首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The density of the Carolina marsh clam,Polymesoda caroliniana (Bosc), was determined in three adjacent tidal marsh communities which differed only in plant species composition. Clam density was inversely related to the density (biomass) of plant roots and rhizomes in sediments and directly related to density of plant stems (numbers). Clam abundance was not related to the basal area of plant stems. Each plant community contained clams of various ages from juvenile to adult indicating continued recruitment and survival. These data suggest thatP. caroliniana is most abundant inJuncus roemerianus marshes because there are fewer roots and rhizomes (mean of 2.5 kg m?2) to hamper burrwing as compared toSpartina alterniflora andcynosuroides (5.1 and 6.3 kg m?2, respectively) dominated marshes. Salinity, floding frequency, distance from flooding water, and sediment type were essentially constant among the three plant communities. Root/rhizome density should be collected along with other environmental parameters during studies of benthic organisms on marshes because it potentially limits the occurrence or abundance of some species.  相似文献   

2.
Molluscs were collected monthly for a year from two low salinity (0–9‰) intertidal marshes dominated by the macrophytesJuncus roemerianus orSpartina cynosuroides in St. Louis Bay, Mississippi. TheJuncus marsh had lower soil organic matter, higher pH and was more frequently inundated than theSpartina marsh. Eight species of gastropods were abundant and dominated in the higherSpartina marsh, while three bivalve species were dominant in theJuncus marsh. Of the common species,Succinea ovalis, Vertigo ovata andDeroceras laeve are gastropods of terrestrial origins;Geukensia demissa granosissima (bivalve) andMelampus bidentatus (gastropod) are euryhaline estuarine species and the remaining gastropods (Detracia floridana, Littoridinops palustris, Onobops jacksoni) and bivalves (Polymesoda caroliniana, Cyrenoida floridana) are brackish species. Most species were capable of continuous recruitment (based on size class analysis), but exhibited peak activity in particular seasons. Bivalve abundance correlated to temperature, and gastropod abundance was negatively correlated to soil pH. These correlations reflect the influence of flooding regime at the two sites. Biomass was greater in theJuncus marsh because of the increased presence of the large-bodiedPolymesoda. Polymesoda represented >90% and >50% of the total biomass in theJuncus andSpartina (except summer) marshes respectively but always <-5% of the individuals collected. Gastropod biomass was the same in both marshes. Species diversity (H′) was greater inSpartina except for summer months. TheJuncus marsh always exhibited greater species richness. Evenness (J′) determined seasonal changes in diversity (H′). Similarity values (Cz) were always quite low, with highest values in spring In contrast to faunal studies from Gulf and East Coast salt marshes, we found 1) fewer species, 2) communities comprised of unique species combinations, 3) greatest mean densities in summer, and 4) potentially less productivity by the molluscs of our sites. These mollusc communities exhibit structural characteristics that emphasize the unique ecotonal nature of the oligohaline marshes within which they are found.  相似文献   

3.
The spiders of two Mississippi marsh communities were studied from January 1982 through March 1983. Monthly collections were made in two adjacent marsh plant zones dominated bySpartina cynosuroides (L.) Roth andJuncus roemerianus Scheele respectively. A total of 38 species of spiders (36 inSpartina, 33 inJuncus) representing 13 families were collected. The dominant species in theSpartina zone includedPirata mayaca Gertsch,Lycosa watsoni Gertsch (Lycosidae),Clubiona saltitans Emerton,Scotinella formica (Banks) (Clubionidae),Floricormus sp. (Linyphiidae),Dictyna sylvania Chamberlin & Ivie (Dictynidae),Paramaevia hobbsae (Barnes) (Salticidae), andAgelenopsis barrowsi Gertsch (Agelenidae). The dominant species in theJuncus zone includedLycosa watsoni, Pirata mayaca, Clubiona saltitans andSarinda hentzi (Banks) (Salticidae). Density, biomass, species richness and equitability peaked in May in theJuncus zone and in June in theSpartina zone. Peak levels of density and biomass corresponded to the reproductive activity of the common species, while diversity patterns were attributable to the reproductive activity of the less common species. Mean values of density and biomass over the study period were 84.8 spiders per m2 and 155.6 mg per m2 in theSpartina zone and 39.4 spiders per m2 and 133.0 mg per m2 inJuncus zone. The Juncus zone was flooded more frequently, contained less litter, and supported lower overall density and diversity of spiders.  相似文献   

