首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The ecology of the family Pinnidae was studied by sampling three pinnid species from 36 sampling sites across four different microhabitats in the Gulf of Thailand. The species spatial distributions were mostly uniform, with some populations having random distributions. Species abundances differed between sandy and coral habitats according to non-metric multi-dimension scaling analyses. Although the Gulf of Thailand is a relatively small geographic area, habitats are varied enough to provide variable shell densities. Small islands are important distribution areas, and coral reefs provide both direct and indirect shelter which support high abundances, densities and increased shell size. The highest density was recorded in sand beds within coral reefs. Low density and small shell size in sand beaches might be related to high mortality in shallow water or to adaptations for survival in shallow waters. A clear correlation between sediment composition and species abundance was found in Pinna atropurpurea; abundance increased with the sand content of the sediment. For P. deltodes, abundance increased as the rock fraction of the sediment increased. These results suggest that adaptations in Pinnidae, such as shell size, shell morphology, and the exposure of the shell above the sediment-water interface, are responses for survival in different habitats.  相似文献   

2.
Anthropogenic impacts and natural disturbances have been intense recently in the global scale, affecting the composition of coral reef benthic communities from coral to algal dominated reefs. However, this condition does not always occur considering corals are able to recover when the stressors falter. This study aims to investigate the change in coral reef benthic communities and the relationship among benthic categories. The study was carried out in 2014 and 2016 at five sites, three sites in the Lembeh Strait and two sites in Likupang, North Sulawesi Province. Underwater Photo Transect(UPT) was used at depth of around 4–6 m in slope areas. The result indicated that the benthic communities were slightly changing: the percent covers of hard corals, sponges, soft corals, macroalgae and substrate categories were not significantly different between the years but category of others, particularly seasonally growing hydroid, increased significantly, occupying the available substrates and overtopping other benthos surrounding. The study also found that there was a significant relationship between the change in benthic gradient and the number of hard coral colonies: when the composition becomes less complex, the number of colony declines. In contrast, the hard coral diversity remained unchanged, suggesting the coral reefs apparently have an ecological resilience(sustainable species diversity) against the change although ecological complexity declines. In addition, the hard coral cover was significantly correlated with soft coral and sponge covers, which did not change significantly among the years. In general, the coral reefs in North Sulawesi might experience a temporary blip due to the increasing percent cover of others, and be predicted to recover as there was no indication of soft corals and sponges to increase significantly. However, it is necessary to investigate the dynamic of benthic communities in different depth gradients to gain a comprehensive understanding as the communities respond differently to the light intensity.  相似文献   

3.
The Province of Khanh Hoa, Vietnam, is located in the western South China Sea and boasts a shoreline of 385 km and many islands. Previous studies have indicated the extreme diversity and abundance of coral reefs in its waters as compared with other coastal provinces of Vietnam. A study on the resilience of coral reefs against increased surface water temperature and anthropogenic impact is conducted at 19 reef sites in 2015. At each site, a series of parameters (e.g., coral covers, genus diversity, and coral recruitment, substratum heterogeneity, depth, water exchange level, and sediment deposit and water temperature) are measured quantitatively or semi-quantitatively. The measured data are rated based on the relationship between the parameter values and coral susceptibility; the consideration that reef health reflects the biological capability to adapt to environmental changes and the recruitment potential if bleached; and positive or negative influences of physical factors in the mitigation of thermal stress and protecting corals from bleaching. A cumulative analysis enables researchers to divide the studied reefs into four categories based on varying levels of reef health to support resilience, recovery, and vulnerability in the case of increased water temperature. Relevant management interventions for each category and other supporting activities are suggested to enhance management effectiveness and to plan the rehabilitation of coral reefs for biodiversity conservation and touristic development, taking into account the involvement of related stakeholders.  相似文献   

4.
How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems. Increasing evidence shows that similar to water in an oasis in the desert, there are stable nutrient supplies to coral reefs in oligotrophic oceans. Here, with emphasis on the fluxes of organic matter, we summarize at the ecosystem level(1) the multiple input pathways of external nutrients,(2) the storage of nutrients in reef organisms,(...  相似文献   

