首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Agua Amarga coastal aquifer in southern Spain has been the subject of chemical and physical measurements since May 2008 in order to monitor the potential effects of water withdrawal for the Alicante desalination plants on the salt marsh linked to the aquifer. Electrical conductivity contour maps and depth profiles, piezometric-head contour maps, hydrochemical analyses, isotopic characterizations and temperature depth profiles show not only the saltwater intrusion caused by water abstraction, but also the presence of a pronounced convective density-driven flow below the salt marsh; this flow was a consequence of saltwork activity in the early 1900s which generated saline groundwater contamination. The influence of a seawater recharge programme, carried out over the salt marsh in 2009–2010, on the diminishing groundwater salinity and the recovery of groundwater levels is also studied. Based on collected field data, the project provides a deeper understanding of how these successive anthropogenic interventions have modified flow and mixing processes in Agua Amarga aquifer.  相似文献   

2.
Periphyton plays key ecological roles in karstic, freshwater wetlands and is extremely sensitive to environmental change making it a powerful tool to detect saltwater intrusion into these vulnerable and valuable ecosystems. We conducted field mesocosm experiments in the Florida Everglades, USA to test the effects of saltwater intrusion on periphyton metabolism, nutrient content, and diatom species composition, and how these responses differ between mats from a freshwater versus a brackish marsh. Pulsed saltwater intrusion was simulated by dosing treatment chambers monthly with a brine solution for 15 months; control chambers were simultaneously dosed with site water. Periphyton from the freshwater marsh responded to a 1-ppt increase in surface water salinity with reduced productivity and decreased concentrations of total carbon, nitrogen, and phosphorus. These functional responses were accompanied by significant shifts in periphytic diatom assemblages. Periphyton mats at the brackish marsh were more functionally resilient to the saltwater treatment (~?2 ppt above ambient), but nonetheless experienced significant shifts in diatom composition. These findings suggest that freshwater periphyton is negatively affected by small, short-term increases in salinity and that periphytic diatom assemblages, particularly at the brackish marsh, are a better metric of salinity increases compared with periphyton functional metrics due to functional redundancy. This research provides new and valuable information regarding periphyton dynamics in response to changing water sources in the southern Everglades that will allow us to extend the use of periphyton, and their diatom assemblages, as tools for environmental assessments related to saltwater intrusion.  相似文献   

3.
Saltwater intrusion in coastal aquifers depends on the distribution of hydraulic properties, on the climate, and on human interference such as land reclamation. In order to analyze the key processes that control saltwater intrusion, a hypothetical steady-state salt distribution in a representative cross-section perpendicular to the coastline was calculated using a two-dimensional density-dependent solute transport model. The effects of changes in groundwater recharge, lowering of drainage levels, and a rising sea level on the shape and position of the freshwater/saltwater interface were modeled in separate simulations. The results show that the exchange of groundwater and surface water in the marsh areas is one of the key processes influencing saltwater intrusion. A rising sea level causes rapid progression of saltwater intrusion, whereas the drainage network compensates changes in groundwater recharge. The time scale of changes resulting from altered boundary conditions is on the order of decades and centuries, suggesting that the present-day salt distribution does not reflect a steady-state of equilibrium.  相似文献   

4.
Coastal wetlands, among the most productive ecosystems, are important global reservoirs of carbon (C). Accelerated sea level rise (SLR) and saltwater intrusion in coastal wetlands increase salinity and inundation depth, causing uncertain effects on plant and soil processes that drive C storage. We exposed peat-soil monoliths with sawgrass (Cladium jamaicense) plants from a brackish marsh to continuous treatments of salinity (elevated (~?20 ppt) vs. ambient (~?10 ppt)) and inundation levels (submerged (water above soil surface) vs. exposed (water level 4 cm below soil surface)) for 18 months. We quantified changes in soil biogeochemistry, plant productivity, and whole-ecosystem C flux (gross ecosystem productivity, GEP; ecosystem respiration, ER). Elevated salinity had no effect on soil CO2 and CH4 efflux, but it reduced ER and GEP by 42 and 72%, respectively. Control monoliths exposed to ambient salinity had greater net ecosystem productivity (NEP), storing up to nine times more C than plants and soils exposed to elevated salinity. Submersion suppressed soil CO2 efflux but had no effect on NEP. Decreased plant productivity and soil organic C inputs with saltwater intrusion are likely mechanisms of net declines in soil C storage, which may affect the ability of coastal peat marshes to adapt to rising seas.  相似文献   

