首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This is the second paper of the series on the influence of the atmospheric water vapour (WV) on IRS NIR measurements. In the first paper (Pandya et al. 2011) a simulation study was presented where through the radiative transfer calculations it was shown that the variation of 0 to 6 g/cm2 in the WV hampered the IRS NIR reflectance up to 14%. In that study splitting of IRS NIR (0.770–0.860 μm) into two bands, such as NIR1 (0.775–0.805 μm) and NIR2 (0.845–0.875 μm) was also proposed, which facilitated a considerable improvement in NIR reflectance as well as in NDVI. Objective of the present paper is to validate the findings of simulation study with the use of EO1-Hyperion data. An improvement of the order of 7% in the top-of-atmosphere reflectance over vegetation target was obtained from the satellite data analysis, which is in good agreement to that of simulation results (3.7 to 7.9%) for the continental WV conditions of 1 to 3 g/cm2. This is also true for NDVI values, which illustrated a good agreement between the satellite observations (2.5%) and simulation results (2 to 4.6%) for the magnitude of improvement. Findings of the present study are preliminary in the nature but it provides a basis for enhanced NIR observations for future IRS sensors.  相似文献   

2.
The retrieval of land (soil-vegetation complex) surface temperature (LST) was carried out over semi-arid mixed agriculture landscape of Gujarat using thermal bands (channel 4 and 5) and ground emissivity from atmospherically corrected NDVI of NOAA AVHRR LAC images. The atmospheric correction of Visible and NIR band reflectance was done using SMAC model. The LST computed from split-window method and subsequently corrected with fractional vegetation cover were then compared with near synchronous ground observations of soil and air temperatures made during 13–17 January and April, 1997 at five Land Surface Processes Experiment (LASPEX) sites of Anand, Sanand, Derol, Arnej and Khandha covering 100 km x 100 km. The fractional vegetation cover corrected LST at noon hrs. varied from 301.6 – 311.9K in January and from 315.8 – 325.6K in April. The LSTcorr were found to lie in the mid way between AT and ST during January. But in April, LST were found to be more close to ST which may be due to relatively poor vegetation growth as indicated by lower NDVI values in April indicating more contribution to LST from exposed soil surface.  相似文献   

3.
The remote sensing community in geology is widely using the Multispectral Landsat Thematic Mapper (TM) data which has a wider choice of spectral bands (six between 0.45 and 2.35 μm, plus a thermal infrared channel 10.4-12.5 urn). These were evaluated for low-grade magnetite ores mapping over the high-grade granulite region of Kanjamalai area of Tamil Nadu state, India. The Fourier Transform Infrared (FTIR) spectroscopy data (0.4-4.0 μm) for powders of the magnetite ores exposed with granulite rock and published spectral reflectance data were used as guides in selecting TM band reflectance ratios, which maximize discrimination of magnetite ores on the basis of their respective mineralogies. The study shows that the weathering mineralogy of magnetite ores causes absorption features in their reflectance spectra which are particularly characteristic of the near infrared. Comparison of TM data with field and petrographic observations shows the presence of magnetite and aluminosilicate minerals & show strong absorption at 0.7-1 μ.m wavelength spectral region & increase in the product of two TM band ratios: band 5 (1.55-1.75 μm) to band 4 (0.76-0.9 μm) and band 3 (0.63-0.69 μm) to band 4 (0.76-0.9 μm). Various computer image enhancement and data extraction techniques such as interactive digital image classification techniques using color compositing stretched ratio, maximum likelihood and thresholding statistical approaches using Landsat TM data are used to map the low-grade magnetite ores of the granulite region. The field traverses and local verification enhanced to map the other rock types namely granulites and gneisses of the study area.  相似文献   