5.
From the Indian coast only limited data are available on the benthic fauna of the seagrass communities. In this study, seasonal variation in the distribution of macrobenthos and influence of environmental parameters was explored at four seagrass beds and two mangrove stations along the Minicoy Island, Lakshadweep, India, from September 1999 to August 2001. A total of 160 macrobenthic species from eight major groups represented the macrofauna of the Minicoy Island. Of the identified taxa, molluscs 70(gastropods 41.46%, bivalves 7.5%), polychaetes 27(16.88%), crustaceans 30(18.75%), echinoderms 11(6.88%) and remaining others. Average seasonal abundance of benthic macrofauna ranged from 219 to 711 ind./m2, species diversity varied from 1.45 to 3.64 bits per individual, species richness index ranged from 4.01 to 26.17, evenness 0.69 to 1.66. In general, the higher abundance and species diversity was noticed in southern seagrass stations and northern seagrass stations, but in the mangrove stations comparatively low species diversity was observed. Three-way analysis of variance indicated that all communities resulted as being significantly different between seagrass and mangrove station, mainly when the seasonal interaction was considered. Multivariate analyses were employed to help define benthic characteristic and the relationship between environmental parameters at the six monitoring stations. Results of cluster analyses and multidimensional scale plot suggest that for mangrove region, different physiographic provinces, lower salinity, dissolved oxygen and sediment biotic structure have a higher influence on the species composition and diversity than other oceanographic conditions.  相似文献   

6.
Seagrass beds degraded significantly since the last century on both, global and local scale. The seagrass species Enhalus acoroides (Linnaeus f.) Royle is a common species found in almost all marine ecosystems including bays, lagoons and around offshore islands in tropical regions of the West Pacific. It was shown that genetic diversity is an essential indicator of the conditions of ecosystems. In the present study, microsatellite markers were used to assess the genetic diversity and population structure of six distinct seagrass beds along the coast of the Khanh Hoa Province, Vietnam. The results indicate that the genetic diversity of the populations in the open sea is higher than in the lagoon. Seagrass beds occurring in disturbed sites show reduced genetic diversity. The fixing index value (FST) depicts a relatively high genetic structure among populations. Structure analysis clusters the populations into open sea and lagoon populations and cluster analysis and AMOVA indicate a significant difference between the two groups. There are low but non-significant positive correlations between geographic and genetic distances. The different habitats of the open sea and the lagoon are probably responsible for forming two groups.  相似文献   

7.
As a potential oil and gas reservoir, reef complexes have been a research focus from petroleum geologists for a long time. There are favorable conditions for the development of reef complexes in the South China Sea; however, their internal structures, evolution and distribution are still poorly understood. Based on 2D and 3D seismic data, the internal structures and evolution patterns of the reef complexes on the carbonate platform margin in the deep water areas over the western South China Sea were studied in detail. The result shows that two types of reef complexes, i.e., fault controlling platform margin reef complexes and ramp reef complexes have been developed in the study area. The reef complexes have independent or continuous mound or lenticular seismic reflections, with three internal structures (i.e., aggrading, prograding and retrograding structures). There are different growth rates during the evolution of the reef complexes, resulting in the formation of catch-up reefs, keep-up reefs and quick step reefs. The study also reveals that different platform margin reef complexes have different internal structures and distributions, because of the different platform types. These results may be applied to the exploration and prediction of carbonate platform margin reef complexes in other areas that are similar to the study area.  相似文献   

8.
Coral reefs are an sensitive-to-environment complex marine ecosystem. The ecosystem of corals is rich in biodiversity. Remote sensing offers a powerful tool for categorizing coral reefs and is the most cost-effective approach for the large-scale reef survey. The Dongsha Atoll, more than 300 km2 with an average depth of 10 m, is located at the northern continental margin of the South China Sea. It has been abused by destructive fishing during recent decades. Three satellite imageries (Quickbird2, ETM and SPOT5) are used to evaluate the capabilities of SPOT5 imagery to provide data that are useful for categorizing the current distribution of coral reefs therein. During the data processing, unsupervised classification functions are adopted for ETM and SPOT5 data, while the supervised classification method is used for Quickbird2. The classes are (or not) merged into coral reef, and then will be operated by vectorization, simplification, and topological analysis. There are 1 331 coral reefs larger than 100 m2 with a detection limit of 3×3 pixels at the multi-band data of Quickbird2, which is taken as the comparison baseline. The results extracted from SPOT5 and ETM images are less in number and area than those from the Quickbird2 image, whereas the results from SPOT5 data are better than those of ETM data at the silty lagoon due to its higher resolution. SPOT5 XS band 2 fails to distinguish the deep substrate inside the atoll compared with ETM data because of its poor penetration capability. Only SPOT XS band 1 cannot be used to differentiate coral reef from sand bottom. Merging the SPOT5 multi-bands data with the spatial resolution of SPOT5 pan-data and referring to ETM imagery are expected to provide an optimal satellite-based approach for mapping of coral reefs.  相似文献   