5.
A numerical model was developed to evaluate the response of groundwater flow and the fresh-saltwater interface in relation to the construction of a particle accelerator at the coastal plain of Tokaimura, Japan. Undisturbed conditions were initially simulated and validated against field observations as a prerequisite for the analysis of predictive scenarios. Groundwater heads and the shape of the saltwater interface were appropriately described by the model, although it tended to underestimate salinity concentrations. Saltwater penetrated up to 250 m inland during predevelopment conditions, reaching more than 400 m at the dewatering phase. Flushing of entrapped saline groundwater might occur in addition to seawater intrusion. In depth, multiple saltwater fronts develop in response to the hydraulic properties of the sediments. Groundwater discharges offshore through the sandy aquifers, but salinity fronts prevail in the relatively impermeable layers. Routes for freshwater outflow turned into pathways of seawater intrusion during the pumping phase. The equilibrium would be reestablished within 2 years from the end of the stress, with no evidence of a permanent deterioration of neighbor residential wells. Nonetheless, after construction the accelerator forms a barrier that leads to a sharp rise in piezometric levels and creates a new and long-term disequilibrium in the saltwater wedge. Despite further work is still necessary to test many of the ideas proposed, the present study makes a new contribution to enhance the understanding of the processes occurring in coastal aquifers subjected to anthropogenic influence.  相似文献   

6.
Jiang  Kejun  Chen  Sha  He  Chenmin  Liu  Jia  Kuo  Sun  Hong  Li  Zhu  Songli  Pianpian  Xiang 《Natural Hazards》2019,97(3):1277-1295

The salinization of freshwater-dependent coastal ecosystems precedes inundation by sea level rise. This type of saltwater intrusion places communities, ecosystems, and infrastructure at substantial risk. Risk perceptions of local residents are an indicator to gauge public support for climate change adaptation planning. Here, we document residential perspectives on the present and future threats posed by saltwater intrusion in a rural, low-lying region in coastal North Carolina, and we compare the spatial distribution of survey responses to physical landscape variables such as distance to coastline, artificial drainage density, elevation, saltwater intrusion vulnerability, and actual salinity measured during a synoptic field survey. We evaluate and discuss the degree of alignment or misalignment between risk perceptions and metrics of exposure to saltwater intrusion. Risk perceptions align well with the physical landscape characteristics, as residents with greater exposure to saltwater intrusion, including those living on low-lying land with high concentrations of artificial drainages, perceive greater risk than people living in low-exposure areas. Uncertainty about threats of saltwater intrusion is greatest among those living at higher elevations, whose properties and communities are less likely to be exposed to high salinity. As rising sea levels, drought, and coastal storms increase the likelihood of saltwater intrusion in coastal regions, integrated assessments of risk perceptions and physical exposure are critical for developing outreach activities and planning adaptation measures.

  相似文献   

7.
We investigated the effects of increasing salinity and inundation on inorganic N exchange and P sorption/precipitation in soils of tidal freshwater floodplain forests (TFFF) of coastal Georgia, USA. Our objectives were to better understand how sea level rise, increasing inundation, and saltwater intrusion will affect the ability of TFFFs to retain nitrogen (N) and phosphorus (P). We collected soil cores (0–5 cm) from three TFFFs that do not currently experience saltwater intrusion and from one TFFF currently experiencing saltwater intrusion and measured NH4-N exchange and PO4-P removal over five simulated 6-h tidal cycles using nutrient-enriched freshwater (30 μM NH4-N and 5 μM PO4-P). In a second experiment, we exposed soil cores to three salinities (0, 2, and 5) and two inundation depths (5 and 10 cm) using the same nutrient enrichment. When flooded with nutrient-enriched freshwater, soils from the three TFFFs that do not experience saltwater intrusion removed inorganic N and P in amounts ranging from 5.2 to 10.7 and 2.3 to 4.4 mg/m2, respectively, and the TFFF soils experiencing saltwater intrusion removed 2.1 to 3.8 mg P/m2. However, TFFF soils experiencing saltwater intrusion released inorganic N to the water column in amounts ranging from 7.1 to 67.5 mg/m2. In the second experiment, soils from TFFFs not experiencing saltwater intrusion released NH4-N to the water column when exposed to 2 and 5 salinity, and the amount of N released increased with salinity and number of tidal cycles. In contrast, the same TFFF soils sorbed two and three times more PO4-P when exposed to 2 and 5 salinity than when exposed to 0 salinity. P removal on a mass basis was greater under 10 cm of inundation, but the efficiency of removal was greater under the 5 cm flooding depth. Our findings suggest that saltwater intrusion caused by sea level rise will promote N release into the water column through organic matter mineralization and/or ion exchange and may promote P sorption, or precipitation of P with metal cations. In addition, release of N and resulting increased N/P could exacerbate eutrophication of estuaries in the future.  相似文献   

