrast juvenile Crangon crangon preferred the bare sand flat. After destruction of the mussel beds by an early autumn storm, species abundance and composition was similar to the situation before the mussel beds had become established.  相似文献   

18.
广东沿海新发现的海草床   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对广东沿海水域的现场调查, 新发现8个海草床, 主要分布在柘林湾、汕尾白沙湖、惠东考洲洋、大亚湾、珠海唐家湾、上川岛、下川岛和雷州企水湾。海草种类主要包括喜盐草(Halophila ovalis)、贝克喜盐草(Halophila beccarii)和矮大叶藻(Zostera japonica)等3种。海草覆盖率为6.67%—53.33%, 茎枝密度为3 428.57— 10 542.00shoots.m-2, 生物量为12.86—118.24g.m-2。海草床底上生物密度为16.67—734.67ind.m-2, 生物量为15.39—426.88g.m-2, 多样性指数为0.46—1.98, 均匀度指数为0.28—0.89。海草床生境受到的严重威胁主要来自围海养殖(养蚝、养螺)、污水排放、渔民作业方式(电鱼、电虾、扒螺、挖贝类)、自然灾害(台风和洪水)等。  相似文献   

19.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

20.
Caribbean spiny lobster (Panulirus argus) settle preferentially in macroalgal‐covered hard‐bottom habitat, but seagrass is more prevalent in Florida (United States) and the Caribbean, so even low settlement of lobsters within seagrass could contribute substantially to recruitment if post‐settlement survival and growth were high. We tested the role of seagrass and hard‐bottom habitats for P. argus recruitment in three ways. We first explored possible density‐dependent regulation of early benthic juvenile lobster survival within cages deployed in seagrass and hard‐bottom habitats. Second, we compared settlement and survival of P. argus in both habitats, by comparing the recovery of microwire‐tagged early benthic juveniles from patches of seagrass and hard‐bottom. Finally, we assessed the relative abundance of juvenile lobsters in each habitat by deploying artificial structures in seagrass sites and compared these data with data from similar deployments of artificial structures in hard‐bottom habitat in other years. More early benthic juvenile lobsters were recovered from cages placed in hard‐bottom than in seagrass, but mortality of the early benthic life stage was high in both habitats. In regional surveys, the mean number of lobsters recovered from artificial shelters deployed within seagrass was lower than in any year that we sampled hard‐bottom, indicating that fewer lobsters reside naturally in seagrass, particularly large juveniles >40 mm carapace length. The greater abundance (and likely survival) of juvenile P. argus that we observed in hard‐bottom habitat as opposed to seagrass, combined with previous studies demonstrating that postlarval P. argus are attracted to, settle in, and metamorphose more quickly in red macroalgae, confirm that macroalgae‐dominated hard‐bottom habitat appears to be the preferred and more optimal nursery for Caribbean spiny lobster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号