9.
INTRODUCTION Cryptofaunal communities consist of the animals and plants living within dead coral.As a very large part of a coral reef is composed of dead coral,the biomasses of crypto-faunal communities on a reef must be significant.And as many of the cryptofaunal animalsreproduce at regular intervals,rates of turnover of the community are also high and thusare major contributors to the productivity of coral reefs.Grassle(1973)collected a 4.7  相似文献   

10.
Short-term tidal and diel variations of autumn fish assemblage in a Zostera marina bed were investigated using 3 h interval samplings for 24 h in both spring and neap tide using a small beam trawl. A total of 1 346 fishes belonging to 19 species were collected at spring tide, whereas 1 115 fishes belonging to 17 species were at neap tide. The common fish species were Nuchequula nuchalis, Acanthogobius flavimanus, Takifugu niphobles, Acentrogobius pflaumii, and Pholis nebulosa with the former three species dominating at spring tide, while the latter two species being abundant at neap tide. Diel variation in abundance was significant with higher abundance at night than day, but there were no significant differences between spring and neap tides, and between ebb and flood tides (three-way ANOVAs). Diel variation in the abundance of fishes may be influenced by tidal range and cycle, and day-night differences of food availability and behaviors of fishes indirectly. Non-metric multidimensional scaling (nMDS) ordination and analysis of similarity (ANOSIM) results revealed significant differences in species compositions both between day and night, and between spring and neap tide. Eelgrass beds are highly productive marine ecosystem, and thus, our results will contribute to conservation of seagrass ecosystem in the study area.  相似文献   

11.
Tropical shallow-water habitats such as mangroves and seagrass beds are widely acknowledged as important juvenile habitats for various coral reef fish species, most of which are commercially important to fisheries. Spatio-temporal variability in ontogenetic habitat use by fish among these tropical coastal ecosystems has rarely been investigated, yet there are sufficient reasons to believe that this plays an important role. In the present study, we test the spatio-temporal variability in patterns of ontogenetic habitat use by some mangrove/seagrass-associated coral reef fishes (Lethrinus harak, Lethrinus lentjan, Lutjanus fulviflamma and Siganus sutor). Abundances of these four species were investigated during two years in Tanzanian coastal waters, using underwater visual census in mangrove, seagrass, shallow and deep mudflat, and shallow and deep coral reef habitats. The study covered four distinct seasons of the year and was done at two spatially separated (>40 km) locations. Averaged across locations, seasons and years, juveniles (≤10 cm length) of the four study species had significantly higher relative densities in shallow-water (mangroves and seagrass beds) than in deep-water habitats (deep mudflats or coral reefs), whereas the opposite pattern was found for the adults (>15 cm). These findings suggest a strong and general pattern of ontogenetic habitat shifts from shallow- to deep-water habitats. However, specific habitat-use patterns of juveniles as well as adults differed significantly in time and space. Various species showed subtle to considerable flexibility in juvenile as well as adult habitat use across seasons, years, or at different locations. Furthermore, for some species the data suggest presence of ontogenetic habitat shifts at one location but lack thereof at the other location. In summary, ontogenetic habitat use needs to be considered at various spatial and temporal scales for the interpretation of habitat utilization by fish during different life stages. This is important for conservation and management of these habitats, as essential habitats or seasons may be ignored or over-emphasized with respect to their importance for fish during different parts of their life cycle.  相似文献   