8.
磨刀门水道咸潮上溯动力特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究磨刀门水道咸潮上溯的动力特性,基于非结构网格海洋模型(Finite Volume Coastal Ocean Model,FVCOM),构建了覆盖珠江河口及其上游网河区的高分辨率三维斜压数值模型,采用实测资料对其进行率定和验证,并开展了咸潮上溯的数值模拟计算。根据计算结果和实测资料,对磨刀门水道大、中、小潮期间的盐淡水分层与混合特征、盐分物质的分层输移机制进行分析,探讨其咸潮上溯强度时空分布差异的原因。结果表明:小潮期,底层累积盐通量明显大于表层,净输移方向为陆向;大潮期,表层累积盐通量明显大于底层,净输移方向为海向;而平衡点一般出现于中潮期,这就是磨刀门水道咸潮上溯最强和最弱时刻分别出现于小潮和大潮后的中潮期的原因所在。  相似文献   

9.
李彬  孔俊  叶荣辉  李保  罗锋 《水文》2022,42(1):67-74+10
基于MIKE3研究扰动底层盐水楔实现抑制咸潮上溯的最优化方案。结果表明,在河道底部喷水扰动盐水楔可以有效减弱底层盐水浓度,且存在最优喷水流量与最优喷水点。当喷水流量小于该值时,咸潮上溯距离随流量的增大而减小,当大于该值时,咸潮上溯距离随流量的增大反而会增大;最优喷水流量从小潮到大潮逐渐增加,且随着径流量的增大而减小,如径流量为500 m/s~3时,小、中、大潮期间的最优喷水流量分别为20 m/s~3、20 m/s~3和25 m/s~3,减少的咸潮上溯距离分别为3.82 km、3.40 km和1.18 km。随着径流量增大,取得最佳抑咸效果的最优喷水点位置逐渐向下游移动。针对珠江河口的特殊径潮环境,盐水楔扰动的抑咸效果在小潮和中潮期间较好,在大潮期间相对较差。  相似文献   

10.
The salt marsh surface is not a homogeneous environment. Rather, it contains a mix of different microhabitats, which vary in elevation, microtopography, and location within the estuarine system. These attributes act in concert with astronomical tides and meteorological and climatological events and result in pulses of tidal flooding. Marsh hydroperiod, the pattern of flooding events, not only controls nekton access to marsh surface habitats directly but may also mediate habitat exploitation through its influence on other factors, such as prey abundance or vegetation stem density. The relative importance of factors affecting marsh hydroperiod differ between the southeast Atlantic and northern Gulf of Mexico coasts. Astronomical tidal forcing is the primary determinant of hydroperiod in Atlantic Coast marshes, whereas predictable tides are often overridden by meteorological events in Gulf Coast marshes. In addition, other factors influencing coastal water levels have a proportionately greater effect on the Gulf Coast. The relatively unpredictable timing of marsh flooding along the Gulf Coast does not seem to limit habitat utilization. Some of the highest densities of nekton reported from salt marshes are from Gulf Coast marshes that are undergoing gradual submergence and fragmentation caused by an accelerated rise in relative sea level. Additional studies of habitat utilization are needed, especially on the Pacific and Atlantic coasts. Investigations should include regional comparisons of similar microhabitats using identical quantitative sampling methods. Controlled field experiments are also needed to elucidate the mechanisms that affect the habitat function of salt marshes.  相似文献   

11.
Saltwater intrusion in coastal regions of North America   总被引:7,自引:3,他引:4  
Saltwater has intruded into many of the coastal aquifers of the United States, Mexico, and Canada, but the extent of saltwater intrusion varies widely among localities and hydrogeologic settings. In many instances, the area contaminated by saltwater is limited to small parts of an aquifer and to specific wells and has had little or no effect on overall groundwater supplies; in other instances, saltwater contamination is of regional extent and has resulted in the closure of many groundwater supply wells. The variability of hydrogeologic settings, three-dimensional distribution of saline water, and history of groundwater withdrawals and freshwater drainage has resulted in a variety of modes of saltwater intrusion into coastal aquifers. These include lateral intrusion from the ocean; upward intrusion from deeper, more saline zones of a groundwater system; and downward intrusion from coastal waters. Saltwater contamination also has occurred along open boreholes and within abandoned, improperly constructed, or corroded wells that provide pathways for vertical migration across interconnected aquifers. Communities within the coastal regions of North America are taking actions to manage and prevent saltwater intrusion to ensure a sustainable source of groundwater for the future. These actions can be grouped broadly into scientific monitoring and assessment, engineering techniques, and regulatory approaches.  相似文献   