4.
Annual decomposition rates of Spartina alterniflora height forms and Juncus roemerianus were determined in situ in three North Carolina salt marshes using the litter bag method. The decomposition of Spartina was significantly influenced by size, i.e., height form, with the taller plants which had greater amounts of stem tissue, being more resistant to decay. Instantaneous decay rates for short and medium Spartina were not significantly different at any site, but they were both significantly greater than that of the tall form at two of the three study sites. Juncus decomposed more slowly than Spartina during the first 8 months, but had decomposed as completely as all three height forms of Spartina at two of the study sites by the end of the 13-month study period. Constant submergence appeared to inhibit decomposition since there was twice as much undecomposed plant material remaining in bags placed in tidal creeks as in those on the marsh surface.  相似文献   

5.
In situ ecosystem gas exchange measurements were taken monthly for a 15-month period during low tide forJuncus roemerianus Scheele and short, medium, and tall height forms ofSpartina alterniflora Loisel. in three salt marshes near Southport, North Carolina. Multiple regression analysis was used to obtain empirical relationships betwen gas exchange values and the physical and biotic variables measured. Preliminary models for net ecosystem photosynthesis, ecosystem respiration, and respiration of aboveground standing crop were developed. Validation of models was carried out in the following manner: (1) net primary productivity of aboveground standing crop was calculated from model data and compared with harvest estimates of net primary productivity for the same year; and (2) carbon exchange and energy efficiency values were compared with literature values. In general, theSpartina models, because of their larger data base, were more useful than theJuncus models. Annual primary productivity of aboveground standing crop calculated from gas exchange values was 1.8 to 3.6 times greater forSpartian than values calculated from harvest data by Smalley's method.Juncus values were approximately equal. Since values calculated from carbon data and harvest data are not entirely equivalent, required adjustments to the carbon values are discussed. Both species have two growth periods—one in ths pring and one in the fall—with the spring growth in excess of that in the fall. Net ecosystem productivity was highest in the spring and lowest in the summer. Ecosystem respiration amounted to 71% of gross annual photosynthesis. The aboveground standing crop contributed approximately 35% to this ecosystem respiration and the soil, the remaining 36%. Efficiency for gross photosynthesis per unit of solar radiation ranged from 0.22 to 1.11%. Efficiencies for net primary production of aboveground standing crop ranged from 0 to 0.82% and those of net ecosystem production from 0 to 0.56%.  相似文献   

6.
Although grasshoppers are common salt marsh herbivores, we know little about geographic variation in their species composition. We documented latitudinal variation in species composition of the tettigoniid grasshopper fauna of Atlantic Coast salt marshes. Tettigoniids (N = 740 adults) were collected from the Spartina alterniflora zone of 31 salt marsh sites across a latitudinal range of 13.19° (Florida to Maine), with an additional 52 individuals collected from the Juncus roemerianus zone of low-latitude marshes for comparative purposes. Eight species were collected, but some were common only at a few sites or rare throughout the entire collection range. The tettigoniid community was dominated by Orchelimum fidicinium at low latitudes and Conocephalus spartinae at high latitudes. Several factors might explain this shift, including changes in climate, plant phenology, and plant zonation patterns. O. fidicinium and C. spartinae increased in body size toward low latitudes. In laboratory feeding assays, O. fidicinium readily ate S. alterniflora and J. roemerianus leaves, Orchelimum concinnum, which is largely restricted to the J. roemerianus zone, ate only J. roemerianus leaves, and Conocephalus spp. ate neither, consistent with literature suggestions that they mainly consume seeds and flowers. Geographic variation in species composition and body size of grasshoppers may help explain documented patterns of geographic variation in plant palatability and plant–herbivore interactions in Atlantic Coast salt marshes. Because it can be difficult to identify tettigoniids to species, we present a guide to aid future workers in identifying the tettigoniid species common in these marshes.  相似文献   