12.
Lutjanus apodus (Schoolmaster) were collected from several mangroves and coral reefs at Turneffe Atoll, Belize, in order to investigate whether elemental concentrations from the otolith edge could be used as a means to identify the habitat (mangrove or coral reef) and site (9 mangrove sites and 6 reef sites) from which they were collected. Results of a two factor nested MANOVA (sites nested within habitat) indicated significant differences in elemental concentrations between habitats (i.e., mangrove versus reef) as well as among sites. When separate Linear Discriminant Function Analyses (LDFA) were used to assess whether the spatial variability in otolith chemistry was sufficient to differentiate individuals to their respective habitats or sites, the results indicated that fish were classified (jackknife procedure) with a moderate to poor degree of accuracy (i.e., on average, 67% and 40% of the individuals were correctly classified to the habitat and site from which they were collected, respectively). Using a partial Mantel test we did not find a significant correlation between the differences in otolith elemental concentrations between sites and the distance between sites, while controlling the effect of habitat type (mangrove or reef). This suggests that for mangrove and reef sites at Turneffe Atoll, Belize, the overlap in terms of L. apodus otolith elemental concentrations is too high for investigations of fish movement. Finally, by comparing previously published Haemulon flavolineatum otolith chemistry to that of L. apodus we assessed whether these species showed similar habitat and/or site specific patterns in their otolith chemistry. Although both species were collected from the same sites our results indicated little similarity in their elemental concentrations, thus suggesting that habitat and site elemental signatures are species specific.  相似文献   

13.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

14.
To investigate whether or not regional–temporal patterns of seagrass habitat use by fishes existed at the Ryukyu Islands (southern Japan), visual surveys were conducted in seagrass beds and adjacent coral reefs in northern, central, and southern Ryukyu Islands, in November 2004, and May, August, and November 2005, the northern region having less extensive seagrass beds compared with the central and southern regions. During the study period, the seagrass beds were utilized primarily by 31 species, the densities of some of the latter differing significantly among regions. With the exception of Apogonidae and Holocentridae, all species were diurnal and could be divided into 6 groups based on seagrass habitat use patterns; (1) permanent residents A (10 species, e.g. Stethojulis strigiventer), juveniles and adults living in seagrass beds as well as other habitats; (2) permanent residents B (5 species, e.g. Calotomus spinidens), juveniles and adults living only or mainly in seagrass beds; (3) seasonal residents A (4 species, e.g. Cheilodipterus quinquelineatus), juveniles living in seagrass beds as well as other habitats; (4) seasonal residents B (6 species, e.g. Lethrinus atkinsoni), juveniles living only or mainly in seagrass beds; (5) transients (5 species, e.g. Parupeneus indicus), occurring in seagrass beds in the course of foraging over a variety of habitats; and (6) casual species (1 species, Acanthurus blochii), occurring only occasionally in seagrass beds. Regarding temporal differences, juvenile densities in each group were high in May and August compared with November in each region, whereas adult densities did not differ drastically in each month. For regional differences, juvenile and adult densities of permanent residents A and B were higher in the southern and central regions than in the northern region. Moreover, some seasonal residents showed possible ontogenetic habitat shift from seagrass beds to coral reefs in each region. These results indicated that seagrass habitat use patterns by fishes changed temporally and regionally and there may be habitat connectivity between seagrass beds and coral reefs via ontogenetic migration in the Ryukyu Islands.  相似文献   

15.
Effective conservation requires knowledge of the effects of habitat on distribution and abundance of organisms. Although the structure of coral reef fish assemblages is strongly correlated with attributes of reef structure, data relating reef types to fish assemblages are scarce. In this study we describe the influence of gross habitat characteristics and seasonality on coral reef fish assemblages of fringing and patch reefs in Kenya. Results showed that total fish abundance was not significantly different between the reefs; however, the fringing reef had higher species diversity during both the northeast (42 spp.) and southeast (36 spp.) monsoon seasons when compared to the patch reef. The more fished species (e.g. Siganus sutor and Lethrinus mahsena) were more abundant on the patch reef in both seasons. Statistical analysis indicated common species between the reefs were more abundant on the fringing reef. Seasons affected abundance of the more vagile species (S. sutor), whereas the reef‐attached sky emperor, L. mahsena was affected more by reef type than by seasons. No significant interaction effects of habitat and seasons were found, indicating independence of habitat and environmental variability in affecting fish assemblages on the reefs. Smaller sized fish dominated the fringing reef more than the patch reef, whereas the skewness index (Sk) indicated a normal‐sized frequency distribution on the patch reef. Trophic structure of the fishes varied more within than between reefs, whereas fish assemblage structure was affected more by seasons on the fringing reef. These results suggest that conservation measures such as marine protected area (MPA) design and setting should consider effects of reef morphology and environmental variability on coral‐reef fish assemblage structure.  相似文献   