12.
Deng  Yujun  Young  Caitlin  Fu  Xinyu  Song  Jie  Peng  Zhong-Ren 《Natural Hazards》2017,85(2):1063-1088
Natural Hazards - Saltwater intrusion is a major hazard to coastal communities as it causes degradation of fresh water resources. The impact of rising sea level on the saltwater intrusion into...  相似文献   

13.
The present study concerns the application of a numerical approach to describe the influence of anthropogenic modifications in surface flows (operation of a projected reservoir) on the freshwater-seawater relationships in a downstream coastal aquifer which has seasonal seawater intrusion problems (River Verde alluvial aquifer, Almuñécar, southern Spain). A steady-state finite element solution to the partial differential equation governing the regional motion of a phreatic surface and the resulting sharp interface between fresh water and salt water was used to predict the regional behavior of the River Verde aquifer under actual surface flow conditions. The present model approximates, with simple triangular elements, the regional behavior of a coastal aquifer under appropriate sinks, sources, Neumann and open boundary conditions. A steady-state solution to this numerical approach has been shown to precisely calculate freshwater heads, saltwater thicknesses, and freshwater discharges along steeply sloping coasts. Hence, the adequate treatment and interpretation of the hydrogeological data which are available for the River Verde aquifer have been of main concern in satisfactorily applying the proposed numerical model. Present simulated conditions consider steady-state yearly averaged amounts of external supplies of fresh water in order to determine the influences of the projected Otívar reservoir on the further behavior of the River Verde coastal aquifer. When recharges occur at the coastline, essentially because of freshwater deficits due to groundwater overexploitation, a hypothesis of mixing for the freshwater-saltwater transition zone is made in order to still allow the model to continue calculating groundwater heads under the sea level, and, as a consequence, the resulting seawater intrusion and recharges of saltwater from the sea. Simulations show that a considerable advance in seawater intrusion would be expected in the coastal aquifer if current rates of groundwater pumping continue and a significant part of the runoff from the River Verde is channeled from the Otívar reservoir for irrigation purposes.  相似文献   

14.
Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes’ storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6–4.5 m of surging saltwater for several hours. The wells’ casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells’ casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators.  相似文献   

15.
Saltwater intrusion into coastal freshwater aquifers is an ongoing problem that will continue to impact coastal freshwater resources as coastal populations increase. To effectively model saltwater intrusion, the impacts of increased salt content on fluid density must be accounted for to properly model saltwater/freshwater transition zones and sharp interfaces. We present a model for variable density fluid flow and solute transport where a conforming finite element method discretization with a locally conservative velocity post-processing method is used for the flow model and the transport equation is discretized using a variational multiscale stabilized conforming finite element method. This formulation provides a consistent velocity and performs well even in advection-dominated problems that can occur in saltwater intrusion modeling. The physical model is presented as well as the formulation of the numerical model and solution methods. The model is tested against several 2-D and 3-D numerical and experimental benchmark problems, and the results are presented to verify the code.  相似文献   

16.
Sustainable management of groundwater resources is critical for viable development of semi-arid regions. Refugio County, TX, is predominantly a rural community that is in close proximity to two large urban areas of Corpus Christi and San Antonio. Large-scale water supply projects are being planned to export surplus water available in Refugio County to nearby growing cities. Being a coastal county with several sensitive bays and estuaries, these projects have caused concerns with regard to decreases in freshwater inflows to coastal bodies and raised the possibility of saltwater intrusion. A simulation model characterizing groundwater flow in the shallower unconfined and the deeper semi-confined formations of the Gulf coast aquifer was calibrated and evaluated. The model results were used in conjunction with a mathematical programming scheme to estimate maximum available groundwater in the county. Stakeholder concerns were incorporated as constraints, which included prevention of saltwater intrusion in the aquifer, limiting the amount of allowable drawdown in shallow aquifers, as well as maintaining current flow gradients especially near baseflow-dependent streams and rivers. For the conditions assumed in this study, the model results indicate that roughly 4.93 × 107 m3 of water can be extracted in a typical year. The management model was noted to be very sensitive to the imposed saltwater intrusion constraint.  相似文献   