7.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

8.
We examined the response of a salt marsh food web to increases in nutrients at 19 coastal sites in Georgia. Fertilization increased the nitrogen content of the two dominant plants, Spartina alterniflora and Juncus roemerianus, indicating that added nutrients were available to and taken up by both species. Fertilization increased Spartina cover, height, and biomass and Juncus height, but led to decreases in Juncus cover and biomass. Fertilization increased abundances of herbivores (grasshoppers) and herbivore damage, but had little effect on decomposers (fungi), and no effect on detritivores (snails). In the laboratory, herbivores and detritivores did not show a feeding preference for fertilized versus control plants of either species, nor did detritivores grow more rapidly on fertilized versus control plants, suggesting that changes in herbivore abundance in the field were driven more by plant size or appearance than by plant nutritional quality. Community patterns in control plots varied predictably among sites (i.e., 17 of 20 regression models examining variation in biological variables across sites were significant), but variation in the effects of fertilization across sites could not be easily predicted (i.e., only 6 of 20 models were significant). Natural variation among sites was typically similar or greater than impacts of fertilization when both were assessed using the coefficient of variation. Overall, these results suggest that eutrophication of salt marshes is likely to have stronger impacts on plants and herbivores than on decomposers and detritivores, and that impacts at any particular site might be hard to distinguish from natural variation among sites.  相似文献   

9.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

10.
The salt marsh cord grass,Spartina alterniflora Loisel., occurs in markedly distinct short and tall growth forms. Both forms have the same number of chromosomes, although polyploidy is well established in the genus. Previous studies have shown that height is primarily affected by nitrate availability and environmental stresses such as increased soluble salt concentrations. These studies have shown that, within a marsh, height differences cannot be attributed to genetic, chromosomal differences or electrophoretic banding. However, more subtle genetic differences may be involved. Other studies suggest that between marshes,S. alterniflora, in response to a latitudinal gradient on the Atlantic coast, has evolved ecotypes differing in height, color and flowering period. This review paper points out that plant height inS. alterniflora may be determined by a combination of environmental and genetic factors.  相似文献   

11.
Germination of mature, viable seeds ofDistichlis spicata (L.) Greene. andScirpus robustus Pursh. from two Virginia salt marshes was not significantly inhibited by aqueous washings from the rhizospheres of sand-culturedPhragmites australis (Cav.) Trin. ex. Stend.,Juncus roemerianus Scheele, orTypha angustifolia L. Germination ofS. robustus seed was inhibited by increased osmotic pressure whileD. spicata germination increased (2.5 fold) significantly when treated with leachate fromT. angustifolia rhizosphere.  相似文献   

12.
In 2001 and 2002, Georgia salt marshes experienced a dieback event that, affected more than 800 ha throughout the coastal zone. The dieback event was unprecedented in the state and affected bothSpartina alterniflora andJuncus roemerianus. A transplant study was conducted from May to October 2003 to determine if healthy plants could survive in dieback areas. Transplants were carried out at two locations on the Georgia coast in areas ofS. alterniflora dieback along the banks of tidal creeks, an area ofS. alterniflora dieback in the mid marsh, and aJ. roemerianus dieback, area in the mid marsh. Transplant survival was nearly 100% and growth (measured as increases in the height of the 5 tallest stems and the number of stems per experimental pot) was observed in both healthy (control) and dieback areas.J. roemerianus grew more slowly thanS. alterniflora, with no, observed increase in stem height and an average 38% increase in stem density as compared to an average 57% increase in stem height and 137% increase in stem density inS. alterniflora. Differences in growth were inconsistent but in most cases no significant differences were observed between healthy and dieback areas. Soil characteristics measured over the course of the experiment were generally comparable between healthy and dieback areas (redox potential averaged 69±123 [SD] across all observations at all sites, pH averaged 6.7 ± 0.3 and salinity averaged 24.9±4.4), but porewater ammonium (NH4) concentration was often higher in dieback areas (overall mean NH4 concentration, was 138±127 μM in dieback areas versus 33±40 μM in healthy areas). These results suggest that the cause of dieback was no, longer present at the time of this study and that transplants are a possibility for restoring affected areas.  相似文献   

13.
Food habits of two species of dolichopodid fly larvae, from two Gulf Coast oligohaline tidal marshes, were analyzed from monthly collections taken between June 1979 and May 1980. Larvae ofPelastoneurus abbreviatus Loew andThinophilus frontalis Van Duzee, taken from aJuncus roemerianus Scheele dominated marsh, fed predominantly on oligochaetes and nematodes.Pelastoneurus abbreviatus, collected in a nearbySpartina cynosuroides (L.) Roth marsh, also fed on oligochaetes but consumed more polychaetes than nematodes. By being predators and prey in turn, these larvae serve in the transfer of energy between benthic, aquatic, and terrestrial components of the marsh, system.  相似文献   