4.
The current development of satellite technology particularly in the sensors like POLDER and MISR, has emphasized more on directional reflectance measurements (i.e. spectral reflectance of the target measured from different view zenith and azimuth angles) of the earth surface features mainly the vegetation for retrieval of biophysical parameters at regional scale using radiative transfer models. This approach being physical process based and uses directional reflectance measurement has been found to better and more reliable compared to the conventional statistical approach used till date and takes care of anisotropic nature (i.e. reflectance from the target is different if measured from different view angles) of the target. Keeping this in view a field experiment was conducted in mustard crop to evaluate the radiative transfer model for biophysical parameter retrieval through its inversion with the objectives set as (i) to relate canopy biophysical parameters and geometry to its bidirectional reflectance, (ii) to evaluate a canopy reflectance model to best represent the radiative transfer within the canopy for its inversion and (iii) to retrieve crop biophysical parameters through inversion of the model. Two varieties of the mustard crop (Brassica juncea L) were grown with two nitrogen treatments. The bidirectional reflectance data obtained at 5 nm interval for a range of 400–1100 nm were integrated to IRS LISS–II sensor’s four band values using Newton Cotes Integration technique. Biophysical parameters like leaf area index, leaf chlorophyll content, leaf length, plant height and average leaf inclination angle, biomass etc were estimated synchronizing with the bi-directional reflectance measurements. Radiative transfer model PROSAIL model was validated and its inversion was done to retrieve LAI and ALA. Look Up Table (LUT) of Bidirectional reflectance distribution function (BRDF) was prepared simulating through PROSAIL model varying only LAI (0.2 interval from 1.2 to 5.4 ) and ALA (5° interval from 40° to 55°) parameters and inversion was done using a merit function and numerical optimization technique given by Press et al. (1986). The derived LAI and ALA values from inversion were well matched with observed one with RMSE 0.521 and 5.57, respectively.  相似文献   

5.
The aim of our study was to explore the spectral properties of fire-scorched (burned) and non fire-scorched (vegetation) areas, as well as areas with different burn/vegetation ratios, using a multisource multiresolution satellite data set. A case study was undertaken following a very destructive wildfire that occurred in Parnitha, Greece, July 2007, for which we acquired satellite images from LANDSAT, ASTER, and IKONOS. Additionally, we created spatially degraded satellite data over a range of coarser resolutions using resampling techniques. The panchromatic (1 m) and multispectral component (4 m) of IKONOS were merged using the Gram-Schmidt spectral sharpening method. This very high-resolution imagery served as the basis to estimate the cover percentage of burned areas, bare land and vegetation at pixel level, by applying the maximum likelihood classification algorithm. Finally, multiple linear regression models were fit to estimate each land-cover fraction as a function of surface reflectance values of the original and the spatially degraded satellite images.The main findings of our research were: (a) the Near Infrared (NIR) and Short-wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas; (b) when the bi-spectral space consists only of NIR and SWIR, then the NIR ground reflectance value plays a more significant role in estimating the percent of burned areas, and the SWIR appears to be more important in estimating the percent of vegetation; and (c) semi-burned areas comprising 45–55% burned area and 45–55% vegetation are spectrally closer to burned areas in the NIR channel, whereas those areas are spectrally closer to vegetation in the SWIR channel. These findings, at least partially, are attributed to the fact that: (i) completely burned pixels present low variance in the NIR and high variance in the SWIR, whereas the opposite is observed in completely vegetated areas where higher variance is observed in the NIR and lower variance in the SWIR, and (ii) bare land modifies the spectral signal of burned areas more than the spectral signal of vegetated areas in the NIR, while the opposite is observed in SWIR region of the spectrum where the bare land modifies the spectral signal of vegetation more than the burned areas because the bare land and the vegetation are spectrally more similar in the NIR, and the bare land and burned areas are spectrally more similar in the SWIR.  相似文献   

6.
To study impact of climate change on vegetation time series vegetation index has a vital role to know the behaviour of vegetation dynamics over a time period. INSAT 3A CCD (Charged Couple Device) is the only geostationary sensor to acquire regular coverage of Asia continent at 1 km × 1 km spatial resolution with high temporal frequency (half-an-hour). A formulation of surface reflectances in red, near infrared (NIR), short wave infrared (SWIR) and NDVI from INSAT 3A CCD has been defined and integrated in the operational chain. The atmospheric correction of at-sensor reflectances using SMAC (Simple Model for Atmospheric Correction) model improved the NDVI by 5–40% and also increased its dynamic range. The temporal dynamics of 16-day NDVI composite at 0500 GMT for a growing year (June 2008–March 2009) showed matching profiles with reference to global products (MODIS TERRA) over known land targets. The root mean square deviation (RMSD) between the two was 0.14 with correlation coefficient (r) 0.84 from 200 paired datasets. This inter-sensor cross-correlation would help in NDVI calibration to add continuity in long term NDVI database for climate change studies.  相似文献   