16.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

17.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

18.
The spatial size distribution of grunts and snappers have previously indicated the separation of juveniles in nursery habitats from the adults on the coral reef. This implies life cycle migrations from nursery habitats (such as seagrass beds and mangroves) to the coral reef. If diet shifts are related to such migrations, then the diets of these fish must change before or around the fish size at which such migrations take place. A wide size range of juveniles of two grunt species (Haemulon sciurus and Haemulon flavolineatum) and of two snapper species (Lutjanus apodus and Ocyurus chrysurus) were caught in seagrass beds and mangroves, and their gut contents identified and quantified. Regression analysis between fish size and dietary importance of small crustaceans showed a negative relationship in all four species. Positive relations were found for H. sciurus, L. apodus and O. chrysurus between fish length and the dietary importance of decapods, and for L. apodusand O. chrysurus between fish length and prey fish importance. Critical changes in the fish diets with fish size were examined by application of a Canonical Correspondence Analysis (CCA). The CCA yielded three clusters of size-classes of fishes with similar diets, and application of a Mantel test showed that each of these clusters had significantly different diets, and that each cluster diet was significantly specialised. The size at which a fish species ‘switched’ from one cluster to another was compared with size-at-maturity data and with the typical size at which these species migrate from the nursery habitats to the coral reef. H. sciurus and H. flavolineatum may be prompted to migrate from the nursery habitats to coral reef habitats because of dietary changes, or because of the development of the gonads. For L. apodus and O. chrysurus, a dietary changeover forms a more likely explanation for nursery-to-reef migrations than does sexual maturation because these species reach maturity at sizes much larger than the maximum size of individuals found in nursery habitats. Although other factors may theoretically initiate or promote the migration patterns, the results of this study indicate that ontogenetic dietary changes may crucially influence the nursery-to-coral reef migrations of these reef fish species.  相似文献   

19.
Certain biodiversity patterns on coral reefs are generally consistent but we still lack fundamental insight into how assemblages vary across spatially heterogeneous reef systems. We compared fish, coral, and sponge assemblages across a symmetrical physiographical gradient (windward forereef, lagoon patch reef, leeward forereef) of the Glover's Reef atoll, Belize. Species richness of fishes and corals was highest in the deep habitat (15 m) on the windward forereef. Sponges were diverse and abundant on both deep windward and leeward forereefs but not on the exposed shallow (5 m) windward forereef. Fish and benthic assemblages were relatively distinct in each reef zone, with the lagoon patch reef communities consisting of a combination of leeward and windward species. Nevertheless, there were no clear patterns in community similarity matrices of fish and benthic assemblages, suggesting that overall coral and sponge assemblages had weak or no direct association with patterns in fish assemblages. A closer examination of fish trophic groups indicated that planktivores and predators were predictably associated with depth, whereas herbivores were associated with shallow protected reefs. None was specifically associated with spatial location along the atoll gradient. These patterns of diversity distribution are important for identifying spatial conservation priorities. A Marine Protected Area (MPA) at Glover's Reef encompasses substantial windward forereef and patch reef habitats. A much lesser extent of protection is afforded the leeward forereef that supports faunal assemblages that are unique and productive, if not as diverse as the windward forereef. Isolated coral atolls can serve as ideal systems to study spatial heterogeneity and biodiversity patterns, but more experimental studies are needed to reveal the mechanistic processes underlying these patterns.  相似文献   

20.
基于广西海域红树林、珊瑚礁、海草床等生境数据,在系统保护规划理论框架下,利用Marxan软件构建了广西海域优先保护格局以识别保护空缺。结果表明:广西海域优先保护区集中在三娘湾、合浦、涠洲岛海域,部分区域游离在现有保护体系外。与广西海洋生态红线对比,保护空缺主要分布在沿岸滩涂分布区、红树林分布区和涠洲岛珊瑚礁分布区。本研究首次基于系统保护规划理论,研究了广西海域优先保护格局,为广西海域的保护规划管理提供了科学性建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号