14.
Several recent studies indicate that the replacement of extant species withPhragmites australis can alter the size of nitrogen (N) pools and fluxes within tidal marshes. Some common effects ofP. australis expansion are increased standing stocks of N, greater differentiation of N concentrations between plant tissues (high N leaves and low N stems), and slower whole-plant decay rates than competing species (e.g.,Spartina, Typha spp.). Some of the greater differences between marsh types involveP. australis effects on extractable and porewater pools of dissolved inorganic nitrogen (DIN) and N mineralization rates. Brackish and salt marshes show higher concentrations of DIN in porewater beneathSpartina spp. relative toP. australis, but this is not observed in freshwater tidal marshes whenP. australis is compared withTypha spp. or mixed plant assemblages. With few studies of concurrent N fluxes, the net effect ofP. australis on marsh N budgets is difficult to quantify for single sites and even more so between sites. The magnitude and direction of impacts ofP. australis on N cycles appears to be system-specific, driven more by the system and species being invaded than byP. australis itself. WhereP. australis is found to affect N pools and fluxes, we suggest these alterations result from increased biomass (both aboveground and belowground) and increased allocation of that biomass to recalcitrant stems. Because N pools are commonly greater inP. australis than in most other communities (due to plant and litter uptake), one of the most critical questions remaining is “From where is the extra N inP. australis communities coming?” It is important to determine if the source of the new N is imported (e.g., anthropogenic) or internallyproduced (e.g., fixed, remineralized organic matter). In order to estimate net impacts ofP. australis on marsh N budgets, we suggest that further research be focused on the N source that supports high standing stocks of N inP. australis biomass (external input versus internal cycling) and the relative rates of N loss from different marshes (burial versus subsurface flow versus denitrification).  相似文献   

15.
The primary objective of this research was to determine if vesicular-arbuscular (VA) mycorrhizal fungi are associated with the roots of common plant species found in North Carolina salt marshes. Root samples of Spartina alterniflora, S. patents, S. cynosuroides, Distichlis spicata, and Juncus roemerianus were collected from eight salt marsh sites. With the exception of S. alterniflora, all plant species were mycorrhizal. A greenhouse experiment was conducted to determine whether unfavorable soil conditions or inherent resistance by the plant inhibited development of mycorrhizal infection in field-collected S. alterniflora. Spartina alterniflora and S. patens were grown from seeds in soil collected from a pure stand of S. alterniflora (soil A) or a mixed stand of S. patens and D. spicata (soil P). Seedlings were harvested weekly for 8 wk, and roots were evaluated for infection by mycorrhizal fungi. Seedlings of S. patens were infected when grown for 2 wk in either soil A or soil P, indicating that soil collected from stands of S. alterniflora did not inhibit mycorrhizal infection in a susceptible host. Percent root length infected in S. patens was always greater in soil P than in soil A. Seedlings of S. alterniflora were not infected by mycorrhizal fungi in either soil A or soil P. Results of the greenhouse study indicate that S. alterniflora may be resistant to infection by vesicular-arbuscular mycorrhizal fungi.  相似文献   

16.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

17.
The dominant plant in Humboldt Bay salt marshes in Spartina densiflora, a species of cordgrass apparently introduced from South America. At several salt marshes and restoration sites around Humboldt Bay, distribution of this plant has increased significantly. We investigated the relative contributions of vegetative tiller production and seed germination to the establishment and expansion of S. densiflora. Lateral spread of plants surrounded by competitors were compared to areas without competing plant species. Plants growing in areas without competitors had significantly higher rates of vegetative expansion (p<0.0001). Viable seed production, germination rates, seedling survivorship, and growth of adult plants were measured in six salinity treatments. Approximately 1,977±80 viable seeds are produced per plant (0.25–0.5 m2). The number of germinating seeds was inversely related to increases in salinity. Salinity treatments between 19‰ and 35‰ produced significantly lower germination rates than salinities of 0–18‰ (p<0.0001). Seedling survivorship was 50% at ≤4‰ and 8–14% at ≥11‰. Lateral expansion of adult, greenhouse-grown plants occurred in all salinity treatments, with modest decreases in the highest salinity treatments (p<0.05). Our findings indicate that S. densiflora expands primarily by vegetative expansion, and lateral tillers are produced by throughout the year. Spartina densiflora produces prolific amounts of seed, but recruitment in mature salt marshes may be limited by competitors and higher salinities. At restoration sites, planting of native species such as Salicornia virginica, Distichlis spicata, or Jaumea carnosa may prevent monospecific stands of S. densiflora from developing.  相似文献   