7.
This paper present the results of a preliminary study to assess the potential of the visible, NIR and SWIR energy of the EMR in differentiating iron ores of different grades in a rapid manner using hyperspectral radiometry. Using different iron ore samples from Noamundi and Joda mines, Jharkhand and Orissa, states of India, certain spectro-radiometric measurements and geochemical analysis were carried out and the results have been presented. It was observed that the primary spectral characteristics of these iron ores lie in the 850 to 900 nm and 650–750 nm regions. The spectral parameters for each curve used for studying the iron ores are: (i) the slopes of the spectral curve in 685–725 nm region; (ii) position of the peak with respect to wavelength in 730–750 nm region and (iii) radius of curvature of the absorption trough in the 850–900 nm region. Comparison of these spectral parameters and the geochemistry of the samples indicates that the position of the peak of the curve in 730–750 nm region shifts towards longer wavelength with increasing iron oxide content, while the slope of the curvature in the 685–725 nm region has a strong negative correlation with the iron oxide content of the samples. Similarly, a strong negative correlation is observed between the radius of curvature of the 850–900 nm absorption trough and the iron oxide content. Such strong correlations indicate that hyperspectral radiometry in the visible and NIR regions can give a better estimate and quantification of the grades of iron ores. This study has demonstrated that generation of empirical models using hyperspectral radiometric techniques is helpful to quantify the grade of iron ores with limited geochemical analysis.  相似文献   

8.
Utility of Hyperspectral Data for Potato Late Blight Disease Detection   总被引:1,自引:0,他引:1  
The study was carried out to investigate the utility of hyperspectral reflectance data for potato late blight disease detection. The hyperspectral data was collected for potato crop at different level of disease infestation using hand-held spectroradiometer over the spectral range of 325–1075 nm. The data was averaged into 10-nm wide wavebands, resulting in 75 narrowbands. The reflectance curve was partitioned into five regions, viz. 400–500 nm, 520–590 nm, 620–680 nm, 770–860 nm and 920–1050 nm. The notable differences in healthy and diseased potato plants were noticed in 770–860 nm and 920–1050 nm range. Vegetation indices, namely NDVI, SR, SAVI and red edge were calculated using reflectance values. The differences between the vegetation indices for plants at different levels of disease infestation were found highly significant. The optimal hyperspectral wavebands to discriminate the healthy plants from disease infested plants were 540, 610, 620, 700, 710, 730, 780 and 1040 nm whereas upto 25% infestation could be discriminated using reflectance at 710, 720 and 750 nm.  相似文献   

9.
10.
In the present study, The Landsat 7 ETM satellite data was collected for the Sittampundi anorthosites complex and digital image analysis was carried out. The anorthositic rocks available at Sittampundi complex is considered as an equivalent of lunar highland rocks. Hence, a remote sensing study comprises of image analysis and spectral profile analysis was carried out. The satellite data was digitally processed and generated various outputs like band combinations, color composites, stretched outputs, and PCA. The suitable processed outputs were identified for delineating the anorthosite complex. The diagnostic absorption features of reflectance spectra are the sensitive indicators of mineralogy and chemical composition of rocks, which are interest to the planetary scientists. The spectral profile of Landsat ETM plotted for pure and mixed anorthosite pixels and compared with the field and lab reflectance spectra. The percentages of image spectra vary from 30% to 60% for Sittampundi anorthosite. The spectral bands 2, 4 and 6 have low reflectance and bands 3 and 5 have high reflectance. The spectral range of bands 2,3,4,5 and 6 are 525 nm–605 nm, 630 nm–690 nm, 750 nm–900 nm, 1550 nm–1750 nm and 10400 nm–12500 nm respectively. The field spectral curve has weak absorptions at 650 nm and 1000 nm due to the iron transition absorption and low ca- pyroxene respectively available in the anorthosite, matching with the image spectra. However, hyperspectal image with narrow bandwidth could be more useful in selecting the suitable spectrum for remotely mapping the anorthosite region, as equivalent test site for lunar highland region.  相似文献   