17.
River discharge, tide, wind, topography and other factors all have great impacts on the saltwater intrusion of Modaomen Waterway (MW), a major outlet of the Pearl River Estuary. A coupled 1D–3D numerical model was applied in this study to account for the dynamic characteristics of saltwater intrusion in the MW, and the impacts of tide and river discharge on the length of saltwater intrusion were uncovered. Results are as the followings: (1) River discharge from upstream induces an obvious dilution of salinity along the MW, whereas tide can exert a positive force that pushes salt water landward. The effects of river discharge and tide on the length of saltwater intrusion can be well described by a regression function; (2) the saltwater intrusion along the MW is generally aggravated by increases in tidal range from the South China Sea. The length of saltwater intrusion usually reaches a maximum 2 or 3 days before spring tide, and the hourly length of saltwater intrusion along the MW usually slows the tidal process for approximately 4 h, which can provide important information that the pumping operation along the MW to store freshwater in the backup storages needs to be at least 3 days ahead of the spring tide so as to avoid serious impact from saltwater intrusion; (3) the length of saltwater intrusion generally decreases with increasing river discharge. In 2005, 2009 and 2010, the average river discharge from upstream was 2680, 2630 and 3160 m3/s, respectively, with corresponding average lengths of saltwater intrusion of 32.7, 42.3 and 21.4 km. The inverse correlation between the water flow and the length of saltwater intrusion may provide some guidance for operations to maintain enough upstream flow to dilute the salinity and therefore satisfy the domestic water supply.  相似文献   

18.
Freshwater requirements of a semi-arid supratidal and floodplain salt marsh   总被引:2,自引:0,他引:2  
When rivers are impounded, the reduction in downstream flow can produce important and often adverse effects, especially in the estuarine environment. One or more dams have been proposed for the Olifants River system in the Western Cape, South Africa. This estuary has an extensive area of salt marsh that was examined to see whether it required occasional flooding with freshwater to wash out accumulated salts. The dominant salt marsh species,Sarcocornia pillansii, occurred in supratidal and floodplain areas where the water table was shallowest, the soil moisture highest, and the soil electrical conductivity lowest. Aerial photographs and simulated runoff data showed that no flood had covered the floodplain during the previous 80 years. The data indicate that salt marsh plants use saline groundwater during the dry months of the year in order to survive, but use the short season winter rainfall period with low salinity conditions to grow and reproduce. This study demonstrated that live roots ofS. pillansii reached the water table during the dry season. Tissue and soil water potentials, the relationship between vegetation cover, depth to the water table, and electrical conductivity of the groundwater support the conclusion that saline groundwater is the only source of water during the drier months of the year. Freshwater flooding of the river in winter may be important because it covers the supratidal area with less saline water and reduces the depth to the water table on the floodplain. This makes the groundwater more accessible to the halophytes growing on the floodplain.  相似文献   

19.
杭州市第二水源千岛湖配水工程(简称配水工程)的实施将引起富春江水库下泄流量及过程改变,从而对钱塘江河口盐水入侵产生影响。建立考虑涌潮作用的二维盐度数值模型,在验证钱塘江河口潮位和盐度的基础上,预测配水工程实施对河口盐水入侵距离和重要取水口含氯度超标时间的影响。研究表明:配水工程实施后,上游富春江水库若按现状调度方案,对枯水年影响大,咸水上溯距离增加3.7 km,沿岸取水口的可取水时间缩短0.2~3.6 d,丰、平水年盐水入侵和引水前相当;通过水库的优化调度,可基本消除枯水年引水造成的盐水入侵影响。为减少配水工程实施的盐水入侵影响,采用水库的优化调度模式是必要的。  相似文献   

20.
Most primary production of angiosperms in coastal salt marshes enters the detritivore food web; studies of this link have predominantly focused on one plant species (Spartina alterniflora) and one detritivore species (Littoraria irrorata). In mesocosm experiments, we studied the rates and pattern of decomposition of litter derived from four plant species common in southeastern United States coastal salt marshes and marsh-fringing terrestrial habitats. Crustanceans and gastropods were selected as detritivores feeding on, and affecting degradation of, the litter of two monocotyledons and two dicotyledons. Despite interspecific similarities in consumption, detritivores exhibited species-specific effects on litter chemistry and on the activity of litter-colonizing microbiota. The chemical composition of feces depended upon both the litter type and the detritivores’ species-specific digestive capabilities. Growth rates and survival of detritivores differed among litter species. Different salt marsh detritivores are likely to have different effects on decomposition processes in the salt marsh and cannot be regarded as functionally redundant nor can the litter of different plant species be regard ed as redundant as food for marsh detritivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号