18.
The rapid spread ofPhragmites australis in the coastal marshes of the Northeastern United States has been dramatic and noteworthy in that this native species appears to have gained competitive advantage across a broad range of habitats, from tidal salt marshes to freshwater wetlands. Concomitant with the spread has been a variety of human activities associated with coastal development as well as the displacement of nativeP. australis with aggressive European genotypes. This paper reviews the impacts caused by pure stands ofP. australis on the structure and functions of tidal marshes. To assess the determinants ofP. australis expansion, the physiological tolerance and competitive abilities of this species were examined using a field experiment.P. australis was planted in open tubes paired withSpartina alterniflora, Spartina patens, Juncus gerardii, Lythrum salicaria, andTypha angustifolia in low, medium, and high elevations at mesohaline (14‰), intermediate (18‰), and salt (23‰) marsh locations. Assessment of the physiological tolerance ofP. australis to conditions in tidal brackish and salt marshes indicated this plant is well suited to colonize creek banks as well as upper marsh edges. The competitive ability ofP. australis indicated it was a robust competitor relative to typical salt marsh plants. These results were not surprising since they agreed with field observations by other researchers and fit within current competition models throught to structure plant distribution within tidal marshes. Aspects ofP. australis expansion indicate superior competitive abilities based on attributes that fall outside the typical salt marsh or plant competition models. The alignment of some attributes with human impacts to coastal marshes provides a partial explanation of how this plant competes so well. To curb the spread of this invasive genotype, careful attention needs to be paid to human activities that affect certain marsh functions. Current infestations in tidal marshes should serve as a sentinel to indicate where human actions are likely promoting the invasion (e.g., through hydrologic impacts) and improved management is needed to sustain native plant assemblages (e.g., prohibit filling along margins).  相似文献   

19.
An analysis of data relatingSpartina alterniflora Loisel. to tidal elevations along the Atlantic and Gulf coasts demonstrated that although this species is primarily confined to the intertidal zone, its elevational limits. of occurrence do not correspond to a consistent elevation relative to a tidal datum in all marsh locations. The variation in the vertical distribution of this species reported among marsh studies was attributed primarily to differences in mean tide range (MTR). A positive correlation between MTR and elevational growth range (r=0.91) demonstrated that theSpartina alterniflora zone expands with increasing tidal amplitude. Differences in MTR among marsh locations accounted for 70 and 68% of the statistical variation in the upper and lower limits, respectively, ofS. alterniflora growth. Among marshes of similar tidal amplitudes, the upper limit of occurrence ofS. alterniflora in northern marshes was significantly lower than that in marshes at lower latitudes. These results, in combination with regional differences in plant species distribution across the upper intertidal zone, suggested that some of the variation in the upper limit was due to latitudinal differences in growth conditions and/or differences in interspecific competition. Local and regional differences in other factors such as salinity, nutrients, or physical disturbance may have also contributed to the variation in the limits of growth relative to a tidal plane within and among marshes.  相似文献   

20.
Two killifish common in east coast U.S.A. salt marshes,Cyprinodon variegatus Lacepede andFundulus heteroclitus Walbaum, differ in their ability to assimilate nitrogen from and grow on detritus.C. variegatus grew on a diet of detritus ofSpartina alterniflora Loisel, whileF. heteroclitus did not. In addition, when the fish were fed15N-labeledS. alterniflora detritus,15N:14N ratios inC. variegatus were higher than were ratios inF. heteroclitus. Therefore, even though both species ingest large amounts of detritus,C. variegatus makes more effective use of this portion of its diet. These dietary differences are corroborated by anatomical differences that suggest thatC. variegatus should make better use of detrital or plant tissues thanF. heteroclitus. In the label experiment, the degree of label in both fish was directly proportional to the degree of label in the food treatments. In previously published experiments designed to compare plant substrate with attached microbes as nitrogen sources for detritivores, %15N incorporated by a polychaete was also directly proportional to %15N in the detrital food. Therefore, it is difficult to distinguish between plant substrate and microbes as nitrogen sources for this detritivore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号