11.
Space-borne ocean-colour remote sensor-detected radiance is heavily contaminated by solar radiation backscattered by the atmospheric air molecules and aerosols. Hence, the first step in ocean-colour data processing is the removal of this atmospheric contribution from the sensor-detected radiance to enable detection of optically active oceanic constituents e.g. chlorophyll-a, suspended sediment etc. In standard atmospheric correction procedure for OCEANSAT-1 Ocean Colour Monitor (OCM) data, NIR bands centered at 765 and 865 nm wavelengths were used for aerosol characterization. Due to high absorption by water molecules, ocean surface in these two wavelengths acts as dark background, therefore, sensor detected radiance can be assumed to have major contribution from atmospheric scattering. For coastal turbid waters this assumption of dark surface fails due to the presence of highly scattering sediments which causes sufficient water-leaving radiance in NIR bands and lead to over-estimation of aerosol radiance resulting in negative water leaving radiance for λ < 700 nm. In the present study, for the turbid coastal waters in the northern Bay of Bengal, the concept of spatial homogeneity of aerosol and water leaving reflectance has been applied to perform atmospheric correction of OCAEANSAT-1 OCM data. The results of the turbid water atmospheric correction have also been validated using in-situ measured water-leaving radiance. Comparison of satellite derived water-leaving radiance for five coastal stations with in-situ measured radiance spectra, indicates an improvement over the standard atmospheric correction algorithm giving physically realistic and positive values. Root Mean Square Error (RMSE) between the in-situ measured and satellite derived water leaving radiance for wavelengths 412 nm, 443 nm, 490 nm, 512 nm and 555 nm was found to be 1.11, 0.718, 0.575, 0.611 and 0.651%, respectively, using standard atmospheric correction procedure. By the use of spatial homogeneity concept, this error was reduced to 0.125, 0.173, 0.176, 0.225, and 0.290 and the correlation coefficient arrived at 0.945, which is an improvement over the standard atmospheric correction procedure.  相似文献   

12.
In this paper, we focused on the retrieval of the LAI in an alpine wetland located in western part of China in late August and early July 2011. A two-layer canopy reflectance model (ACRM) was used to establish the relationships between the LAI and the reflectance of near-infrared (NIR) and red (RED) wavebands. The reflectance data were derived from Landsat TM L1T product and the Terra and Aqua MODIS 16-day and 8-day composite reflectance products (MOD/MYD09) at 250 m resolution. Due to the lack of the information about some major input parameters for ACRM, which are sensitive to model outputs in the reflectance of NIR and RED wavebands, the inverse problem was ill-posed. To overcome this problem, a method of increasing the sensitivity of the LAI while reducing the influence of other model free parameters based on the study of free parameters’ sensitivity to the ACRM outputs and the region’s features was studied. The area of interest was divided into two parts using the approximately statistic normalized difference vegetation index (NDVI) value around 0.5. One part was sparse vegetation (0.1 < NDVI < 0.5), which is more sensitive to soil background effects and less sensitive to the canopy biophysical and biochemical variables. The other part was dense vegetation (0.5  NDVI < 1.0), which is less sensitive to soil background effects and more sensitive to plant canopies and leaf parameters. Then, the relationships of ρnir–LAI and ρred–LAI were established using a look-up table algorithm for the two parts. Furthermore, a regularization technique for fast pixel-wise retrieval was introduced to reduce the elements of LUT sets while maintaining a relatively high accuracy. The results were very promising compared to the field measured LAI values that the correlation (R2) of the measured LAI values and retrieved LAI values reached 0.95, and the root-mean-square deviation (RMSD) was 0.33 for late August, 2011, while the R2 reached 0.82 and RMSD was 0.25 for early July 2011.  相似文献   

13.
Unmanned Aerial Vehicle (UAV) remote sensing has opened the door to new sources of data to effectively characterize vegetation metrics at very high spatial resolution and at flexible revisit frequencies. Successful estimation of the leaf area index (LAI) in precision agriculture with a UAV image has been reported in several studies. However, in most forests, the challenges associated with the interference from a complex background and a variety of vegetation species have hindered research using UAV images. To the best of our knowledge, very few studies have mapped the forest LAI with a UAV image. In addition, the drawbacks and advantages of estimating the forest LAI with UAV and satellite images at high spatial resolution remain a knowledge gap in existing literature. Therefore, this paper aims to map LAI in a mangrove forest with a complex background and a variety of vegetation species using a UAV image and compare it with a WorldView-2 image (WV2).In this study, three representative NDVIs, average NDVI (AvNDVI), vegetated specific NDVI (VsNDVI), and scaled NDVI (ScNDVI), were acquired with UAV and WV2 to predict the plot level (10 × 10 m) LAI. The results showed that AvNDVI achieved the highest accuracy for WV2 (R2 = 0.778, RMSE = 0.424), whereas ScNDVI obtained the optimal accuracy for UAV (R2 = 0.817, RMSE = 0.423). In addition, an overall comparison results of the WV2 and UAV derived LAIs indicated that UAV obtained a better accuracy than WV2 in the plots that were covered with homogeneous mangrove species or in the low LAI plots, which was because UAV can effectively eliminate the influence from the background and the vegetation species owing to its high spatial resolution. However, WV2 obtained a slightly higher accuracy than UAV in the plots covered with a variety of mangrove species, which was because the UAV sensor provides a negative spectral response function(SRF) than WV2 in terms of the mangrove LAI estimation.  相似文献   

14.
The study compared forest cover maps derived using coarse resolution vegetation continuous fields (MODIS VCF; 500m resolution) with the maps derived from medium resolution (24m; IRS LISS-III) data. The comparison of VCF, per cent tree cover product, for the years 2000 to 2004 with LISS III forest density class maps of 2001 and 2003 was carried out for two sites representing hilly (Uttarakhand) and undulating terrains (Madhya Pradesh). Slicing VCF to corresponding forest crown cover, i.e., 0–10%, 10–40%, 40–70% and >70% produced considerable difference in forest area estimates when compared to original LISS III derived crown cover area. The corresponding value range in VCF for 0–10% of actual forest cover were 0–31% and 0–25% in 2 sites respectively, and the respective limit was consistent at 1–20% when VCF range were sliced with respect to upscaled LISS III at 500m resolution. Similarly, all other class limits were also found through iterative process. These limits were similar, within a site, across five years. Spatial Kappa match between these two data indicated higher match in 40–70% class, and also in undulating site. When compared at same resolution, similar forest area cover estimated with weighted area upscaling gave closest match. The study is useful in knowing the usability and limits of VCF product, and utility of spatial Kappa.  相似文献   

15.
Canopy water content (CWC) is important for mapping and monitoring the condition of the terrestrial ecosystem. Spectral information related to the water absorption features at 970 nm and 1200 nm offers possibilities for deriving information on CWC. In this study, we compare the use of derivative spectra, spectral indices and continuum removal techniques for these regions. Hyperspectral reflectance data representing a range of canopies were simulated using the combined PROSPECT + SAILH model. Best results in estimating CWC were obtained by using spectral derivatives at the slopes of the 970 nm and 1200 nm water absorption features. Real data from two different test sites were analysed. Spectral information at both test sites was obtained with an ASD FieldSpec spectrometer, whereas at the second site HyMap airborne imaging spectrometer data were also acquired. Best results were obtained for the derivative spectra. In order to avoid the potential influence of atmospheric water vapour absorption bands the derivative of the reflectance on the right slope of the canopy water absorption feature at 970 nm can best be used for estimating CWC.  相似文献   

16.
The potential usefulness of spectral properties and vegetation indices in varietal discrimination of potato genotypes was studied in the field experiment. Spectral measurements were recorded in different bands in blue (450–520 nm), green (520–590 nm), red (620–680 nm) and infrared (770–860 nm) of the electromagnetic spectrum at different stages during crop growth period. A ground based hand held multiband radiometer (Model/041) was used for the purpose. The mean per cent green reflectance value among different genotypes was lowest in genotype MS/86-89, while it was observed highest in genotype JX-216. Significant difference among these genotypes was found at all growth stages except 6 week after planting. Consequent to variation in spectral reflectance the vegetation indices like, NDVI, RVI, TVI and DVI showed significant difference among genotypes at all growth stages except at 8th week after planting. The vegetation indices are good indicators of crop growth and condition. Similarly, fresh weight, dry weight, and leaf area index were also highest in MS/86-89, followed by KUFRI Bahar and KUFRI Sutlej while in case of leaf area index it was followed by Kufri Sutlej and Kufri Bahar. JX-23 was highest in chlorophyll content and tuber yield followed by MS/86-89 and JW-160, while lowest chlorophyll content was seen in MS/89-1095 and poorest tuber yield in MS/89-60. Most of the genotypes exhibited considerable variation in their spectral response and vegetation indices thereby indicating the possibility of their discrimination through remote sensing technique.  相似文献   

17.
This paper reports the results of a modeling study carried out with two objectives, (1) to estimate and compare effective spectral characteristics (central wavelength, bandwidth and bandpass exo-atmospheric solar irradiance Eo) of various spectral channels of LISS-III, WiFS, LISS-III*, LISS-IV and AWiFS onboard Indian Remote Sensing Satellites IRS-ID and P6 using moment method based on the laboratory measurements of sensor spectral response, and (2) to quantify the influence of varying sensor spectral response on reflectance and Normalized Difference Vegetation Index (NDVI) measurements using surface reflectance spectra corresponding to different leaf area index conditions of crop target obtained through field experiment. Significant deviation of 4 to 14 nm in central wavelength and 1.6 to 14.07 nm in spectral width was observed for the corresponding channel of IRS sensors. Coefficient of variation of the order of 0.1 to 1.11% was noticed in Eo among various IRS sensors, which could induce a difference of 0.72 to 3.35% in the estimation of top of atmosphere reflectance for crop target. The variation in spectral response of IRS sensors implied a relative difference of the order of 0.91 to 3.38% in surface reflectance and NDVI measurements. Polynomial approximations are also provided for spectral correction that can be utilized for normalizing the artifacts introduced due to differences in spectral characteristics among IRS sensors.  相似文献   

18.
This study is aimed at demonstrating the feasibility of the large scale LAI inversion algorithms using red and near infrared reflectance obtained from high resolution satellite imagery. Radiances in digital counts were obtained in 10 m resolution acquired on cloud free day of August 23, 2007, by the SPOT 5 high resolution geometric (HRG) instrument on mostly temperate hardwood forest located in the Great Lakes – St. Lawrence forest in Southern Quebec. Normalized difference vegetation index (NDVI), scaled difference vegetation index (SDVI) and modified soil-adjusted vegetation index (MSAVI) were applied to calculate gap fractions. LAI was inverted from the gap fraction using the common Beer–Lambert's law of light extinction under forest canopy. The robustness of the algorithm was evaluated using the ground-based LAI measurements and by applying the methods for the independently simulated reflectance data using PROSPECT + SAIL coupled radiative transfer models. Furthermore, the high resolution LAI was compared with MODIS LAI product. The effects of atmospheric corrections and scales were investigated for all of the LAI retrieval methods. NDVI was found to be not suitable index for large scale LAI inversion due to the sensitivity to scale and atmospheric effects. SDVI was virtually scale and atmospheric correction invariant. MSAVI was also scale invariant. Considering all sensitivity analysis, MSAVI performed best followed by SDVI for robust LAI inversion from high resolution imagery.  相似文献   

19.
Due to the temporal resolution of available numerical weather analyses, the effect of the atmosphere on Earth rotation at daily and sub-daily periods is usually investigated using 6-hourly atmospheric angular momentum (AAM) functions. During the period of CONT08, however, atmospheric analysis data were provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) also on an hourly basis. In this paper, we, therefore, determine two sets of AAM functions from ECMWF data—one for CONT08 with hourly resolution and one for the year 2008 with 6-hourly resolution. The comparisons of the AAM functions to high-resolution Earth rotation parameters (ERP) from VLBI and GPS observations are carried out in the frequency domain. Special attention is paid to the preparation of the high-resolution data sets for the geodetic purposes, as there are jump discontinuities at 12 h intervals. Hence, the hourly AAM functions need to be concatenated. The revised functions yield much smaller amplitudes than their 6-hourly counterparts, as can be seen from the equatorial and the axial frequency spectra of atmospheric excitation in Earth rotation. This decrease of spectral power in the hourly AAM functions is found to be associated with a strong counteraction of pressure and wind terms, which originates from atmospheric circulation on short time scales. The results are compared to previous findings published by Brzeziński and Petrov (IERS Tech Note 28:53–60, 2000) based on the data from the U.S. National Centers for Environmental Prediction (NCEP).  相似文献   

20.
Hyperspectral remote sensing, because of its large number of narrow bands, has shown possibility of discriminating the crops. Current study was carried out to select the optimum bands for discrimination among pulses, cole crops and ornamental plants using the ground-based Hyperspectral data in Patha village, Lalitpur district, Uttar Pradesh state and Kolkata, West Bengal state. The field observations of reflectance were taken using a 512-channel spectroradiometer with a range of 325–1075 nm. The stepwise discriminant analysis was carried out and separability measures, such as Wilks’ lambda and F-Value were used as criteria for identifying the narrow bands. The analysis showed that, the best four bands for pulse crop discrimination lie mostly in NIR and early MIR regions i.e. 750, 800, 940 and 960 nm. Within cole crops discrimination is primarily determined by the green, red and NIR bands of 550, 690, 740, 770 and 980 nm. The separability study showed the bands 420,470,480,570,730,740, 940, 950, 970, 1030 nm are useful for discriminating flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号